AMD

AMDG64 Technology

AMDG64 Architecture
Programmer’s Manual

Volume 4:
128-Bit and 256-Bit
Media Instructions

Publication No. Revision
66666

Advanced Micro Devices £\

© 2013 — 2018 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied
or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties
or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, and 3DNow! are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only
and may be trademarks of their respective companies.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
Contents
Revision History. ... covuiiiiiiiiiiiiiiiiiiiienrenreontsnssnssssssssssosssnssns xxiii
g) 1 P XXVil
About This BooK. XXVil
AUIENCE oot XXVii
OrganizZationottt ettt e et e e e XXVil
Conventions and Definitions xxviil
Related DOCUMENLSot e x1
1 Introductioncoiitiniiiiiiiiiiiiiiiiiitiiieneeeeeeeenscnscnscnssnnnnns 1
1.1 Syntax and NOtationt e 2
1.2 Extended Instruction Encoding 3
1.2.1 Immediate Byte Usage Unique to the SSE instructions 4
1.2.2 Instruction Format Examplesot 4
1.3 VSIB Addressing. . ..ottt 6
1.3.1 Effective Address Array Computationoout ittt ee e 7
1.3.2 Notational Conventions Related to VSIB AddressingMode. 8
1.3.3 Memory Ordering and Exception Behavior.......... 9
1.4 Enabling SSE Instruction Execution i 10
1.5 String Compare INStructions\ttt ettt et e 10
1.5.1 Source Data Format e 13
1.5.2 Comparison TYPettt e e 14
1.5.3 Comparison Summary Bit Vector. i 16
1.5.4 Intermediate Result Post-processing. 18
1.5.5 Output Option Selection.ot e e e et e 18
L5.6 Effecton Flagso 19
2 Instruction Referenceciuiuiiiiiiiiiiiiiiiiiiiiiieinieenenennnnns 21
ADDPD
VA DD P D . . . 23
ADDPS
VA D DD P S . 25
ADDSD
VA D DD S D . . o 27
ADDSS
VA D DD S S . 29
ADDSUBPD
VADDSUBPD . .. 31
ADDSUBPS
VADD SUBPS . . 33
AESDEC
VAESDEC . . 35
AESDECLAST
VAESDECL A ST . 37
AESENC

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
VAESENC . .o 39
AESENCLAST
VAESENCLAST .« oot e e e e 41
AESIMC
VAESIMC . o 43
AESKEYGENASSIST
VAESKEYGENASSIST . . .o e e e e 45
ANDNPD
VANDNPD . .o 47
ANDNPS
VAN DN P S . L 49
ANDPD
VAN D P D . . o 51
ANDPS
VAN DD P S . o 53
BLENDPD
VBLENDPD . .. e 55
BLENDPS
VBLEND P S . 57
BLENDVPD
VBLENDV P . . .o 59
BLENDVPS
VBLEND Y P S . . 61
CMPPD
VM PP D . . o 63
CMPPS
VM PP S . . o 67
CMPSD
VO P S D . . o 71
CMPSS
VO P S S . 75
COMISD
VI COMISD . . .ttt 79
COMISS
VCOMI S S . o 82
CVTDQ2PD
VCVTDQ2PD . . .o e e 84
CVTDQ2PS
VOV T D2 S .. oo e 86
CVTPD2DQ
VOVTPD2DQ . .ottt e e e 88
CVTPD2PS
VOV TP D 2P S . . 90
CVTPS2DQ
VCVTPS2DQ ..ottt et e e e e e e e 92
CVTPS2PD
VOV P S 2P D . . . 94

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
CVTSD2SI
VOV T S D 2SI . ettt e e e 96
CVTSD2SS
VOV T S D 2SS . e 99
CVTSI2SD
VOV TS 28D . 101
CVTSI2SS
VOV T S 2SS ot 104
CVTSS2SD
VOV T S S 2D . .ttt e e e e e e 107
CVTSS2SI
VOV TS S 2SI . 109
CVTTPD2DQ
VCVTTPD2DQ. . . oottt e e e e e e e e e e e e e e e 112
CVTTPS2DQ
VOVTTPS2DQ . ..ottt e e e e e e e e e e 115
CVTTSD2SI
VOV T TS D 2SI . . e e e e e e 117
CVTTSS2SI
VOV T TS S 28 .ottt e e e e e e 120
DIVPD
VDIV P . 123
DIVPS
VDIV P S . 125
DIVSD
VDIV D .o 127
DIVSS
VDI S S . 129
DPPD
VD PP D . . 131
DPPS
VD PP S . 134
EXTRACTPS
VEX T RACT RS . oo e e 137
EXT RO .ot 139
HADDPD
VHADDPD . .. 141
HADDPS
VHAD DS . . 143
HSUBPD
VHSUB P D . ..o 146
HSUBPS
VHSUB P S . 149
INSERTPS
VINSERT S .. e 152
INSERTQ. . ottt e e e e e e e e 154
LDDQU

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
VLDDQU .o 156
LDMXCSR
VEDMXCSR . .t 158
MASKMOVDQU
VMASKMOVDQU . . . e e e e e e 160
MAXPD
VM AXPD . 162
MAXPS
VM A X P S . ot 165
MAXSD
VM A X S D . o 168
MAXSS
VM A X S S . o 170
MINPD
VMINPD . .o 172
MINPS
VMIN P S L 175
MINSD
VMIN S D . .o 178
MINSS
VMIN S S L 180
MOVAPD
VMOV APD . .o 182
MOVAPS
VMOV AP S 184
MOVD
VMOV D L 186
MOVDDUP
VMOVDDUP . ..o e 188
MOVDQA
VMOV D QA 190
MOVDQU
VMOVDQU .. e e 192
MOVHLPS
VMOVHL S . . 194
MOVHPD
VMOVHPD . . . 196
MOVHPS
VMOVHPS . o 198
MOVLHPS
VMOV LHPS . . . 200
MOVLPD
VMOVLPD . . 202
MOVLPS
VMOV LS o 204
MOVMSKPD
VMOVMS K P D . . o e 206

Vi

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
MOVMSKPS
VMOVM KPS . o e 208
MOVNTDQ
VMOVNTDQ .ottt e e e e e e e e e e 210
MOVNTDQA
VMOVNTDQA . . o e e e e 212
MOVNTPD
VMOVNTPD . . e e e e e 214
MOVNTPS
VMOV N TP L. e 216
MOVN T S D ..o e 218
MOVN T S S L 220
MOVQ
VMOV Q .o 222
MOVSD
VMOV D .o 224
MOVSHDUP
VMOVSHDUP . .. e e e e 226
MOVSLDUP
VMOVSLDUP . .. e e e e 228
MOVSS
VMOV S 230
MOVUPD
VMOVUPD . . 232
MOVUPS
VMOV U P . o 234
MPSADBW
VM P S ADBW . 236
MULPD
VMULPD .o 241
MULPS
VMU S . . o e 243
MULSD
VMULSD .ot e e e 245
MULSS
VMU S S . o 247
ORPD
VORPD . .o 249
ORPS
VO RS L 251
PABSB
VA B S B ..o 253
PABSD
VPAB S D ..o 255
PABSW
VP A B S W . 257
PACKSSDW

Vii

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
VP ACK S S D W L 259
PACKSSWB
VPACK S S W B . . o 261
PACKUSDW
VPACKUSDW L 263
PACKUSWB
VPACKUSW . . . 265
PADDB
VPAD DD B . . o 267
PADDD
VP AD DD . . . 269
PADDQ
VPADDQ . . .ot 271
PADDSB
VPAD DD S B . . . 273
PADDSW
VP A D D S W L 275
PADDUSB
VPADDUSB . .t 277
PADDUSW
VPAD DU S . . 279
PADDW
VP A D DWW . 281
PALIGNR
VPALIGNR . .o 283
PAND
VAN D . . 285
PANDN
VP AN DN . 287
PAVGB
VPAVGB . .o 289
PAVGW
VAV GW . . o 291
PBLENDVB
VPBLEND VB . . 293
PBLENDW
VPBLENDW . . 295
PCLMULQDQ
VPCLMULQDQ . . o oottt e e e e e e e e e e e e e e 297
PCMPEQB
VPCMPEQB . . . 299
PCMPEQD
VPCMPEQD . ..o 301
PCMPEQQ
VPCMPEQQ . . o oottt 303
PCMPEQW
VP CM P EQW . . . 305

Viii

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
PCMPESTRI
VPCMPESTRI. . ..o 307
PCMPESTRM
VPCMPESTRM ..o e e 310
PCMPGTB
VPCMPGTB . . .o e 313
PCMPGTD
VPCMPGTD . ..ottt e e e e e e e e e e e 315
PCMPGTQ
VPCMPGTQ . .o oottt e e e e e e e e e e e 317
PCMPGTW
VP CM P GT W . . e e e 319
PCMPISTRI
VPCMPISTRI . . .o e e 321
PCMPISTRM
VPCMPISTRM . ..ot e e e e e e 324
PEXTRB
VPEXTRB. ..o 327
PEXTRD
VPEXTRD . . .ttt 329
PEXTRQ
VPEXTRQ. . .ttt e 331
PEXTRW
VP EX T RW . 333
PHADDD
VPHADDD . ..ottt e e e e 335
PHADDSW
VPHAD D S W . . 337
PHADDW
VPHAD D W . L 340
PHMINPOSUW
VPHMINPOSUW . . o e e e e e e e e 343
PHSUBD
VPHSUBD. . .ot 345
PHSUBSW
VPHSUB S W L 347
PHSUBW
VPHSUBW . . 350
PINSRB
VPIN SR B .. 353
PINSRD
VPINSRD .o 356
PINSRQ
VPINSRQ .ot 358
PINSRW
VPN S R W . o 360
PMADDUBSW

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
VPMADDUBSW . 362
PMADDWD
VPMADDWND . . .o e 365
PMAXSB
VP M A X S B .o 367
PMAXSD
VP MAXSD . ot 369
PMAXSW
VP A X S W . Lt 371
PMAXUB
VPMAXUB . . 373
PMAXUD
VPMAXUD . ..ottt e 375
PMAXUW
VP M AXUW L e 377
PMINSB
VP MIN S B . o 379
PMINSD
VP MIN S D . o 381
PMINSW
VP MIN S W 383
PMINUB
VPMINUB. . . 385
PMINUD
VPMINUD. . .o e e 387
PMINUW
VPMINUW . oo e e e e e 389
PMOVMSKB
VPMOVMS K B . . o 391
PMOVSXBD
VPMOVSXBD . .ot e 393
PMOVSXBQ
VPMOVSXBQ . .ottt e e e 395
PMOVSXBW
VPMOV S X BW L 397
PMOVSXDQ
VPMOVSXDQ . .ottt et e e e e e e 399
PMOVSXWD
VPMOV S X WD . .ot e e 401
PMOVSXWQ
VPMOV S X WO . it e e 403
PMOVZXBD
VPMOVZXBD . .ot e e e 405
PMOVZXBQ
VPMOVZXBQ . .ottt e e e e e e e e 407
PMOVZXBW
VPMOV Z X BW . . o e 409

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
PMOVZXDQ
VPMOVZXDQ . .ottt e e e e e e e e e e e e 411
PMOVZXWD
VPMOVZX WD . .o 413
PMOVZXWQ
VPMOVZX WO . o ot e e e e e e 415
PMULDQ
VPMULDQ . . oottt e e e e e e e e e e e e 417
PMULHRSW
VPMULHR SW . . e e e 419
PMULHUW
VPMULHUW . . e e e e e e 421
PMULHW
VPMULHW . . e e 423
PMULLD
VPMULLD . ..ottt e e e e e e e e e e 425
PMULLW
VPMULLW . .o e e e e e e 427
PMULUDQ
VPMULUDQ. . . ottt e et e e e e e e e e e e e e e e e 429
POR
VPO R . . o 431
PSADBW
VP S AD BW . .o 433
PSHUFB
VP SHUE B . . .o 435
PSHUFD
VPSHUED . . .o e 437
PSHUFHW
VP SHUFHW .. 440
PSHUFLW
VPSHUEFLW .. e e e e e e 443
PSIGNB
VPSIGN B . 446
PSIGND
VP SIGND . 448
PSIGNW
VP S GN W L L 450
PSLLD
VPSLLD ..ot 452
PSLLDQ
VPSLLDQ . . ottt 455
PSLLQ
VP SLLQ .ottt 457
PSLLW
VP S L LW Lo 460
PSRAD

Xi

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
VPSR AD . . 463
PSRAW
VP S R AW . 466
PSRLD
VP SR .. 469
PSRLDQ
VPSRLDQ . . .ottt 472
PSRLQ
VP SR .ottt 474
PSRLW
VP S R L. 477
PSUBB
VPSUBB . .o 480
PSUBD
VPSUBD . .ottt 482
PSUBQ
VP SUBQ .o 484
PSUBSB
VP SUB S B . . o 486
PSUBSW
VP S UB S W 488
PSUBUSB
VP SUBUS B, .o 490
PSUBUSW
VP SUBUSW L 492
PSUBW
VP S UBW . o 494
PTEST
VP ST . . 496
PUNPCKHBW
VPUNPCKHBW . . e e 498
PUNPCKHDQ
VPUNPCKHDQ . ..ottt e e e e e e e e e e e e 501
PUNPCKHQDQ
VPUNPCKHQDQ . . .ottt e e e e e e e e e e 504
PUNPCKHWD
VPUNPCKHWD . ..o e e e e e 507
PUNPCKLBW
VPUNPCKLBW . .o e e e e e e e e 510
PUNPCKLDQ
VPUNPCKLDQ ..ottt e e e e e e e e e 513
PUNPCKLQDQ
VPUNPCKLQDQ . . oot e e e e e e e e e 516
PUNPCKLWD
VPUNPCKLWD . ..ot et e e e e e e 519
PXOR
VP X O R . 522

Xii

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
RCPPS
VRO PP S . 524
RCPSS
VR PSS L 526
ROUNDPD
VROUND D . . .o e e e 528
ROUNDPS
VROUND S . . e e e e e 531
ROUNDSD
VROUNDSD . .ottt e e e e e e e 534
ROUNDSS
VROUND S S . e e 537
RSQRTPS
VR S QR T P S . .t 540
RSQRTSS
VR S QR T S S . oot 542
SHATIRN D S, . o e 544
SHAINEXTE ... e e e 546
SHATIMS G . . o e e 548
SHATMSG. . .ot e e e e e e 550
SHA2SORN D S 2. . ottt e e e e 552
SHA2S6MSGL. .ot e 554
SHA2S5O6M S G, . .ot 556
SHUFPD
VSHUEPD . . .o 558
SHUFPS
NV SHUE P . o 561
SQRTPD
VS QR P D . ..o 564
SQRTPS
VS QR T P S . 566
SQRTSD
VS QRIS D . . ottt e 568
SQRTSS
VS QR T S S o 570
STMXCSR
VSTMXCSR . 572
SUBPD
VS UBPD . .ot 574
SUBPS
VS UBPS . 576
SUBSD
VS UB S D . .ot 578
SUBSS
VS UB S S .ot 580
UCOMISD
VUCOMISD ..o e e e e e e 582

Xiii

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

UCOMISS

VU COMI S S. . 584
UNPCKHPD

VUNPCKHPD . ..o e 586
UNPCKHPS

VUNPCKHPS . . . 588
UNPCKLPD

VUNPCKLPD . ..o e e e 590
UNPCKLPS

VUNPCK L PS . o e e e 592
VBROADCA ST 28 .o e e e e e 594
VBROADCASTII 2. . e e 596
VBROADCASTSD . . .o 598
VBROAD CA ST SS . 600
VOV PH 2P S . . 602
VOV P S 2PH . . . 605
VEX T RACTE 28 . o e e e e e e 609
VEXTRACTII 2. o e e e e e e e 611
VFMADDPD

VFMADDI132PD

VFMADD213PD

VEMADD231PD . . . 613
VFMADDPS

VFMADDI132PS

VFMADD213PS

VEMADD 23 P S . o 616
VFMADDSD

VFMADD132SD

VFMADD213SD

VEMADDZ231SD . . .o 619
VFMADDSS

VFMADDI132SS

VFMADD213SS

VEMADD 23 1SS . 622
VFMADDSUBPD

VFMADDSUB132PD

VFMADDSUB213PD

VEMADDSUB231PD . . .o e e 625
VFMADDSUBPS

VFMADDSUB132PS

VFMADDSUB213PS

VEMADDSUB231PS . 628
VFMSUBADDPD

VFMSUBADDI132PD

VFMSUBADD213PD

VEMSUBADD231PD . . .o 631
VFMSUBADDPS

Xiv

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

VFMSUBADD132PS

VFMSUBADD213PS

VEMSUBADDZ31PS ..o e e 634
VFMSUBPD

VFMSUB132PD

VFMSUB213PD

VEMSUB231IPD . . 637
VFMSUBPS

VFMSUB132PS

VFMSUB213PS

VEM SUB 23 P S 640
VFMSUBSD

VFMSUB132SD

VFMSUB213SD

VEMSUB231ISD . .o 643
VFMSUBSS

VFMSUB132SS

VFMSUB213SS

VEMSUB 23 1SS 646
VFNMADDPD

VFNMADDI132PD

VFNMADD213PD

VENMADD?231PD ..o 649
VFNMADDPS

VFNMADD132PS

VFNMADD213PS

VENMADD 23 I PS. . 652
VFNMADDSD

VFNMADD132SD

VFNMADD213SD

VENMADD231SD .. .o 655
VFNMADDSS

VFNMADD132SS

VFNMADD213SS

VENMADD 23 1SS, L 658
VFNMSUBPD

VFNMSUB132PD

VFNMSUB213PD

VENMSUB231PD . .o e e e e e e 661
VFNMSUBPS

VFNMSUB132PS

VFNMSUB213PS

VENMSUB231PS . . 664
VFNMSUBSD

VFNMSUB132SD

VFNMSUB213SD

VENMSUB23 10D . .o e e e e e e e e 667

XV

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
VFNMSURBSS
VFNMSUBI132SS
VFNMSUB213SS
VENM SUB 23 S S .« ot e e e e 670
VERCZPD . ..o 673
VR CZPS . o 675
VERCZSD . . o 677
VR CZ S S . o 679
VGATHERDPD.o e e e e e 681
VGATHERDPS . . .o e e e 683
VGATHERQPD. . ..o e e e e e 685
VGATHER QS . . . e e 687
VINSERTFI28 . .o e e e e e e e 689
VINSERTII28 . . .ot e e e e e e e e e e e e e e e 691
VMASKMOVPD ..o 693
VMASKMOV P S . . 695
VPBLENDD . .. 697
VPBROADCAST B . . .o e e 699
VPBROADCASTD . . .ottt e 701
VPBROADCASTQ . . .ottt ettt e e e e e e e e e e e e e e 703
VPBROADCASTW .t e e e e e e e 705
VPCMOV .o 707
VPCOMB .. 709
VPCOMD . . 711
VPCOMOQ ..ot 713
VPCOMUB . . .ottt 715
VPCOMUD . ..ottt e e e 717
VPCOMUQ . .ottt e e e e e e e e e e 719
VPCOMUW . e 721
VPCOMW . o 723
VPERM 2 128 . o oo 725
VPERMO2I128 . e 727
VPERMD . . . 729
VPERMIL2PD. . ..ot e e e e e e 731
VPERMIL 2P S . . 735
VPERMILPD. . . .o e 739
VPERMIL S . . 742
VPERMPD . .. 746
VP ERM P S . . 748
VPERMOQ. . . it 750
VPGATHERDD. e e 752
VPGATHERDQ. . . . oot e e e e 754
VPGATHERQD. . . . oo e e e e 756
VPGATHERQQ. . . . oottt e e e e e e e e e e 758
VPHADDBDot 760
VPHADDBQ . . . oottt 762
VPHAD D BW . 764

XVi

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
VPHADDDQ. . . .ottt e 766
VPHADDUBD . ..ottt e e e e e e 768
VPHADDUBQ . ..ottt e e e e e e e e e 770
VPHADDUBW . ..o e e e e e e 772
VPHADDUDQ . ..ot 774
VPHADDUWNDD . . . e e 776
VPHADDUWQ. . . oot e e e e e e 778
VPHADDWD . . .o e e e e e e e 780
VPHADDWOQ .. oot 782
VPHSUBBW . .o 784
VPHSUBDQ .. .o e e e 786
VPHSUBW D . . . 788
VPMACSDD . .o 790
VPMACSDQH . ..o 792
VPMACSDQL. . ..ottt 794
VPMACSSDDottt e e 796
VPMACSSDQH . ..o 798
VPMACSSDQL .. 800
VPMACSSWD . . 802
VP M A C S S W W . L 804
VPMACSWD .o e 806
VP M A CS W W L 808
VPMADCSSW D . . 810
VPMADCSWD . ..o 812
VPMASKMOVD .. 814
VPMASKMOVQ ..ot e e e e e 816
VPP ERM . .o 818
VPROT B ..o 820
VP RO D .. 822
VPROTQ . . oottt e 824
VP RO T W o 826
VP SHAB . .o 828
VP SHAD . .o 830
VP SHAQ . oot 832
VP SH AW . 834
VP SHL B . .o 836
VPSHLD . .o 838
VPSHLQ . .ot 840
VP SHLW . . o 842
VPSLLVD . ot 844
VP S LV . o 846
VPSR AV D . 848
VP SRV D . 850
VPSRV . ot 852
VTESTPD . . .ot e e e e e 854
VT E ST P S .o 856
VZEROALL ... e e 858

XVii

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
VZEROUPPER . . . 859
XGET BV . e 860
XORPD
VX ORP D . . . 861
XORPS
VX ORPS . 863
XRSTOR . .o e 865
XRSTORS . . 867
XS AVE. 869
XS AVEC .. 871
XS AVE O P T . . 873
XS AVES L 875
XSET BV 877

3 Exception SUMMArycouitiitiiiiiiiitieiienrneneeecasscsesscasncncnns 879

Appendix A AES INStructionsovutiiiiiiiiiiiiiiieieneneeasnenenecannns 973

Al AES OVerVIEW oot e e 973
A2 Coding CONVENtIONS v vttt ettt e e e ettt et e 973
A3 AES Data SIrUCHUIESottt ettt e e e e e e e 974
A4 Algebraic Preliminaries. e 974
A.4.1 Multiplicationinthe Field GF......... 975

A.4.2 Multiplication of 4x4 Matrices Over GF. 976

A5 AES Operations oottt ettt e e e 976
A.5.1 Sequence of Operationsouiuiitirint ettt 978

A.6 Initializing the Sbox and InvSBoX Matricesttt 979
A.6.1 Computation of SBoxand InvSBox i 980

A.6.2 Initialization of InvSBOX[| oo 982

A7 Encryption and Decryptionot 984
A.7.1 The Encrypt() and Decrypt() Procedures, 984

A.7.2 Round Sequences and Key Expansion, 985

A8 The Cipher Function et e e e e 986
A.8.1 Textto MatriXx CONVErSION.ottt it e et e e 987

A.8.2 Cipher Transformations.utitttntn e 987

A.8.3 Matrix to Text CONVETSION.o v vttt ettt e e e e e e 989

A9 The InvCipher FUnction. i i e e e et e 989
A.9.1 Textto Matrix CONVEISION.ottt ettt ettt 990

A.9.2 InvCypher Transformations.ttt 990

A.9.3 Matrix to Text CONVErsion.ottt e e e e 992

A.10 An Alternative Decryption Procedure. i 992
A.11 Computation of GFInv with Euclidean Greatest Common Divisor 994
10 997

XViii

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
Figures

Figure 1-1. Typical Descriptive Synopsis - Extended SSE Instructions 3
Figure 1-2. VSIB Byte Format i e ettt 7
Figure 1-3. Byte-wide Character String — Memory and Register Image. 13
Figure 2-1. Typical Instruction Descriptionttt et 21
Figure 2-2. (V)MPSADBW InStruCtion.ttt ettt et et ettt e e e e 238
Figure A-1. GFMatrix Representation of 16-byte Block 974
Figure A-2. GFMatrix to Operand Byte Mappingsttt 974

XiX

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

XX

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Tables

Table 1-1. Three-Operand Selectionttt ettt es 5
Table 1-2. Four-Operand Selectioni ittt 6
Table 1-3. Source Data Format e e 14
Table 1-4. Comparison TYPeottt e e e e e e 15
Table 1-5. Post-processing OPtionsttt t ettt e e e e et 18
Table 1-6. Indexed Output Option Selectionttt et 18
Table 1-7. Masked Output Option Selectionttt 18
Table 1-8. State of Affected Flags After Execution. 19
Table 3-1. Instructions By Exception Class. e 879
Table A-1. SBox Definition e e 982
Table A-2. InvSBoX Definition. 984
Table A-3. Cipher Key, Round Sequence, and Round Key Length 985

XXi

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

XXii

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Revision History

Date Revision Description

Update Packed String Compare Algorithm

Fixed a number of erroneous references to double precision that
should be single precision

Separate out MOVQ from MOVD

Clarifications to XGETBV, XRSTOR, XRSTORS, XSAVE,
XSAVEC, XSAVEOPT, XSAVES, and XSETBYV instructions.

Corrections to ROUNDPD, VROUNDPD, ROUNDPS,
VROUNDPS, ROUNDSD, VROUNDSD, ROUNDSS,
VROUNDSS, VPERMD, VPERMPD, VPERMPS, VPERMQ,
VTESTPD, VTESTPS, XGETBYV, XSETBV, XSAVE, and AVX

May 2018 3.22

December 2017 3.21

March 2017 3.20 instruction descriptions.
Added SHA1RNDS4, SHATNEXTE, SHATMSG1, SHATMSG2,
SHA256RNDS2, SHA256MSG1, SHA256MSG2, XRSTOR,
XRSTORS and XSAVEC instructions.

June 2015 3.19 Corrections to the MOVLPD, PHSUBW, PHSUBSW instruction

descriptions.

Added AVX2 Instructions.
October 2013 3.18 Added “Instruction Support” subsection to each instruction
reference page that lists CPUID feature bit information in a table.

Removed all references to the CPUID specification which has
been superseded by Volume 3, Appendix E, "Obtaining
Processor Information Via the CPUID Instruction."

Corrected exceptions table for the explicitly-aligned load/store
instructions. General protection exception does not depend on
state of MXCSR.MM bit.

Corrected REX.W bit encoding for the MOVD instruction. (See
page 186.)
September 3.16 Corrected L bit encoding for the VMOVQ (D6h opcode)

2012 ' instruction. (See page 222.)

Corrected statement about zero extension for third encoding (11h
opcode) of MOVSS instruction. (See page 230.)

Corrected instruction encoding for VPCOMUB, VPCOMUD,
March 2012 3.15 VPCOMUQ, VPCOMUW, and VPHSUBDAQ instructions. Other
minor corrections.

May 2013 3.17

XXiii

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Date Revision Description

Reworked Section 1.5, "String Compare Instructions" on page 10.

Revised descriptions of the string compare instructions in
instruction reference.

December 2011 3.14 Moved AES overview to Appendix A.

Clarified trap and exception behavior for elements not selected
for writing. See MASKMOVDQU VMASKMOVDQU on page 160.

Additional minor corrections and clarifications.

Moved discussion of extended instruction encoding; VEX and
XOP prefixes to Volume 3.

Added FMA instructions. Described on the corresponding FMA4

September 2011 3.13 reference page.
Moved BMI and TBM instructions to Volume 3.

Added XSAVEOPT instruction.
Corrected descriptions of VSQRTSD and VSQRTSS.

May 2011 3.12 Added F16C, BMI, and TBM instructions.

Complete revision and reformat accommodating 128-bit and 256-bit
media instructions. Includes revised definitions of legacy SSE, SSE2,
SSES3, SSE4.1, SSE4.2, and SSSES instructions, as well as new
definitions of extended AES, AVX, CLMUL, FMA4, and XOP
December 2010 3.1 instructions. Introduction includes supplemental information concerning
encoding of extended instructions, enhanced processor state
management provided by the XSAVE/XRSTOR instructions,
cryptographic capabilities of the AES instructions, and functionality of
extended string comparison instructions.

Added minor clarifications and corrected typographical and formatting

September 2007 3.10
errors.

Added the following instructions: EXTRQ, INSERTQ, MOVNTSD, and
MOVNTSS.

Added misaligned exception mask (MXCSR.MM) information.

Added imm8 values with corresponding mnemonics to (V)CMPPD,
July 2007 3.09 | V)cMPPS, (V)CMPSD, and (V)CMPSS.
Reworded CPUID information in condition tables.
Added minor clarifications and corrected typographical and formatting
errors.

September 2006 3.08 Made minor corrections.

December 2005 3.07 Made minor editorial and formatting changes.

XXiV

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
Date Revision Description
January 2005 3.06 A<_jded documentation on SSE3 instructions. Corrected numerous
minor factual errors and typos.
September 2003 3.05 Made numerous small factual corrections.
April 2003 3.04 Made minor corrections.

XXV

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

XXVi

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual.
The complete set includes the following volumes.

Title Order No.
Volume 1: Application Programming 24592
Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit and 256-Bit Media Instructions 26568
Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

This volume is intended for programmers who develop application or system software.

Organization

Volumes 3, 4, and 5 describe the AMD®64 instruction set in detail, providing mnemonic syntax,
instruction encoding, functions, affected flags, and possible exceptions.

The AMD64 instruction set is divided into five subsets:

* General-purpose instructions

e System instructions

» Streaming SIMD Extensions (includes 128-bit and 256-bit media instructions)
e 64-bit media instructions (MMX™)

» x87 floating-point instructions
Several instructions belong to, and are described identically in, multiple instruction subsets.

This volume describes the Streaming SIMD Extensions (SSE) instruction set which includes 128-bit
and 256-bit media instructions. SSE includes both legacy and extended forms. The index at the end
cross-references topics within this volume. For other topics relating to the AMD64 architecture, and
for information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

XXVii

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Conventions and Definitions

The section which follows, Notational Conventions, describes notational conventions used in this
volume. The next section, Definitions, lists a number of terms used in this volume along with their
technical definitions. Some of these definitions assume knowledge of the legacy x86 architecture. See
“Related Documents” on page xI for further information about the legacy x86 architecture. Finally, the
Registers section lists the registers which are a part of the system programming model.

Notational Conventions

Section 1.1, “Syntax and Notation” on page 2 describes notation relating specifically to instruction
encoding.

#GP(0)
An instruction exception—in this example, a general-protection exception with error code of 0.

1011b
A binary value, in this example, a 4-bit value.

FOEA 0B40h

A hexadecimal value, in this example a 32-bit value. Underscore characters may be used to
improve readability.

128
Numbers without an alpha suffix are decimal unless the context indicates otherwise.

7:4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

#GP(0)
A general-protection exception (#GP) with error code of 0.

CPUID FnXXXX_XXXX_RRR[FieldName]

Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the “_RRR” notation is followed by
“ xYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CRO-CR4
A register range, from register CRO through CR4, inclusive, with the low-order register first.

XXVili

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

CR4[OSXSAVE], CR4.0SXSAVE
The OSXSAVE bit of the CR4 register.

CRO[PE]=1,CRO.PE=1
The PE bit of the CRO register has a value of 1.

EFER[LME] =0, EFER.LME =0
The LME field of the EFER register is cleared (contains a value of 0).

DS:rSI

The content of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

RFLAGS[13:12]

A field within a register identified by its bit range. In this example, corresponding to the IOPL
field.

Definitions

128-bit media instruction

Instructions that operate on the various 128-bit vector data types. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit media instruction

Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit media instructions

Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MMX and 3DNow!™ instruction sets and their extensions, with some additional instructions from
the SSE1 and SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

XXiX

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

absolute

A displacement that references the base of a code segment rather than an instruction pointer.
See relative.

AES

Advance Encryption Standard (AES) algorithm acceleration instructions; part of Streaming SIMD
Extensions (SSE).

ASID
Address space identifier.

AVX

Extension of the SSE instruction set supporting 256-bit vector (packed) operands. See Streaming
SIMD Extensions.

biased exponent

The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear, cleared
To write the value 0 to a bit or a range of bits. See Set.

compatibility mode

A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit

To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct

Referencing a memory address included in the instruction syntax as an immediate operand. The
address may be an absolute or relative address. See indirect.

displacement

A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as Offset.

XXX

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size

The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element
See vector.

exception

An abnormal condition that occurs as the result of instruction execution. Processor response to an
exception depends on the type of exception. For all exceptions except SSE floating-point
exceptions and x87 floating-point exceptions, control is transferred to a handler (or service
routine) for that exception as defined by the exception’s vector. For floating-point exceptions
defined by the IEEE 754 standard, there are both masked and unmasked responses. When
unmasked, the exception handler is called, and when masked, a default response is provided
instead of calling the handler.

extended SSE instructions
Enhanced set of SIMD instructions supporting 256-bit vector data types and allowing the
specification of up to four operands. A subset of the Sreaming SSMD Extensions (SSE). Includes
the AVX, FMA, FMA4, and XOP instructions. Compare legacy SSE.
flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”
FMA4
Fused Multiply Add, four operand. Part of the extended SSE instruction set.

FMA
Fused Multiply Add. Part of the extended SSE instruction set.

GDT
Global descriptor table.

XXXI

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

IGN

Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect

Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. See direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture.

legacy mode

An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

legacy SSE instructions

All Streaming SIMD Extensions instructions prior to AVX, XOP, and FMA4. Legacy SSE
instructions primarily utilize operands held in XMM registers. The legacy SSE instructions

include the original Streaming SIMD Extensions (SSE1) and the subsequent extensions SSE2,
SSE3, SSSE3, SSE4, SSE4A, SSE4.1, and SSE4.2. See Sreaming SMD instructions.

long mode

An operating mode unique to the AMDG64 architecture. A processor implementation of the
AMDG64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

XXXIi

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Isb
Least-significant bit.

LSB
Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask

(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)

occurs. See reserved.

memory
Unless otherwise specified, main memory.

moffset

A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb
Most-significant bit.

MSB
Most-significant byte.

octword
Same as double quadword.

offset
Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed
See vector.

PAE
Physical-address extensions.

XXXiii

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in processor caches or internal buffers. External probes originate outside
the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, eight bytes, or 64 bits.

RAZ

Read as zero. Value returned on a read is always zero (0) regardless of what was previously
written. See reserved.

real-address mode, real mode
A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (offset) from an instruction pointer rather than the base of a code
segment. See absolute.

reserved
Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.

If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.

Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).
REX

A legacy instruction modifier prefix that specifies 64-bit operand size and provides access to
additional registers.

RIP-relative addressing
Addressing relative to the 64-bit relative instruction pointer.

SBZ

Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior. See
reserved.

XXXIV

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

scalar

An atomic value existing independently of any specification of location, direction, etc., as opposed
to vectors.

set

To write the value 1 to a bit or a range of bits. See clear.

SIMD
Single instruction, multiple data. See vector.

Streaming SIMD Extensions (SSE)

Instructions that operate on scalar or vector (packed) integer and floating point numbers. The SSE
instruction set comprises the legacy SSE and extended SSE instruction sets.

SSEI

Original SSE instruction set. Includes instructions that operate on vector operands in both the
MMX and the XMM registers.

SSE2
Extensions to the SSE instruction set.

SSE3
Further extensions to the SSE instruction set.

SSSE3
Further extensions to the SSE instruction set.

SSE4.1
Further extensions to the SSE instruction set.

SSE4.2
Further extensions to the SSE instruction set.

SSE4A
A minor extension to the SSE instruction set adding the instructions EXTRQ, INSERTQ,
MOVNTSS, and MOVNTSD.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TSS
Task-state segment.

XXXV

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

underflow

The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most media instructions use vectors as operands. Also called packed or SMD operands.

(2) An interrupt descriptor table index, used to access exception handlers. See exception.

VEX prefix

Extended instruction encoding escape prefix. Introduces a two- or three-byte encoding escape
sequence used in the encoding of AVX instructions. Opens a new extended instruction encoding
space. Fields select the opcode map and allow the specification of operand vector length and an
additional operand register. See XOP prefix.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

XOP instructions
Part of the extended SSE instruction set using the XOP prefix. See Streaming SIMD Extensions.

XOP prefix

Extended instruction encoding escape prefix. Introduces a three-byte escape sequence used in the
encoding of XOP instructions. Opens a new extended instruction encoding space distinct from the
VEX opcode space. Fields select the opcode map and allow the specification of operand vector
length and an additional operand register. See VEX prefix.

Registers

In the following list of registers, mnemonics refer either to the register itself or to the register content:

AH-DH
The high 8-bit AH, BH, CH, and DH registers. See [AL-DL].

XXXVi

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

AL-DL
The low 8-bit AL, BL, CL, and DL registers. See [AH-DH].

AL-r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and [r8B—r15B] registers, available in 64-bit
mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX—-eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. See [FAX-TSP].

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. See FTFLAGS

EFLAGS
32-bit (extended) flags register.

elP
16-bit or 32-bit instruction-pointer register. See rlP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8&-R15.

XXXVii

AMDAQ

AMDG64 Technology

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8&rl5

26568—Rev. 3.22—May 2018

The 8-bit REB—R15B registers, or the 16-bit RSW—R15W registers, or the 32-bit RSD-R15D

registers, or the 64-bit R8—R15 registers.

rAX-rSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-

bit size.

RAX

64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX

64-bit version of the EDX register.

rFLAGS

16-bit, 32-bit, or 64-bit flags register. See RFLAGS

RFLAGS
64-bit flags register. See rFLAGS

XXXViii

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. See RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR
Task priority register (CRS).

TR
Task register.

YMM/XMM

Set of sixteen (eight accessible in legacy and compatibility modes) 256-bit wide registers that hold
scalar and vector operands used by the SSE instructions.

Endian Order

The x86 and AMDG64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with the least-significant byte at the lowest byte address, and illustrated with their
least significant byte at the right side. Strings are illustrated in reverse order, because the addresses of
string bytes increase from right to left.

XXXIX

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018

Related Documents

Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,
1995.

Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.
AMD, 3DNow! ™ Technology Manual, Sunnyvale, CA, 2000.
AMD, AMD Extensionsto the 3DNow! ™ and MMX™ [nstruction Sets, Sunnyvale, CA, 2000.

Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

Geoff Chappell, DOSInternals, Addison-Wesley, New York, 1994.

Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MM X Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

Ray Duncan, Extending DOS. A Programmer's Guide to Protected-Mode DOS Addison Wesley,
NY, 1991.

William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

x|

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology

Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

IBM Corporation, 486S.C Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

IBM Corporation, 486S.C2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994,

Institute of Electrical and Electronics Engineers, |IEEE Sandard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

Institute of Electrical and Electronics Engineers, |IEEE Sandard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 I1BM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Sreaming SSMD Extensions in the Pentium llII,
www.x86.org/articles/sse ptl/simd1.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

xli

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.

Web sites and newsgroups:

www.amd.com
news.comp.arch
news.comp.lang.asm.x86
news.intel.microprocessors

news.microsoft

xlii

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

1 Introduction

Processors capable of performing the same mathematical operation simultaneously on multiple data
streams are classified as single-instruction, multiple-data (SIMD). Instructions that utilize this
hardware capability are called SIMD instructions.

Software can utilize SIMD instructions to drastically increase the performance of media applications
which typically employ algorithms that perform the same mathematical operation on a set of values in
parallel. The original SIMD instruction set was called MMX and operated on 64-bit wide vectors of
integer and floating-point elements. Subsequently a new SIMD instruction set called the Streaming
SIMD Extensions (SSE) was added to the architecture.

The SSE instruction set defines a new programming model with its own array of vector data registers
(YMM/XMM registers) and a control and status register (MXCSR). Most SSE instructions pull their
operands from one or more YMM/XMM registers and store results in a YMM/XMM register,
although some instructions use a GPR as either a source or destination. Most instructions allow one
operand to be loaded from memory. The set includes instructions to load a YMM/XMM register from
memory (aligned or unaligned) and store the contents of a YMM/XMM register.

An overview of the SSE instruction set is provided in Volume 1, Chapter 4.

This volume provides detailed descriptions of each instruction within the SSE instruction set. The SSE
instruction set comprises the legacy SSE instructions and the extended SSE instructions.

Legacy SSE instructions comprise the following subsets:

* The original Streaming SIMD Extensions (herein referred to as SSE1)

e SSE2

e SSE3

e SSSE3

 SSE4.1
e SSE4.2
* SSE4A

* Advanced Encryption Standard (AES)

Extended SSE instructions comprise the following subsets:

« AVX
« AVX2
 FMA
* FMA4
« XOP

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Legacy SSE architecture supports operations involving 128-bit vectors and defines the base
programming model including the SSE registers, the Media eXtension Control and Status Register
(MXCSR), and the instruction exception behavior.

The Streaming SIMD Extensions (SSE) instruction set is extended to include the AVX, FMA, FMA4,
and XOP instruction sets. The AVX instruction set provides an extended form for most legacy SSE
instructions and several new instructions. Extensions include providing for the specification of a
unique destination register for operations with two or more source operands and support for 256-bit
wide vectors. Some AVX instructions also provide enhanced functionality compared to their legacy
counterparts.

A significant feature of the extended SSE instruction set architecture is the doubling of the width of the
XMM registers. These registers are referred to as the YMM registers. The XMM registers overlay the
lower octword (128 bits) of the YMM registers. Registers YMM/XMMO0-7 are accessible in legacy
and compatibility mode. Registers YMM/XMMB8-15 are available in 64-bit mode (a subset of long
mode). VEX/XOP instruction prefixes allow instruction encodings to address the additional registers.

The SSE instructions can be used in processor legacy mode or long (64-bit) mode. CPUID
Fn8000 0001 EDX[LM] indicates the availability of long mode.

Compilation for execution in 64-bit mode offers the following advantages:

* Access to an additional eight YMM/XMM registers for a total of 16
* Access to an additional eight 64-bit general-purpose registers for a total of 16

* Access to the 64-bit virtual address space and the RIP-relative addressing mode

Hardware support for each of the subsets of SSE instructions listed above is indicated by CPUID
feature flags. Refer to Volume 3, Appendix D, “Instruction Subsets and CPUID Feature Flags,” for a
complete list of instruction-related feature flags. The CPUID feature flags that pertain to each
instruction are also given in the instruction descriptions below. For information on using the CPUID
instruction, see the instruction description in Volume 3.

Chapter 2, “Instruction Reference” contains detailed descriptions of each instruction, organized in
alphabetic order by mnemonic. For those legacy SSE instructions that have an AVX form, the
extended form of the instruction is described together with the legacy instruction in one entry. For
these instructions, the instruction reference page is located based on the instruction mnemonic of the
legacy SSE and not the extended (AVX) form. Those AVX instructions without a legacy form are
listed in order by their AVX mnemonic. The mnemonic for all extended SSE instructions including the
FMA and XOP instructions begin with the letter V.

1.1 Syntax and Notation

The descriptive synopsis of opcode syntax for legacy SSE instructions follows the conventions
described in Volume 3: General Purpose and System Instructions. See Chapter 2 and the section
entitled “Notation.”

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

For general information on the programming model and overview descriptions of the SSE instruction
set, see:

e “Streaming SIMD Extensions Media and Scientific Programming” in Volume 1.
e “Instruction Encoding” in Volume 3

e “Summary of Registers and Data Types” in Volume 3.

The syntax of the extended instruction sets requires an expanded synopsis. The expanded synopsis
includes a mnemonic summary and a summary of prefix sequence fields. Figure 1-1 shows the
descriptive synopsis of a typical XOP instruction. The synopsis of VEX-encoded instructions have the
same format, differing only in regard to the instruction encoding escape prefix, that is, VEX instead of
XOP.

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPCMOV ymm1, ymm2, ymm3/mem256, ymm4 8F RXB.08 0.src.1.00 A2 /rib
W bit J)
assembly language representation vvwv field
encoding escape prefix L b:)tp field

3-bit field representing R, X, B bit values opcode

register/memory type specifier
5-bit map_select field
immediate operand

Figure 1-1. Typical Descriptive Synopsis - Extended SSE Instructions

1.2 Extended Instruction Encoding

The legacy SSE instructions are encoded using the legacy encoding syntax and the extended
instructions are encoded using an enhanced encoding syntax which is compatible with the legacy
syntax. Both are described in detail in Chapter 1 of Volume 3.

As described in Volume 3, the extended instruction encoding syntax utilizes multi-byte escape
sequences to both select alternate opcode maps as well as augment the encoding of the instruction.
Multi-byte escape sequences are introduced by one of the two VEX prefixes or the XOP prefix.

The AVX and AVX2 instructions utilize either the two-byte (introduced by the VEX C5h prefix) or the
three-byte (introduced by the VEX C4h prefix) encoding escape sequence. XOP instructions are
encoded using a three-byte encoding escape sequence introduced by the XOP prefix (except for the
XOP instructions VPERMIL2PD and VPERMIL2PS which are encoded using the VEX prefix). The
XOP prefix is 8Fh. The three-byte encoding escape sequences utilize the map_select field of the
second byte to select the opcode map used to interpret the opcode byte.

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

The two-byte VEX prefix sequence implicitly selects the secondary (“two-byte’’) opcode map.

1.2.1 Immediate Byte Usage Unique to the SSE instructions

An immediate is a value, typically an operand, explicitly provided within the instruction encoding.
Depending on the opcode and the operating mode, the size of an immediate operand can be 1, 2, 4, or 8
bytes. Legacy and extended media instructions typically use an immediate byte operand (imm8).

A one-byte immediate is generally shown in the instruction synopsis as “ib” suffix. For extended SSE
instructions with four source operands, the suffix “is4” is used to indicate the presence of the
immediate byte used to select the fourth source operand.

The VPERMIL2PD and VPERMIL2PS instructions utilize a fifth 2-bit operand which is encoded
along with the fourth register select index in an immediate byte. For this special case the immediate
byte will be shown in the instruction synopsis as “is5”.

1.2.2 Instruction Format Examples

The following sections provide examples of two-, three-, and four-operand extended instructions.
These instructions generally perform nondestructive-source operations, meaning that the result of the
operation is written to a separately specified destination register rather than overwriting one of the
source operands. This preserves the contents of the source registers. Most legacy SSE instructions
perform destructive-source operations, in which a single register is both source and destination, so
source content is lost.

1.2.2.1 XMM Register Destinations
The following general properties apply to YMM/XMM register destination operands.

* For legacy instructions that use XMM registers as a destination: When a result is written to a
destination XMM register, bits [255:128] of the corresponding YMM register are not affected.

* For extended instructions that use XMM registers as a destination: When a result is written to a
destination XMM register, bits [255:128] of the corresponding YMM register are cleared.

1.2.2.2 Two Operand Instructions

Two-operand instructions use ModRM-based operand assignment. For most instructions, the first
operand is the destination, selected by the ModRM.reg field, and the second operand is either a register
or a memory source, selected by the ModRM.r/m field.

VCVTDQ2PD is an example of a two-operand AVX instruction.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.01 0.1111.0.10 E6 /r
VCVTDQ2PD ymm1, xmm2/mem128 C4 RXB.01 0.1111.1.10 E6 /r

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

The destination register is selected by ModRM.reg. The size of the destination register is determined
by VEX.L. The source is either a YMM/XMM register or a memory location specified by ModRM.r/m
Because this instruction converts packed doubleword integers to double-precision floating-point
values, the source data size is smaller than the destination data size.

VEX.vvvv is not used and must be setto 1111b.

1.2.2.3 Three-Operand Instructions

These extended instructions have two source operands and a destination operand.

VPROTB is an example of a three-operand XOP instruction.

There are versions of the instruction for variable-count rotation and for fixed-count rotation.
VPROTB dest, src, variable-count

VPROTB dest, src, fixed-count

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
VPROTB xmm1, xmm2/mem128, xmm3 8F RXB.09 0.src.0.00 90 /r
VPROTB xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 90 /r
VPROTB xmm1, xmm2/mem128, imm8 8F RXB.08 0.1111.0.00 90 /rib

For both versions of the instruction, the destination (dest) operand is an XMM register specified by
ModRM.reg.

The variable-count version of the instruction rotates each byte of the source as specified by the
corresponding byte element variable-count.

Selection of src and variable-count is controlled by XOP.W.

e When XOP.W =0, srcis either an XMM register or a 128-bit memory location specified by
ModRM.r/m, and variable-count is an XMM register specified by XOP.vvvv.

e When XOP.W = 1, srcis an XMM register specified by XOP.vvvv and variable-count is either an
XMM register or a 128-bit memory location specified by ModRM.r/m.

Table 1-1 summarizes the effect of the XOP.W bit on operand selection.

Table 1-1. Three-Operand Selection

XOP.W dest src variable-count
0 ModRM.reg ModRM.r/m XOP.vvvv
1 ModRM.reg XOP.vvvv ModRM.r/m

The fixed-count version of the instruction rotates each byte of src as specified by the immediate byte
operand fixed-count. For this version, src is either an XMM register or a 128-bit memory location

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

specified by ModRM.1/m. Because XOP.vvvv is not used to specify the source register, it must be set
to 1111b or execution of the instruction will cause an Invalid Opcode (#UD) exception.

1.2.2.4 Four-Operand Instructions

Some extended instructions have three source operands and a destination operand. This is
accomplished by using the VEX/XOP.vvvv field, the ModRM.reg and ModRM.r/m fields, and bits
[7:4] of an immediate byte to select the operands. The opcode suffix “is4” is used to identify the
immediate byte, and the selected operands are shown in the synopsis.

VFMSUBPD is an example of an four-operand FM A4 instruction.
VFMSUBPD dest, srcl, src2, src3 dest = srcl* src2 - src3

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VFMSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src.0.01 6D /ris4
VFMSUBPD ymm1, ynm2, ymm3/mem256, ymmé4 C4 RXB.03 0.src.1.01 6D /ris4
VFMSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src.0.01 6D /ris4
VFMSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src.1.01 6D /ris4

The first operand, the destination (dest), is an XMM register or a YMM register (as determined by
VEX.L) selected by ModRM.reg. The following three operands (srcl, src2, src3) are sources.

The srcl operand is an XMM or YMM register specified by VEX.vvvv.

VEX.W determines the configuration of the sSrc2 and src3 operands.

e When VEX.W =0, src2 is either a register or a memory location specified by ModRM.r/m, and
src3 is a register specified by bits [7:4] of the immediate byte.

e When VEX.W = 1, src2is a register specified by bits [7:4] of the immediate byte and src3 is either
a register or a memory location specified by ModRM.r/m.

Table 1-1 summarizes the effect of the VEX.W bit on operand selection.
Table 1-2. Four-Operand Selection

VEX.W dest srcl src2 src3
0 ModRM.reg VEX.vvvv ModRM.r/m is4[7:4]
1 ModRM.reg VEX.vvvv is4[7:4] ModRM.r/m

1.3 VSIB Addressing

Specific AVX2 instructions utilize a vectorized form of indexed register-indirect addressing called
vector SIB (VSIB) addressing. In contrast to the standard indexed register-indirect address mode,
which generates a single effective address to access a single memory operand, VSIB addressing gen-
erates an array of effective addresses which is used to access data from multiple memory locations in
a single operation.

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

VSIB addressing is encoded using three or six bytes following the opcode byte, augmented by the X
and B bits from the VEX prefix. The first byte is the ModRM byte with the standard mod, reg, and
r/m fields (although allowed values for the mod and r/m fields are restricted). The second is the VSIB
byte which replaces the SIB byte in the encoding. The VSIB byte specifies a GPR which serves as a
base address register and an XMM/YMM register that contains a packed array of index values. The
two-bit scale field specifies a common scaling factor to be applied to all of the index values. A con-
stant displacement value is encoded in the one or four bytes that follow the VSIB byte.

Figure 1-2 shows the format of the VSIB byte.

7 6 5 4 3 2 1 0
| SS | index base |VSIB

VEX.X extends this field to 4 bits J

VEX.B extends this field to 4 bits

v4_VSIB_format.eps

Figure 1-2. VSIB Byte Format

VSIB.SS (Bits [7:6]). The SS field is used to specify the scale factor to be used in the computation
of each of the effective addresses. The scale factor scale is equal to 2SS (two raised to power of the
value of the SS field). Therefore, if SS = 00b, scale= 1; if SS =01b, scale= 2; if SS = 10b, scale=4;
and if SS = 11b, scale= 8.

VSIB.index (Bits [5:3]). This field is concatenated with the complement of the VEX.X bit ({X,
index}) to specify the YMM/XMM register that contains the packed array of index values index[i] to
be used in the computation of the array of effective addresses effective addressi].

VSIB.base (Bits [5:3]). This field is concatenated with the complement of the VEX.B bit ({B,
base}) to specify the general-purpose register (base GPR) that contains the base address base to be
used in the computation of each of the effective addresses.

1.3.1 Effective Address Array Computation
Each element i of the effective address array is computed using the formula:
effective address][i] = scale * index][i] + base + displacement.
where index{i] is the ith element of the XMM/YMM register specified by {X,VSIB.index}. An index
element is either 32 or 64 bits wide and is treated as a signed integer.

Variants of this mode use either an eight-bit or a 32-bit displacement value. One variant sets the base
to zero. The value of the ModRM.mod field specifies the specific variant of VSIB addressing mode,
as shown in Table 1. In the table, the notation [XMMn/YMMNn] indicates the XMM/Y MM register
that contains the packed index array and [base GPR] means the contents of the base GPR selected by
{B, base}.

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
Table 1: Vectorized Addressing Modes
Index! ModRM.mod
00 01 10
0000 [scale * XMMONMMO] + Disp3z | scale - [XMMOYMIMO] + Dispd + - Tecale * XMMONMIMO] + Disp32 +
0001 [scale * MMt VM1 + Disp3z |SCale [XMMIIYMMA] + Disp + [scale * XMTIYMIM1] + Disp32 +
0010 [scale * (xMM2YMMZ] + Dispaz |SC2Ie " [XMM2IYMIMZ] + Disp8 + |scale * [XVIM2YMIM2] + Disp32 +
0011 [scale * pxMMIVMMS] + Dispaz [SC2le * (XMMBYMIMS] + Disp8 + |scale * [XVIM3YMMS] + Disp32 +
0100 [scale * (XMMAYMIMA] + Dispaz |SC2Ie " [XMIM4MIME] + Disp8 + |scale - [XNII4/YMMS] + Disp32 +
0101 [scale * XMMSYMVIS] + Dispaz |SC2le " (XVMMSIYMMS] + Disp + | scale - [XMMEIYMIMS] + Disp32 +
0110 Jscale * [XMMGNMIV] + Dispaz |5 " (XMMBIYMME] + Disps + [scale * [XVIMGIYMME] + Disp32 +
0111 [scale * XMMZNYMIMZ) + Dispsz [3C210 * IXMMTIYMMIT) + Disps + |soale * [XNM7/YMMT] + Disp32 +
1000 scale * [XMMBIYMMS] + Disp32 ~[3C21C © [XMIMBIYMME] + DispG + |scale « [XNIMB/YWM8] + Disp32 +
1001 scale * [XMMOYMMS] + Disps2 ~[3C31C © [XMIMOIYMIMS] + DispB + |scale * (XNIMO/YWIM9] + Disp32 +
1010 Jscale * [XMM10/MM10] + Disp32. [3C31E [XMMTONYMIM1O] + Disp8 + |scale « (XMIM1O/YMM{0] + Disp32 +
1011 |scale * [XMM11/YMM11] + Disp32 fg:;: gég"]'v'”’YMM”] + Disp8 + fg:é‘; gég"]'\"“”'\’”\"”] + Disp32 +
1100 |scale * [XMM12/YMM12] + Disp32 [St‘faa;z gég]MQ/Y MM12] + Disp8 + [Stf:é‘; gég"]MQ/Y MM12] + Disp32 +
1101 |scale * [XMM13/YMM13] + Disp32 [St‘faa;z gé’g]we‘” MM13] + Disp8 + [Stf:é‘; gég"]'vm” MM13] + Disp32 +
1110 [scale * (XMM14YMM14] + Dispaz |SCale (XMM14/YMM14] + Disp + | ecale [XMM14/YMM14] + Disp32 +
1111 |scale * [XMM15/YMM15] + Disp32 |S68l€ * [XMM15/YMM15] + Disp8 + |scale * [XMM15/YMM15] + Disp32 +

[base GPR]

[base GPR]

Note 1. Index = {VEX.X,VSIB.index}. In 32-bit mode, VEX.X = 1.

1.3.2 Notational Conventions Related to VSIB Addressing Mode

In the instruction descriptions that follow, the notation vm32x indicates a packed array of four 32-bit
index values contained in the specified XMM index register and vm32y indicates a packed array of
eight 32-bit index values contained in the specified YMM index register. Depending on the instruc-
tion, these indices can be used to compute the effective address of up to four (vm32x) or eight
(vm32y) memory-based operands.

The notation vm64x indicates a packed array of two 64-bit index values contained in the specified
XMM index register and vm64y indicates a packed array of four 64-bit index values contained in the
specified YMM index register. Depending on the instruction, these indices can be used to compute
the effective address of up to two (vm64x) or four (vm64y) memory-based operands.

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

In body of the description of the instructions, the notation mem32[vm32x] is used to represent a
sparse array of 32-bit memory operands where the packed array of four 32-bit indices used to calcu-
late the effective addresses of the operands is held in an XMM register. The notation mem32[vm32y]
refers to a similar array of 32-bit memory operands where the packed array of eight 32-bit indices is
held in a YMM register. The notation mem32[vm64x] means a sparse array of 32-bit memory oper-
ands where the packed array of two 64-bit indices is held in an XMM register and mem32[vm64y]
means a sparse array of 32-bit memory operands where the packed array of four 64-bit indices is held
in a YMM register.

The notation mem64[index_array], where index_array is either vm32x, vm64x, or vm64y, speci-
fies a sparse array of 64-bit memory operands addressed via a packed array of 32-bit or 64-bit indices
held in an XMM/YMM register. If an instruction uses either an XMM or a YMM register, depending
on operand size, to hold the index array, the notation vm32x/y or vm64x/y is used to represent the
array.

In summary, given a maximum operand size of 256-bits, a sparse array of 32-bit memory-based oper-
ands can be addressed using a vm32x, vm32y, vm64Xx, or vm64y index array. A sparse array of 64-
bit memory-based operands can be addressed using a vm32x, vm64x, or vm64y index array. Spe-
cific instructions may use fewer than the maximum number of memory operands that can be
addressed using the specified index array.

VSIB addressing is only valid in 32-bit or 64-bit effective addressing mode and is only supported for
instruction encodings using the VEX prefix. The ModRM.mod value of 11b is not valid in VSIB
addressing mode and ModRM.r/m must be set to 100b.

1.3.3 Memory Ordering and Exception Behavior

VSIB addressing has some special considerations relative to memory ordering and the signaling of
exceptions.

VSIB addressing specifies an array of addresses that allows an instruction to access multiple memory
locations. The order in which data is read from or written to memory is not specified. Memory order-
ing with respect to other instructions follows the memory-ordering model described in Volume 2.

Data may be accessed by the instruction in any order, but access-triggered exceptions are delivered in
right-to-left order. That is, if a exception is triggered by the load or store of an element of an
XMM/YMM register and delivered, all elements to the right of that element (all the lower indexed
elements) have been or will be completed without causing an exception. Elements to the left of the
element causing the exception may or may not be completed. If the load or store of a given element
triggers multiple exceptions, they are delivered in the conventional order.

Because data can be accessed in any order, elements to the left of the one that triggered the exception
may be read or written before the exception is delivered. Although the ordering of accesses is not
specified, it is repeatable in a specific processor implementation. Given the same input values and ini-
tial architectural state, the same set of elements to the left of the faulting one will be accessed.

VSIB addressing should not be used to access memory mapped 1/O as the ordering of the individual
loads is implementation-specific and some implementations may access data larger than the data ele-
ment size or access elements more than once.

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

1.4 Enabling SSE Instruction Execution

Application software that utilizes the SSE instructions requires support from operating system
software.

To enable and support SSE instruction execution, operating system software must:

* enable hardware for supported SSE subsets

* manage the SSE hardware architectural state, saving and restoring it as required during and after
task switches

* provide exception handlers for all unmasked SSE exceptions.

See Volume 2, Chapter 11, for details on enabling SSE execution and managing its execution state.

1.5 String Compare Instructions

The legacy SSE instructions PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM and the
extended SSE instructions VPCMPESTRI, VPCMPESTRM, VPCMPISTRI, and VPCMPISTRM
provide a versatile means of classifying characters of a string by performing one of several different
types of comparison operations using a second string as a prototype.

This section describes the operation of the legacy string compare instructions. This discussion applies
equally to the extended versions of the instructions. Any difference between the legacy and the
extended version of a given instruction is described in the instruction reference entry for the
instruction in the following chapter.

A character string is a vector of data elements that is normally used to represent an ordered
arrangement of graphemes which may be stored, processed, displayed, or printed. Ordered strings of
graphemes are most often used to convey information in a human-readable manner. The string
compare instructions, however, do not restrict the use or interpretation of their operands.

The first source operand provides the prototype string and the second operand is the string to be
scanned and characterized (referred to herein as the string under test, or SUT). Four string formats and
four types of comparisons are supported. The intermediate result of this processing is a bit vector that
summarizes the characterization of each character in the SUT. This bit vector is then post-processed
based on options specified in the instruction encoding. Instruction variants determine the final result—
either an index or a mask.

Instruction execution affects the arithmetic status flags (ZF, CF, SF, OF, AF, PF), but the significance
of many of the flags is redefined to provide information tailored to the result of the comparison
performed. See Section 1.5.6, “Affect on Flags” on page 19.

The instructions have a defined base function and additional functionality controlled by bit fields in an
immediate byte operand (imm8). The base function determines whether the source strings have
implicitly (PCMPISTRI and PCMPISTRM) or explicitly (PCMPESTRI and PCMPESTRM) defined
lengths, and whether the result is an index (PCMPISTRI and PCMPESTRI) or a mask (PCMPISTRM
and PCMPESTRM).

10

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

PCMPISTRI and PCMPESTRI return their final result (an integer value) via the ECX register, while
PCMPISTRM and PCMPESTRM write a bit or character mask, depending on the option selected, to
the XMMO register.

There are a number of different schemes for encoding a set of graphemes, but the most common ones
use either an 8-bit code (ASCII) or a 16-bit code (unicode). The string compare instructions support
both character sizes.

11

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Bit fields of the immediate operand control the following functions:

* Source data format — character size (byte or word), signed or unsigned values

e Comparison type

e Intermediate result postprocessing

e Output option selection

This overview description covers functions common to all of the string compare instructions and
describes some of the differentiated features of specific instructions. Information on instruction

encoding and exception behavior are covered in the individual instruction reference pages in the
following chapter.

12

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

1.5.1 Source Data Format

The character strings that constitute the source operands for the string compare instructions are
formatted as either 8-bit or 16-bit integer values packed into a 128-bit data type. The figure below
illustrates how a string of byte-wide characters is laid out in memory and how these characters are
arranged when loaded into an XMM register.

[null] (00) 112h Highest address
. (2Eh) 111h
Memory Image g (67h) 110h
n (6Eh) 10Fh
i (69h) 10Eh
r (72h) 10Dh
t (74h) 10Ch

128-bit String of
Byte-wide s (73h) 10Bh
Characters in
Memory (ASCII

[blank] (20h) | 10Ah

Encoded) t (74h) 109h
r (72h) 108h
o (6Fh) 107h
h (68h) 106h
s (73h) 105h

[blank] (20h) | 104h

Lowest address

A(41h) 103h Defines address of string
XMM Register Image
63 7 6 5 4 3 2 1 0 0
[blank] (20h) t (74h) r (72h) o (6Fh) h (68h) s (73h) [blank] (20h)| A (41h)
127 15 14 13 12 11 10 9 8 64
[null] (00) | . (2Eh) g (67h) n (6Eh) i (69h) r (72h) t (74h) s (73h)

v4_String_layout.eps

Figure 1-3. Byte-wide Character String — Memory and Register Image

Note from the figure that the longest string that can be packed in a 128-bit data object is either sixteen
8-bit characters (as illustrated) or eight 16-bit characters. When loaded from memory, the character
read from the lowest address in memory is placed in the least-significant position of the register and
the character read from the highest address is placed in the most-significant position. In other words,
for character i of width w, bits [w—1:0] of the character are placed in bits [iw + (Ww—1):iw] of the
register.

13

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Bits [1:0] of the immediate byte operand specify the source string data format, as shown in Table 1-3.

Table 1-3. Source Data Format

Imm8[1:0] Character Format Maximum String Length
00b unsigned bytes 16
01b unsigned words 8
10b signed bytes 16
11b signed words 8

The string compare instructions are defined with the capability of operating on strings of lengths from
0 to the maximum that can be packed into the 128-bit data type as shown in the table above. Because
strings being processed may be shorter than the maximum string length, a means is provided to
designate the length of each string. As mentioned above, one pair of string compare instructions relies
on an explicit method while the other utilizes an implicit method.

For the explicit method, the length of the first operand (the prototype string) is specified by the
absolute value of the signed integer contained in rAX and the length of the second operand (the SUT)
is specified by the absolute value of the signed integer contained in rDX. If a specified length is greater
than the maximum allowed, the maximum value is used. Using the explicit method of length
specification, null characters (characters whose numerical value is 0) can be included within a string.

Using the implicit method, a string shorter than the maximum length is terminated by a null character.
If no null character is found in the string, its length is implied to be the maximum. For the example
illustrated in Figure 1-3 above, the implicit length of the string is 15 because the final character is null.
However, using the explicit method, a specified length of 16 would include the null character in the
string.

In the following discussion, |; is the length of the first operand string (the prototype string), |, is the
length of the second operand string (the SUT) and mis the maximum string length based on the
selected character size.

1.5.2 Comparison Type

Although the string compare instructions can be implemented in many different ways, the instructions
are most easily understood as the sequential processing of the SUT using the characters of the
prototype string as a template. The template is applied at each character index of SUT, processing the
string from the first character (index 0) to the last character (index [,—1).

The result of each comparison is recorded in successive positions of a summary bit vector Cmpr Summ.
When the sequence of comparisons is complete, this bit vector summarizes the results of comparison
operations that were performed. The length of the CmprSumm bit vector is equal to the maximum
input operand string length (m). The rules for the setting of Cmpr Summbits beyond the end of the SUT
(CmprSumm[m—1:1,]) are dependent on the comparison type (see Table 1-4 below.)

Bits [3:2] of the immediate byte operand determine the comparison type, as shown in Table 1-4.

14

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Table 1-4. Comparison Type

Comparison
Imm8[3:2] Type Description
00b Subset Tests each character of the SUT to determine if it is within the subset of

characters specified by the prototype string. Each set bit of CmprSumm
indicates that the corresponding character of the SUT is within the subset
specified by the prototype. Bits [m—1:1,] are cleared.

01b Ranges Tests each character of the SUT to determine if it lies within one or more
ranges specified by pairs of values within the prototype string. The ranges
are inclusive. Each set bit in CmprSumm indicates that the corresponding
character of the SUT is within one or more of the inclusive ranges specified.
Bits [m-1:1,] are cleared. If the length of the prototype is odd, the last value

in the prototype is effectively ignored.

10b Match Performs a character-by-character comparison between the SUT and the
prototype string. Each set bit of CmprSumm indicates that the
corresponding characters in the two strings match. If not, the bit is cleared.
Bits [m—1:max(l4, |5)] of CmprSumm are set.

11b Sub-string | Searches for an exact match between the prototype string and an ordered
sequence of characters (a sub-string) in the SUT beginning at the current
index i. Bit i of CmprSumm is set for each value of i where the sub-string
match is made, otherwise the bit is cleared. See discussion below.

In the Sub-string comparison type, any matching sub-string of the SUT must match the prototype
string one-for-one, in order, and without gaps. Null characters in the SUT do not match non-null
characters in the prototype. If the prototype and the SUT are equal in length and less than the max
length, the two strings must be identical for the comparison to be TRUE. In this case, bit 0 of
Cmprummis set to one and the remainder are all Os. If the length of the SUT is less than the prototype
string, no match is possible and CmprSummis all Os.

If the prototype string is shorter than the SUT (I, <I,), a sequential search of the SUT is performed.
For each i from 0 to |,~14, the prototype is compared to characters [i + 1;—1:i] of the SUT. If the
prototype and the sub-string SUT[i + |,—1:i] match exactly, then Cmpr Summ[i] is set, otherwise the bit
is cleared. When the comparison at i =1,—1; is complete, no further testing is required because there
are not enough characters remaining in the SUT for a match to be possible. The remaining bits |,=1,+1
through m-1 are all set to 0.

For the Match comparison type, the character-by-character comparison is performed on all m
characters in the 128-bit operand data, which may extend beyond the end of one or both strings. A null
character at index i within one string is not considered a match when compared with a character
beyond the end of the other string. In this case, CmprSumm[i] is cleared. For index positions beyond
the end of both strings, Cmpr Summ[i] is set.

The following section provides more detail on the generation of the comparison summary bit vector
based on the specified comparison type.

15

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

1.5.3 Comparison Summary Bit Vector

The following pseudo code provides more detail on the generation of the comparison summary bit
vector Cmpr Summ. The function CompareStrgs defined below returns a bit vector of length m, the
maximum length of the operand data strings.

bit vector CompareStrgs (ProtoType, lengthl, SUT, length2, CmpType, signed, m)
doubleword vector StrUndTst // temp vector; holds string under test
doubleword vector StrProto // temp vector; holds prototype string
bit vector[m] Result // length of vector is m

StrProto = m{
StrUndTst = m
Result = m{0}

} //initialize m elements of StrProto to 0
0} //initialize m elements of StrUndTst to 0
//initialize result bit vector

0
{

FOR 1 = 0 to lengthl

StrProto[i] = signed ? SignExtend (ProtoTypel[i]l) : ZeroExtend (ProtoTypel[il])
FOR i = 0 to length2
StrUndTst [1] = signed ? SignExtend(SUT[i]) : ZeroExtend (SUTI[il])
IF CmpType == Subset
FOR j = 0 to length2 - 1 // j indexes SUT
FOR i = 0 to lengthl - 1 // 1 indexes prototype
Result[j] |= (StrProto[i] == StrUndTst[j])
IF CmpType == Ranges
FOR j = 0 to length2 - 1 // j indexes SUT
FOR i = 0 to lengthl - 2, BY 2 // 1 indexes prototype
Result[j] |= (StrProto[i] <= StrUndTst[j])

&& (StrProto[i+l] >= StrUndTst[j])

IF CmpType == Match
FOR i = 0 to (min(lengthl, length2)-1)
Result[i] = (StrProto[i] == StrUndTst[i])
FOR i = min(lengthl, length2) to (max(lengthl, length2)-1)
Result[i] = 0
FOR i = max(lengthl, length2) to (m-1)
Result[i] =1
IF CmpType == Sub-string

IF (length2==16)&& (lengthl==16)
maxlength=15
else
maxlength = length2-lengthl
IF length2 >= lenghtl

FOR j = 0 to maxlength // j indexes result bit vector
Result[j] =1
k = j // k scans the SUT
FOR 1 = 0 to lengthl - 1 // 1 scans the Prototype
Result[j] &= (StrProto[i] == StrUndTstl[k])// Result[j] is cleared if
any of the comparisons do not match
k++

Return Result

16

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Given the above definition of CompareStrgs (), the following pseudo code computes the value of
Cmpr Summ:

ProtoType = contents of first source operand (xmml)

SUT = contents of xmm2 or 128-bit wvalue read from the specified memory location
lengthl = length of first operand string //specified implicitly or explicitly
length2 = length of second operand string //specified implicitly or explicitly
m = Maximum String Length from Table 1-3 above

CmpType = Comparison Type from Table 1-4 above

signed = (imm8([1] == 1) ? TRUE : FALSE

bit vector [m] CmprSumm // CmprSumm is m bits long

CmprSumm = CompareStrgs (ProtoType, lengthl, SUT, length2, CmpType, signed, m)

The following examples demonstrate the comparison summary bit vector Cmpr Summ for each
comparison type. For the sake of illustration, the operand strings are represented as ASCII-encoded
strings. Each character value is represented by its ASCII grapheme. Strings are displayed with the
lowest indexed character on the left as they would appear when printed or displayed. CmprSummiis
shown in reverse order with the least significant bit on the left to agree with the string presentation.

Comparison Type = Subset

Prototype: ZCx
SUT: aCx%$xbZreCx
CmprSumm: 0110101001100000

Comparison Type = Ranges

Prototype: ACax
SUT: aCx%xbZreCx
CmprSumm: 1110110111100000

Comparison Type = Match

Prototype: ZCx
SUT: aCx%xbZreCx
CmprSumm: 0110000000011111

Comparison Type = Sub-string

Prototype: ZCx
SUT: aZCx%xCZreZCxCZ
CmprSumm: 0100000000100000

17

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

1.5.4 Intermediate Result Post-processing

Post-processing of the CmprSumm bit vector is controlled by imm8[5:4]. The result of this step is
designated pCmpr Summ.

Bit [4] of the immediate operand determines whether a ones’ complement (bit-wise inversion) is
performed on Cmpr Summ; bit [5] of the immediate operand determines whether the inversion applies
to the entire comparison summary bit vector (CmprSumm) or just to those bits that correspond to
characters within the SUT. See Table 1-5 below for the encoding of the imm8[5:4] field.

Table 1-5. Post-processing Options

Imm8[5:4] Post-processing Applied

x0b pCmprSumm = CmprSumm

01b pCmprSumm = NOT CmprSumm

11b pCmprSumm[i] = !ICmprSumml[i] fori < |,
pCmprSumm(i] = CmprSumm[i], for I, £i<m

1.5.5 Output Option Selection

For PCMPESTRI and PCMPISTRI, imm8[6] determines whether the index of the lowest set bit or the
highest set bit of pCmprSumm s written to ECX, as shown in Table 1-6.

Table 1-6. Indexed Output Option Selection

Imm8[6] Description

0Ob Return the index of the least significant set bit in pCmprSumm.

1b Return the index of the most significant set bit in pCmprSumm.

For PCMPESTRM and PCMPISTRM, imm8[6] specifies whether the output from the instruction is a
bit mask or an expanded mask. The bit mask is a copy of pCmpr Summ zero-extended to 128 bits. The
expanded mask is a packed vector of byte or word elements, as determined by the string operand
format (as indicated by imm8[0]). The expanded mask is generated by copying each bit of
pCmprSumm to all bits of the element of the same index. Table 1-7 below shows the encoding of
Imma[6].

Table 1-7. Masked Output Option Selection

Imm8[6] Description

Ob Return pCmprSumm as the output with zero extension to 128 bits.

1b Return expanded pCmprSumm byte or word mask.

The PCMPESTRM and PCMPISTRM instructions return their output in register XMMO. For the
extended forms of the instructions, bits [127:64] of YMMO are cleared.

18

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

1.5.6 Effect on Flags

The execution of a string compare instruction updates the state of the CF, PF, AF, ZF, SF, and OF flags
within the rFLAGs register. All other flags are unaffected. The PF and AF flags are always cleared.
The ZF and SF flags are set or cleared based on attributes of the source strings and the CF and OF flags
are set or cleared based on attributes of the summary bit vector after post processing.

The CF flag is cleared if the summary bit vector, after post processing, is zero; the flag is set if one or
more of the bits in the post-processed bit vector are 1. The OF flag is updated to match the value of the
least significant bit of the post-processed summary bit vector.

The ZF flag is set if the length of the second string operand (SUT) is shorter than m, the maximum
number of 8-bit or 16-bit characters that can be packed into 128 bits. Similarly, the SF flag is set if the
length of the first string operand (prototype) is shorter than m.

This information is summarized in Table 1-8 below.

Table 1-8. State of Affected Flags After Execution

Unconditional Source String Length Post-processed Bit Vector
PF AF SF ZF CF OF
0 0 (I <m) (I, <m) pCmprSumm # 0 | pCmprSumm [0]

19

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

20

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

2 Instruction Reference

Instructions are listed by mnemonic, in alphabetic order. Each entry describes instruction function,
syntax, opcodes, affected flags and exceptions related to the instruction.

Figure 2-1 shows the conventions used in the descriptions. Items that do not pertain to a particular
instruction, such as a synopsis of the 256-bit form, may be omitted.

INST Instruction
VINST Mnemonic Expansion

Brief functional description

INST

Description of legacy version of instruction.

VINST

Description of extended version of instruction.

XMM Encoding

Description of 128-bit extended instruction.

YMM Encoding

Description of 256-bit extended instruction.

Information about CPUID functions related to the instruction set.

Synopsis diagrams for legacy and extended versions of the instruction.

Mnemonic Opcode Description
INST xmm1, xmm2/mem128 FFFF /r Brief summary of legacy operation.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VINST xmm1, xmm2/mem128, xmm3 C4 RXB.11 0.src.0.00 FF 4
VINST ymm1, ymm2/imem256, ymm3 c4 RXB.11 0.src.0.00 FF /

Related Instructions

Instructions that perform similar or related functions.
rFLAGS Affected

Rflags diagram.

MXCSR Flags Affected

MXCSR diagram.

Exceptions

Exception summary table.

Figure 2-1. Typical Instruction Description

Instruction Reference 21

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Instruction Exceptions

Under various conditions instructions described below can cause exceptions. The conditions that
cause these exceptions can differ based on processor mode and instruction subset. This information is
summarized at the end of each instruction reference page in an Exception Table. Rows list the appli-
cable exceptions and the different conditions that trigger each exception for the instruction. For each
processor mode (real, virtual, and protected) a symbol in the table indicates whether this exception
condition applies.

Each AVX instruction has a legacy form that comes from one of the legacy (SSE1, SSE2, ...) subsets.
An “X” at the intersection of a processor mode column and an exception cause row indicates that the
causing condition and potential exception applies to both the AVX instruction and the legacy SSE
instruction. “A” indicates that the causing condition applies only to the AVX instruction and “S” indi-
cates that the condition applies to the SSE legacy instruction.

Note that XOP and FM A4 instructions do not have corresponding instructions from the SSE legacy
subsets. In the exception tables for these instructions, “X” represents the XOP instruction and “F”
represents the FMA4 instruction.

22 Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
ADDPD Add
VADDPD Packed Double-Precision Floating-Point

Adds each packed double-precision floating-point value of the first source operand to the correspond-
ing value of the second source operand and writes the result of each addition into the corresponding
quadword of the destination.

There are legacy and extended forms of the instruction:
ADDPD

Adds two pairs of values.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VADDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds two pairs of values.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

YMM Encoding
Adds four pairs of values.

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

Form Subset Feature Flag
ADDPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VADDPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ADDPD xmm1, xmm2/mem128 66 OF 58 /r Adds two packed double-precision floating-point
values in xmml1 to corresponding values in xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 58 Ir
VADDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 58 Ir

Instruction Reference ADDPD, VADDPD 23

AMDAQ

AMDG64 Technology

Related Instructions

(V)ADDPS, (V)ADDSD, (V)ADDSS

rFLAGS Affected

None

MXCSR Flag_js Affected

26568—Rev. 3.22—May 2018

MM | FZ RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoim, #xF | 5 | s | x [Snmasked SIUD Roatnazpoint exceptor whle cRie SXVMEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

24

ADDPD, VADDPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
ADDPS Add
VADDPS Packed Single-Precision Floating-Point

Adds each packed single-precision floating-point value of the first source operand to the correspond-
ing value of the second source operand and writes the result of each addition into the corresponding
elements of the destination.

There are legacy and extended forms of the instruction:
ADDPS

Adds four pairs of values.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VADDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds four pairs of values.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

YMM Encoding
Adds eight pairs of values.

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

Form Subset Feature Flag
ADDPS SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VADDPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ADDPS xmm1, xmm2/mem128 OF 58 /r Adds four packed single-precision floating-point values in
xmml1 to corresponding values in xmm2 or mem128. Writes
results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 58 Ir
VADDPS ymm1, ynm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 58 Ir

Instruction Reference ADDPS, VADDPS 25

AMDAQ

AMDG64 Technology

Related Instructions

(V)ADDPD, (V)ADDSD, (V)ADDSS

rFLAGS Affected

None

MXCSR Flag_js Affected

26568—Rev. 3.22—May 2018

MM | FZ RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoim, #xF | 5 | s | x [Snmasked SIUD Roatnazpoint exceptor whle cRie SXVMEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

26

ADDPS, VADDPS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
ADDSD Add
VADDSD Scalar Double-Precision Floating-Point

Adds the double-precision floating-point value in the low-order quadword of the first source operand
to the corresponding value in the low-order quadword of the second source operand and writes the
result into the low-order quadword of the destination.

There are legacy and extended forms of the instruction:
ADDSD

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The first source register is also the destination register. Bits [127:64]
of the destination and bits [255:128] of the corresponding YMM register are not affected.

VADDSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first
source operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
ADDSD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VADDSD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ADDSD xmm1, xmm2/mem64 F2 OF 58 /r Adds low-order double-precision floating-point values in
xmml to corresponding values in xmm2 or mem64.
Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 58 /r
Related Instructions
(V)ADDPD, (V)ADDPS, (V)ADDSS

rFLAGS Affected

None

Instruction Reference ADDSD, VADDSD 27

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M [M| M M | M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x [Snmasked SIUD fostnazpont exceptor whle CRAOSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

28

ADDSD, VADDSD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
ADDSS Add
VADDSS Scalar Single-Precision Floating-Point

Adds the single-precision floating-point value in the low-order doubleword of the first source oper-
and to the corresponding value in the low-order doubleword of the second source operand and writes
the result into the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:
ADDSS

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination register and bits [255:128] of the corresponding YMM register are not affected.

VADDSS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first
source register are copied to bits [127:32] of the of the destination. Bits [255:128] of the YMM regis-
ter that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
ADDSS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VADDSS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ADDSS xmm1, xmm2/mem32 F3 OF 58 /r Adds a single-precision floating-point value in the low-order
doubleword of xmm1 to a corresponding value in xmm2 or
mem32. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 58 /r
Related Instructions
(V)ADDPD, (V)ADDPS, (V)ADDSD

rFLAGS Affected

None

Instruction Reference ADDSS, VADDSS 29

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M [M| M M | M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x [Snmasked SIUD fostnazpont exceptor whle CRAOSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

30

ADDSS, VADDSS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
ADDSUBPD Alternating Addition and Subtraction
VADDSUBPD Packed Double-Precision Floating-Point

Adds the odd-numbered packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the sum to the corresponding odd-
numbered element of the destination; subtracts the even-numbered packed double-precision floating-
point values of the second source operand from the corresponding values of the first source operand
and writes the differences to the corresponding even-numbered element of the destination.

There are legacy and extended forms of the instruction:
ADDSUBPD

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VADDSUBPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

Form Subset Feature Flag
ADDSUBPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VADDSUBPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ADDSUBPD xmm1, xmm2/mem128 66 OF DO /r Adds a value in the upper 64 bits of xmm1 to the
corresponding value in xmmz2 and writes the result to
the upper 64 bits of xmm1; subtracts the value in the
lower 64 bits of xmm1 from the corresponding value
in xmm2 and writes the result to the lower 64 bits of

xmml.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DO /r
VADDSUBPD ymm1, ymm2, ymm3/mem256 c4 RXB.00001 X.src.1.01 DO /r

Instruction Reference ADDSUBPD, VADDSUBPD 31

AMDAQ

AMDG64 Technology

Related Instructions
(V)ADDSUBPS

rFLAGS Affected

None

MXCSR Flag_js Affected

26568—Rev. 3.22—May 2018

MM | FZ RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoim, #xF | 5 | s | x [Snmasked SIUD Roatnazpoint exceptor whle cRie SXVMEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

32

ADDSUBPD, VADDSUBPD

Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
ADDSUBPS Alternating Addition and Subtraction
VADDSUBPS Packed Single-Precision Floating Point

Adds the second and fourth single-precision floating-point values of the first source operand to the
corresponding values of the second source operand and writes the sums to the second and fourth ele-
ments of the destination. Subtracts the first and third single-precision floating-point values of the sec-
ond source operand from the corresponding values of the first source operand and writes the
differences to the first and third elements of the destination.

There are legacy and extended forms of the instruction:
ADDSUBPS

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VADDSUBPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

Form Subset Feature Flag
ADDSUBPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VADDSUBPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ADDSUBPS xmm1, xmm2/mem128 F2 OF DO /r Adds the second and fourth packed single-precision
values in xmm2 or mem128 to the corresponding
values in xmm1 and writes results to the
corresponding positions of xmm1. Subtracts the first
and third packed single-precision values in xmm2 or
mem128 from the corresponding values in xmm1 and
writes results to the corresponding positions of xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 DO /r
VADDSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 DO /r

Instruction Reference ADDSUBPS, VADDSUBPS 33

AMDAQ

AMDG64 Technology

Related Instructions
(V)ADDSUBPD

rFLAGS Affected

None

MXCSR Flag_js Affected

26568—Rev. 3.22—May 2018

MM | FZ RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoim, #xF | 5 | s | x [Snmasked SIUD Roatnazpoint exceptor whle cRie SXVMEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

34

ADDSUBPS, VADDSUBPS

Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
AESDEC AES
VAESDEC Decryption Round

Performs a single round of AES decryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.

See Appendix A on page 973 for more information about the operation of the AES instructions.

Decryption consists of 1, ..., N,.— 1 iterations of sequences of operations called rounds, terminated by
a unique final round, N,. The AESDEC and VAESDEC instructions perform all the rounds except the
last; the AESDECLAST and VAESDECLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.

There are legacy and extended forms of the instruction:

AESDEC

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VAESDEC

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
AESDEC AES | CPUID Fn0000_0001_ECX[AES] (bit 25)
VAESDEC AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

AESDEC xmm1, xmm2/mem128 66 OF 38 DE /r Performs one decryption round on a state value
in xmm21 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VAESDEC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DE /r

Related Instructions
(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST

Instruction Reference AESDEC, VAESDEC 35

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

36

AESDEC, VAESDEC Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
AESDECLAST AES
VAESDECLAST Last Decryption Round

Performs the final round of AES decryption. Completes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes
the result to the destination.

See Appendix A on page 973 for more information about the operation of the AES instructions.

Decryption consists of 1, ..., N,.— 1 iterations of sequences of operations called rounds, terminated by
a unique final round, N,.The AESDEC and VAESDEC instructions perform all the rounds before the
final round; the AESDECLAST and VAESDECLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.

There are legacy and extended forms of the instruction:
AESDECLAST

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VAESDECLAST

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
AESDECLAST AES | CPUID Fn0000_0001_ECX[AES] (bit 25)
VAESDECLAST| AVX | CPUID Fn0000 _0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

AESDECLAST xmm1, xmm2/mem128 66 OF 38 DF/r Performs the last decryption round on a state
value in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VAESDECLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DF /r

Related Instructions
(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST

Instruction Reference AESDECLAST, VAESDECLAST 37

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

38

AESDECLAST, VAESDECLAST

Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
AESENC AES
VAESENC Encryption Round

Performs a single round of AES encryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.

See Appendix A on page 973 for more information about the operation of the AES instructions.

Encryption consists of 1, ..., N, — 1 iterations of sequences of operations called rounds, terminated by
a unique final round, N,. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register

There are legacy and extended forms of the instruction:
AESENC

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VAESENC

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
AESENC AES | CPUID Fn0000_0001_ECX[AES] (bit 25)
VAESENC AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

AESENC xmm1, xmm2/mem128 66 OF 38 DC /r Performs one encryption round on a state value
in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VAESENC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DC/r

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V) AESKEYGENASSIST

Instruction Reference AESENC, VAESENC 39

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

40

AESENC, VAESENC Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
AESENCLAST AES
VAESENCLAST Last Encryption Round

Performs the final round of AES encryption. Completes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes
the result to the destination.

See Appendix A on page 973 for more information about the operation of the AES instructions.

Encryption consists of 1, ..., N, — 1 iterations of sequences of operations called rounds, terminated by
a unique final round, N,. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.

There are legacy and extended forms of the instruction:
AESENCLAST

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VAESENCLAST

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
AESENCLAST AES | CPUID Fn0000_0001_ECX[AES] (bit 25)
VAESENCLAST| AvVX | CPUID Fn0000 0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

AESENCLAST xmm1, xmm2/mem128 66 OF 38 DD /r Performs the last encryption round on a
state value in xmm1 using the key value in xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VAESENCLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DD /r

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V)AESKEYGENASSIST

Instruction Reference AESENCLAST, VAESENCLAST 41

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

42

AESENCLAST, VAESENCLAST

Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
AESIMC AES
VAESIMC InvMixColumn Transformation

Applies the AES InvMixColumng() transformation to expanded round keys in preparation for decryp-
tion. Transforms an expanded key specified by the second source operand and writes the result to a
destination register.

See Appendix A on page 973 for more information about the operation of the AES instructions.

The 128-bit round key vector is interpreted as 16-byte column-major entries in a 4-by-4 matrix of
bytes.The transformed result is written to the destination in column-major order.

AESIMC and VAESIMC are not used to transform the first and last round key in a decryption
sequence.

There are legacy and extended forms of the instruction:
AESIMC

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VAESIMC

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
AESIMC AES | CPUID Fn0000_0001_ECX[AES] (bit 25)
VAESIMC AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

AESIMC xmm1, xmm2/mem128 66 OF 38 DB /r Performs AES InvMixColumn transformation on
a round key in the xmm2 or mem128 and stores
the result in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VAESIMC xmm1, xmm2/mem128 C4 RXB.00010 X.src.0.01 DB /r

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESKEYGENASSIST

rFLAGS Affected
None

Instruction Reference AESIMC, VAESIMC 43

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

44

AESIMC, VAESIMC Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
AESKEYGENASSIST AES
VAESKEYGENASSIST Assist Round Key Generation

Expands a round key for encryption. Transforms a 128-bit round key operand using an 8-bit round
constant and writes the result to a destination register.

See Appendix A on page 973 for more information about the operation of the AES instructions.

The round key is provided by the second source operand and the round constant is specified by an
immediate operand. The 128-bit round key vector is interpreted as 16-byte column-major entries in a
4-by-4 matrix of bytes. The transformed result is written to the destination in column-major order.

There are legacy and extended forms of the instruction:
AESKEYGENASSIST

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VAESKEYGENASSIST

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
AESKEYGENASSIST | AES | CPUID Fn0000_0001_ECX[AES] (bit 25)
VAESKEYGENASSIST| AVX |CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

AESKEYGENASSIST xmm1, xmm2/mem128, imm8 66 OF 3A DF /rib Expands a round key in xmm2 or
mem128 using an immediate
round constant. Writes the result

to xmml1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
AESKEYGENASSIST xmm1, xmm2 /mem128, imm8 C4 RXB.00011 X.src.0.01 DF /rib

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST,(V)AESIMC

rFLAGS Affected

None

Instruction Reference AESKEYGENASSIST, VAESKEYGENASSIST 45

AMDAQ

AMDG64 Technology

MXCSR Flags Affected

26568—Rev. 3.22—May 2018

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S S S _|CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

46

AESKEYGENASSIST, VAESKEYGENASSIST Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
ANDNPD AND NOT
VANDNPD Packed Double-Precision Floating-Point

Performs a bitwise AND of two packed double-precision floating-point values in the second source
operand with the ones’-complement of the two corresponding packed double-precision floating-point
values in the first source operand and writes the result into the destination.

There are legacy and extended forms of the instruction:
ANDNPD

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VANDNPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

Form Subset Feature Flag
ANDNPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VANDNPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ANDNPD xmm1, xmm2/mem128 66 OF 55 /r Performs bitwise AND of two packed double-precision
floating-point values in xmm2 or mem128 with the ones’-
complement of two packed double-precision floating-
point values in xmm1. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VANDNPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 55 /r
VANDNPD ymm1, ynm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 55 Ir

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference ANDNPD, VANDNPD 47

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

48

ANDNPD, VANDNPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
ANDNPS AND NOT
VANDNPS Packed Single-Precision Floating-Point

Performs a bitwise AND of four packed single-precision floating-point values in the second source
operand with the ones’-complement of the four corresponding packed single-precision floating-point
values in the first source operand, and writes the result in the destination.

There are legacy and extended forms of the instruction:
ANDNPS

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VANDNPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

Form Subset Feature Flag
ANDNPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VANDNPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ANDNPS xmm1, xmm2/mem128 OF 55 /r Performs bitwise AND of four packed single-precision
floating-point values in xmm2 or mem128 with the ones’-
complement of four packed single-precision floating-point
values in xmm1. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VANDNPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 55 /r
VANDNPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 55 Ir

Related Instructions
(V)ANDNPD, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference ANDNPS, VANDNPS 49

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

50

ANDNPS, VANDNPS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
ANDPD AND
VANDPD Packed Double-Precision Floating-Point

Performs bitwise AND of two packed double-precision floating-point values in the first source oper-
and with the corresponding two packed double-precision floating-point values in the second source
operand and writes the results into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ANDPD

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VANDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

Form Subset Feature Flag
ANDPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VANDPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ANDPD xmm1, xmm2/mem128 66 OF 54 /r Performs bitwise AND of two packed double-precision
floating-point values in xmm21 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VANDPD xmm1, xmmz2, xmm3/mem128 c4 RXB.00001 X.src.0.01 54 Ir
VANDPD ymm1, ymm2, ymm3/mem256 c4 RXB.00001 X.src.1.01 54 Ir

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference ANDPD, VANDPD 51

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

52

ANDPD, VANDPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
ANDPS AND
VANDPS Packed Single-Precision Floating-Point

Performs bitwise AND of the four packed single-precision floating-point values in the first source
operand with the corresponding four packed single-precision floating-point values in the second
source operand, and writes the result into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ANDPS

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VANDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

Form Subset Feature Flag
ANDPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VANDPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

ANDPS xmm1, xmm2/mem128 OF 54 /r Performs bitwise AND of four packed single-precision floating-
point values in xmm1 with corresponding values in xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VANDPS xmm1, xmm2, xmm3/mem128 c4 RXB.00001 X.src.0.00 54 Ir
VANDPS ymm1, ymm2, ymm3/mem256 c4 RXB.00001 X.src.1.00 54 Ir

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPD, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference ANDPS, VANDPS 53

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

54

ANDPS, VANDPS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
BLENDPD Blend
VBLENDPD Packed Double-Precision Floating-Point

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.

Each mask bit specifies a 64-bit element in a source location and a corresponding 64-bit element in
the destination register. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination register. When a mask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.

There are legacy and extended forms of the instruction:
BLENDPD

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. Only mask bits [1:0] are used.

VBLENDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared. Only mask bits [1:0] are used.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register. Only mask bits [3:0] are used.

Instruction Support

Form Subset Feature Flag
BLENDPD SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VBLENDPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
BLENDPD xmm1, xmm2/mem128, imm8 66 OF 3A0D /rib Copies values from xmm1 or
xmm2/mem128 to xmm1, as
specified by immS8.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VBLENDPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0D /rib
VBLENDPD ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 0D /rib

Instruction Reference BLENDPD, VBLENDPD 55

AMDAQ

AMDG64 Technology

Related Instructions

26568—Rev. 3.22—May 2018

(V)BLENDPS, (B)BLENDVPD, (V)BLENDVPS

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S| S| S |CRAOSEXSR=0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

56

BLENDPD, VBLENDPD

Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
BLENDPS Blend
VBLENDPS Packed Single-Precision Floating-Point

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.

Each mask bit specifies a 32-bit element in a source location and a corresponding 32-bit element in
the destination register. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination register. When a mask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.

There are legacy and extended forms of the instruction:
BLENDPS

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. Only mask bits [3:0] are used.

VBLENDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.Only mask bits [3:0] are used.

YMM Encoding

The first operand is a YMM register and the second operand is either a YMM register or a 256-bit
memory location. The destination is a third YMM register. All 8§ bits of the mask are used.

Instruction Support

Form Subset Feature Flag
BLENDPS SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VBLENDPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
BLENDPS xmm1, xmm2/mem128, imm8 66 OF 3A0C /rib Copies values from xmm1 or
xmm2/mem128 to xmm1, as
specified by immS8.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VBLENDPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0C/rib
VBLENDPS ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 0C/rib

Instruction Reference BLENDPS, VBLENDPS 57

AMDAQ

AMDG64 Technology

Related Instructions

26568—Rev. 3.22—May 2018

(V)BLENDPD, (V)BLENDVPD, (V)BLENDVPS

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S| S| S |CRAOSEXSR=0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

58

BLENDPS, VBLENDPS

Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
BLENDVPD Variable Blend
VBLENDVPD Packed Double-Precision Floating-Point

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by a mask operand.

Each mask bit specifies a 64-bit element of a source location and a corresponding 64-bit element of
the destination. The position of a mask bit corresponds to the position of the most significant bit of a
copied value. When a mask bit = 0, the specified element of the first source is copied to the corre-
sponding position in the destination. When a mask bit = 1, the specified element of the second source
is copied to the corresponding position in the destination.

There are legacy and extended forms of the instruction:
BLENDVPD

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. The mask is defined by bits 127
and 63 of the implicit register XMMO.

VBLENDVPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared. The mask is defined by bits 127 and 63 of a fourth
XMM register.

YMM Encoding

The first operand is a YMM register and the second operand is either a YMM register or a 256-bit
memory location. The destination is a third YMM register. The mask is defined by bits 255, 191, 127,
and 63 of a fourth YMM register.

Instruction Support

Form Subset Feature Flag
BLENDVPD SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VBLENDVPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference BLENDVPD, VBLENDVPD 59

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic Opcode Description

BLENDVPD xmm1, xmm2/mem128 66 OF 38 15 /r Copies values from xmm1 or xmm2/mem128 to
xmm1, as specified by the MSB of corresponding
elements of xmmO.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VBLENDVPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 X.src.0.01 4B I
VBLENDVPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 X.src.1.01 4B Ir

Related Instructions
(V)BLENDPD, (V)BLENDPS, (V)BLENDVPS

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
Mode
Exception Cause of Exception
P Real| Virt |Prot P
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEXW=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

60 BLENDVPD, VBLENDVPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
BLENDVPS Variable Blend
VBLENDVPS Packed Single-Precision Floating-Point

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by a mask operand.

Each mask bit specifies a 32-bit element of a source location and a corresponding 32-bit element of
the destination register. The position of a mask bits corresponds to the position of the most significant
bit of a copied value. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination. When a mask bit = 1, the specified element of the second
source is copied to the corresponding position in the destination.

There are legacy and extended forms of the instruction:
BLENDVPS

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. The mask is defined by bits 127,
95, 63, and 31 of the implicit register XMMO.

VBLENDVPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared. The mask is defined by bits 127, 95, 63, and 31 of
a fourth XMM register.

YMM Encoding

The first operand is a YMM register and the second operand is either a YMM register or a 256-bit
memory location. The destination is a third YMM register. The mask is defined by bits 255, 223, 191,
159, 127, 95, 63, and 31 of a fourth YMM register.

Instruction Support

Form Subset Feature Flag
BLENDVPS SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VBLENDVPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference BLENDVPS, VBLENDVPS 61

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic Opcode Description

BLENDVPS xmm1, xmm2/mem128 66 OF 38 14 /r Copies packed single-precision
floating-point values from xmm1 or
xmm2/mem128 to xmm1, as
specified by bits in xmmO.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VBLENDVPS xmm1, xmm2, xmm3/mem128, xmm4 c4 RXB.00011 X.src.0.01 4A Ir
VBLENDVPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 X.src.1.01 4A Ir

Related Instructions
(V)BLENDPD, (V)BLENDPS, (V)BLENDVPD

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
Mode
Exception Cause of Exception
P Real| Virt |Prot P
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |VEXW=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

62 BLENDVPS, VBLENDVPS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
CMPPD Compare
VCMPPD Packed Double-Precision Floating-Point

Compares each of the two packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 64-bit element of the destination. When a comparison is TRUE, all 64 bits of the desti-
nation element are set; when a comparison is FALSE, all 64 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:
CMPPD

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or al28-bit memory location.The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. Comparison type is specified by
bits [2:0] of an immediate byte operand.

VCMPPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an
immediate byte operand.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination operand is a YMM register. Comparison type is speci-
fied by bits [4:0] of an immediate byte operand.

Immediate Operand Encoding

CMPPD uses bits [2:0] of the 8-bit immediate operand and VCMPPD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPPD supports 20h encoding values, the comparison types echo
those of CMPPD on 4-bit boundaries. The following table shows the immediate operand value for
CMPPD and each of the VCMPPD echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
with the directly supported comparison operations.

Instruction Reference CMPPD, VCMPPD 63

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

Immediate Operand Compare Operation Result If NaN Operand | QNaN Operand Causes
Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPPD with appropriate value of imm8 are supported.

Instruction Support

Mnemonic Implied Value of imm8
(V)CMPEQPD 00h, 08h, 10h, 18h
(V)CMPLTPD 01h, 09h, 11h, 19h
(V)CMPLEPD 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDPD 03h, 0Bh, 13h, 1Bh
(V)CMPNEQPD 04h, OCh, 14h, 1Ch
(V)CMPNLTPD 05h, ODh, 15h, 1Dh
(V)CMPNLEPD 06h, OEh, 16h, 1Eh
(V)CMPORDPD 07h, OFh, 17h, 1Fh

Form Subset Feature Flag
CMPPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCMPPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

64 CMPPD, VCMPPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic
CMPPD xmm1, xmm2/mem128, imm8

Mnemonic

Opcode

66 OF C2 /rib

VCMPPD xmm1, xmm2, xmm3/mem128, imm8
VCMPPD ymm1, ymm2, ymm3/mem256, imm8

Related Instructions

C4

AMDG64 Technology

Description

Compares two pairs of values in xmm1 to
corresponding values in xmm2 or mem128.
Comparison type is determined by imm8.
Writes comparison results to xmm.1.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
RXB.00001 X.src.0.01 C2/rib
RXB.00001 X.src.1.01 C2/rib

C4

(V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected

None

MXCSR FIa_c_;s Affected

MM | FZ RC PM UM OM|ZM DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M
17 | 15 | 14 ‘ 13 | 12 | 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference

CMPPD, VCMPPD 65

AMDAQ

AMDG64 Technology

Exceptions

26568—Rev. 3.22—May 2018

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

w|lnl>

nlm| > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK|2:1] I = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

N n | v

DO v v

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

X [X[>P| O [X0 X|X[X| X |X>>> OO

Unmasked SIMD floating-point exception while CR4.0OSXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

w

(%))

x

A source operand was an SNaN value.

Invalid operation, |E

w

(%))

>

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

66

CMPPD, VCMPPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
CMPPS Compare
VCMPPS Packed Single-Precision Floating-Point

Compares each of the four packed single-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 32-bit element of the destination. When a comparison is TRUE, all 32 bits of the desti-
nation element are set; when a comparison is FALSE, all 32 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:
CMPPS

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. Comparison type is specified by
bits [2:0] of an immediate byte operand.

VCMPPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an
immediate byte operand.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination operand is a YMM register. Comparison type is speci-
fied by bits [4:0] of an immediate byte operand.

Immediate Operand Encoding

CMPPS uses bits [2:0] of the 8-bit immediate operand and VCMPPS uses bits [4:0] of the 8-bit
immediate operand. Although VCMPPS supports 20h encoding values, the comparison types echo
those of CMPPS on 4-bit boundaries. The following table shows the immediate operand value for
CMPPS and each of the VCMPPDS echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown in
with the directly supported comparison operations.

Instruction Reference CMPPS, VCMPPS 67

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

Immediate Operand Compare Operation Result If NaN Operand | QNaN Operand Causes
Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPPS with appropriate value of imm8 are supported.

Instruction Support

Mnemonic Implied Value of imm8
(V)CMPEQPS 00h, 08h, 10h, 18h
(V)CMPLTPS 01h, 09h, 11h, 19h
(V)CMPLEPS 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDPS 03h, 0Bh, 13h, 1Bh
(V)CMPNEQPS 04h, OCh, 14h, 1Ch
(V)CMPNLTPS 05h, ODh, 15h, 1Dh
(V)CMPNLEPS 06h, OEh, 16h, 1Eh
(V)CMPORDPS 07h, OFh, 17h, 1Fh

Form Subset Feature Flag
CMPPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VCMPPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

68 CMPPS, VCMPPS Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

CMPPS xmm1, xmm2/mem128, imm8 OF C2/rib Compares four pairs of values in xmml1 to
corresponding values in xmm2 or mem128.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCMPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.00 C2/rib

Related Instructions
(V)CMPPD, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected
None
MXCSR FIa_c_;s Affected
MM | FZ RC PM|UM|OM|ZM |[DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 " 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference CMPPS, VCMPPS 69

AMDAQ

AMDG64 Technology

Exceptions

26568—Rev. 3.22—May 2018

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

w|lnl>

nlm| > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK|2:1] I = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

N n | v

DO v v

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

X [X[>P| O [X0 X|X[X| X |X>>> OO

Unmasked SIMD floating-point exception while CR4.0OSXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

w

(%))

x

A source operand was an SNaN value.

Invalid operation, |E

w

(%))

>

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

70

CMPPS, VCMPPS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
CMPSD Compare
VCMPSD Scalar Double-Precision Floating-Point

Compares a double-precision floating-point value in the low-order 64 bits of the first source operand
with a double-precision floating-point value in the low-order 64 bits of the second source operand and
writes the result to the low-order 64 bits of the destination. When a comparison is TRUE, all 64 bits
of the destination element are set; when a comparison is FALSE, all 64 bits of the destination element
are cleared. Comparison type is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only when the comparison type is not
Equal, Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:
CMPSD

The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. The first source register is also the destination. Bits [127:64] of the destina-
tion are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected. Comparison type is specified by bits [2:0] of an immediate byte operand.

This CMPSD instruction must not be confused with the same-mnemonic CMPSD (compare strings
by doubleword) instruction in the general-purpose instruction set. Assemblers can distinguish the
instructions by the number and type of operands.

VCMPSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the destination
are copied from bits [127:64] of the first source. Bits [255:128] of the YMM register that corresponds
to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate byte oper-
and.

Immediate Operand Encoding

CMPSD uses bits [2:0] of the 8-bit immediate operand and VCMPSD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPSD supports 20h encoding values, the comparison types echo
those of CMPSD on 4-bit boundaries. The following table shows the immediate operand value for
CMPSD and each of the VCMPSD echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
with the directly supported comparison operations. When operands are swapped, the first source
XMM register is overwritten by the result.

Instruction Reference CMPSD, VCMPSD 71

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

Immediate Operand Compare Operation Result If NaN Operand | QNaN Operand Causes
Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPSD with appropriate value of imm8 are supported.

Instruction Support

Mnemonic Implied Value of imm8
(V)CMPEQSD 00h, 08h, 10h, 18h
(V)CMPLTSD 01h, 09h, 11h, 19h
(V)CMPLESD 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDSD 03h, 0Bh, 13h, 1Bh
(V)CMPNEQSD 04h, OCh, 14h, 1Ch
(V)CMPNLTSD 05h, ODh, 15h, 1Dh
(V)CMPNLESD 06h, OEh, 16h, 1Eh
(V)CMPORDSD 07h, OFh, 17h, 1Fh

Form Subset Feature Flag
CMPSD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCMPSD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

72 CMPSD, VCMPSD Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

CMPSD xmm1, xmm2/mem64, imm8 F20F C2/rib Compares double-precision floating-point
values in the low-order 64 bits of xmm1 with

corresponding values in xmm2 or mem64.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCMPSD xmm1, xmm2, xmm3/mem64, imm38 C4 RXB.00001 X.src.X.11 C2/rib

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected

None

MXCSR Flags Affected

MM | FZ RC PM|UM|OM|ZM |[DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M

17 | 15 14\13 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference CMPSD, VCMPSD 73

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SMD foating-pont #xF | s | s | x_ [nmasked SIME feating part excortion e e S MMEXCRT =
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

74

CMPSD, VCMPSD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
CMPSS Compare
VCMPSS Scalar Single-Precision Floating-Point

Compares a single-precision floating-point value in the low-order 32 bits of the first source operand
with a single-precision floating-point value in the low-order 32 bits of the second source operand and
writes the result to the low-order 32 bits of the destination. When a comparison is TRUE, all 32 bits
of the destination element are set; when a comparison is FALSE, all 32 bits of the destination element
are cleared. Comparison type is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:
CMPSS

The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the destina-
tion are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected. Comparison type is specified by bits [2:0] of an immediate byte operand.

VCMPSS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the destination
are copied from bits [127L32] of the first source. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate byte
operand.

Immediate Operand Encoding

CMPSS uses bits [2:0] of the 8-bit immediate operand and VCMPSS uses bits [4:0] of the 8-bit
immediate operand. Although VCMPSS supports 20h encoding values, the comparison types echo
those of CMPSS on 4-bit boundaries. The following table shows the immediate operand value for
CMPSS and each of the VCMPSS echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
below with the directly supported comparison operations. When operands are swapped, the first
source XMM register is overwritten by the result.

Instruction Reference CMPSS, VCMPSS 75

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

Immediate Operand Compare Operation Result If NaN Operand | QNaN Operand Causes
Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPSS with appropriate value of imm8 are supported.

Instruction Support

Mnemonic Implied Value of imm8
(V)CMPEQSS 00h, 08h, 10h, 18h
(V)CMPLTSS 01h, 09h, 11h, 19h
(V)CMPLESS 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDSS 03h, 0Bh, 13h, 1Bh
(V)CMPNEQSS 04h, OCh, 14h, 1Ch
(V)CMPNLTSS 05h, 0Dh, 15h, 1Dh
(V)CMPNLESS 06h, OEh, 16h, 1Eh
(V)CMPORDSS 07h, OFh, 17h, 1Fh

Form Subset Feature Flag
CMPSS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VCMPSS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

76 CMPSS, VCMPSS Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

CMPSS xmm1, xmm2/mem32, imm8 F30F C2/rib Compares single-precision floating-point
values in the low-order 32 bits of xmm1 with

corresponding values in xmm2 or mem32.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCMPSS xmm1, xmm2, xmm3/mem32, imm8 C4 RXB.00001 X.src.X.10 C2/rib

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected

None

MXCSR Flags Affected

MM | FZ RC PM | UM |OM|ZM |[DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M

17 | 15 14\13 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference CMPSS, VCMPSS 77

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SMD foating-pont #xF | s | s | x_ [nmasked SIME feating part excortion e e S MMEXCRT =
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

78

CMPSS, VCMPSS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
COMISD Compare Ordered
VCOMISD Scalar Double-Precision Floating-Point

Compares a double-precision floating-point value in the low-order 64 bits of the first operand with a
double-precision floating-point value in the low-order 64 bits of the second operand and sets
rFLAGS.ZF, PF, and CF to show the result of the comparison:

Comparison ZF PF CF
NaN input 1 1 1
operand 1 > operand 2 0 0 0
operand 1 < operand 2 0 0 1
operand 1 == operand 2 1 0 0

The result is unordered if one or both of the operand values is a NaN. The rFLAGS.OF, AF, and SF
bits are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.

There are legacy and extended forms of the instruction:
COMISD

The first source operand is an XMM register and the second source operand is an XMM register or a
64-bit memory location.

VCOMISD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location.

Instruction Support

Form Subset Feature Flag
COMISD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCOMISD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
COMISD xmm1, xmm2/mem64 66 OF 2F /r Compares double-precision floating-point values in xmm1
with corresponding values in xmm2 or mem64 and sets
rFLAGS.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCOMISD xmm1, xmm2 /mem64 C4 RXB.00001 X.src.X.01 2F Ir

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISS, (V)UCOMISD, (V)UCOMISS

Instruction Reference COMISD, VCOMISD 79

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018

rFLAGS Affected

ID | VIP | VIF | AC| VM | RF | NT IOPL |OF | DF | IF | TF | SF | ZF | AF | PF | CF
0 0 M 0 M M

21 20 19 | 18 | 17 | 16 | 14 | 13 |12 1 110 | 9 8 7 6 4 2 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M | M

17 | 15 14\13 12 | 11 [10 | 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Unaffected flags are blank.

80 COMISD, VCOMISD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

w|lnl>

nlm| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XFEATURE_ENABLED_MASK|2:1] I = 11b.

VEX.vvwv ! = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

nunn o nw

N 0w o n

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

(0)]

Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF

XXX X|X|X[X]| X [X[>>I> > 00

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE

w

w

>

A source operand was an SNaN value.

w

w

x

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

COMISD, VCOMISD 81

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
COMISS Compare
VCOMISS Ordered Scalar Single-Precision Floating-Point

Compares a double-precision floating-point value in the low-order 32 bits of the first operand with a
single-precision floating-point value in the low-order 32 bits of the second operand and sets
rFLAGS.ZF, PF, and CF to show the result of the comparison:

Comparison ZF PF CF
NaN input 1 1 1
operand 1 > operand 2 0 0 0
operand 1 < operand 2 0 0 1
operand 1 == operand 2 1 0 0

The result is unordered if one or both of the operand values is a NaN. The rFLAGS.OF, AF, and SF
bits are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.

There are legacy and extended forms of the instruction:
COMISS

The first source operand is an XMM register and the second source operand is an XMM register or a
32-bit memory location.

VCOMISS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location.

Instruction Support

Form Subset Feature Flag
COMISS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VCOMISS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
COMISS xmm1, xmm2/mem32 OF 2F /r Compares single-precision floating-point values in xmm1
with corresponding values in xmm2 or mem32 and sets
rFLAGS.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCOMISS xmm1, xmm2 /mem32 C4 RXB.00001 X.src.X.00 2F Ir

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)UCOMISD, (V)UCOMISS

82 COMISS, VCOMISS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

rFLAGS Affected

ID[VIP|VIF|AC|VM |[RF|[NT| IOPL |[OF [DF | IF | TF | SF | ZF | AF | PF | CF
0 O | M| 0| M| M

21| 20 | 19 | 18 | 17 | 16 | 14 13|12 1 10| 9 8 7 6 | 4 2 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MXCSR Flags Affected
MM | FZ | RC PM | UM |OM | zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED_MASK[2:1]! = 11b.
A | VEX.vwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SMD foating-pont #xF | s | s | x [nmasked SIME feating part excortion e i SXMMEXCPT =
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

COMISS, VCOMISS 83

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
CVTDQ2PD Convert Packed Doubleword Integers
VCVTDQ2PD to Packed Double-Precision Floating-Point

Converts packed 32-bit signed integer values to packed double-precision floating-point values and
writes the converted values to the destination.

There are legacy and extended forms of the instruction:
CVTDQ2PD

Converts two packed 32-bit signed integer values in the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the con-
verted values to an XMM register. Bits [255:128] of the YMM register that corresponds to the desti-
nation are not affected.

VCVTDQ2PD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts two packed 32-bit signed integer values in the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the con-
verted values to an XMM register. Bits [255:128] of the YMM register that corresponds to the desti-
nation are cleared.

YMM Encoding

Converts four packed 32-bit signed integer values in the low-order 128 bits of a YMM register or a
256-bit memory location to four packed double-precision floating-point values and writes the con-
verted values to a YMM register.

Instruction Support

Form Subset Feature Flag
CVTDQ2PD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTDQ2PD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTDQ2PD xmm1, xmm2/mem64 F3 0OF E6 /r Converts packed doubleword signed integers in xmm2
or mem64 to double-precision floating-point values in

xmml.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.10 E6 /r
VCVTDQ2PD ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 E6 /r

84 CVTDQ2PD, VCVTDQ2PD Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Related Instructions

(V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

rFLAGS Affected

None

MXCSR Flags Affected

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.vwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTDQ2PD, VCVTDQ2PD 85

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
CVTDQ2PS Convert Packed Doubleword Integers
VCVTDQ2PS to Packed Single-Precision Floating-Point

Converts packed 32-bit signed integer values to packed single-precision floating-point values and
writes the converted values to the destination. When the result is an inexact value, it is rounded as
specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTDQ2PS

Converts four packed 32-bit signed integer values in an XMM register or a 128-bit memory location
to four packed single-precision floating-point values and writes the converted values to an XMM reg-
ister. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VCVTDQ2PS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts four packed 32-bit signed integer values in an XMM register or a 128-bit memory location
to four packed single-precision floating-point values and writes the converted values to an XMM reg-
ister. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Converts eight packed 32-bit signed integer values in a YMM register or a 256-bit memory location
to eight packed single-precision floating-point values and writes the converted values to a YMM reg-
ister.

Instruction Support

Form Subset Feature Flag
CVTDQ2PS SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTDQ2PS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTDQ2PS xmm1, xmm2/mem128 OF 5B /r Converts packed doubleword integer values in xmm2 or
mem128 to packed single-precision floating-point
values in xmm2.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTDQ2PS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 5B /r
VCVTDQ2PS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 5B /r

Related Instructions
(V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

86 CVTDQZ2PS, VCVTDQ2PS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M

17 | 15 14\13 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

w|lnl>

0nln| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK]2:1] ! = 11b

VEX.vvvv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

Nnnnn | w

Nnnnl | w

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X2 O | X[X|X[X]| X [X|Z>>> 00

Instruction execution caused a page fault.

SIMD floating-point, #XF

X

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Precision, PE

S | S | X [Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

CVTDQ2PS, VCVTDQ2PS 87

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

CVTPD2DQ Convert Packed Double-Precision Floating-Point
VCVTPD2DQ to Packed Doubleword Integer

Converts packed double-precision floating-point values to packed signed doubleword integers and
writes the converted values to the destination.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value is a NaN, infinity, or the result of the conversion is larger than the maximum signed dou-
bleword (—23 To +231 - 1), the instruction returns the 32-bit indefinite integer value (8000 _0000h)
when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTPD2DQ

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VCVTPD2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two double-
word elements of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four signed doubleword values and writes the converted values to an XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTPD2DQ SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTPD2DQ AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTPD2DQ xmm1, xmm2/mem128 F2 OF E6 /r Converts two packed double-precision floating-point
values in xmm2 or mem128 to packed doubleword
integers in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTPD2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.11 EG /r
VCVTPD2DQ xmm1, ymm2/mem256 C4 RXB.00001 XA111.1.11 EG /r

88 CVTPD2DQ, VCVTPD2DQ Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Related Instructions

(V)CVTDQ2PD, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

rFLAGS Affected
None
MXCSR Flag_js Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S CRO.EM = 1.
S S CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
XFEATURE_ENABLED_MASK][2:1] ! = 11b

VEX.vwwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

CRO.TS =1.

Memory address exceeding stack segment limit or non-canonical.
Memory address exceeding data segment limit or non-canonical.
Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1

Memory operand not 16-byte aligned when alignment checking enabled.
Instruction execution caused a page fault.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

A source operand was an SNaN value.

Undefined operation.

Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Invalid opcode, #UD

Device not available, #NM
Stack, #SS

NDnnn | lw
NDnn | w

General protection, #GP

Alignment check, #AC

Page fault, #PF
SIMD floating-point, #XF S

X | X2 O | X O X|X|X| X | X|Z>>>0W0

w
w
X

Invalid operation, IE

(@]
(%))
x

Instruction Reference CVTPD2DQ, VCVTPD2DQ 89

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

CVTPD2PS Convert Packed Double-Precision Floating-Point
VCVTPD2PS to Packed Single-Precision Floating-Point

Converts packed double-precision floating-point values to packed single-precision floating-point val-
ues and writes the converted values to the low-order doubleword elements of the destination. When
the result is an inexact value, it is rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTPD2PS

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits [127:64] of the destination are cleared. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VCVTPD2PS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits [127:64] of the destination are cleared. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

YMM Encoding

Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four packed single-precision floating-point values and writes the converted values to a
YMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTPD2PS SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTPD2PS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTPD2PS xmm1, xmm2/mem128 66 OF 5A /r Converts packed double-precision floating-point
values in xmm2 or mem128 to packed single-
precision floating-point values in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTPD2PS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 5A Ir
VCVTPD2PS xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5A Ir

90 CVTPD2PS, VCVTPD2PS Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Related Instructions
(V)CVTPS2PD, (V)CVTSD2SS, (V)CVTSS2SD

rFLAGS Affected
None
MXCSR Flag_js Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

-
o

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

A source operand was an SNaN value.

Undefined operation.

A source operand was a denormal value.

Rounded result too large to fit into the format of the destination operand.
Rounded result too small to fit into the format of the destination operand.
A result could not be represented exactly in the destination format.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED MASK[2:1]!=11b
A | VEX.vwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X

SIMD floating-point, #XF S

(0]

Invalid operation, IE

Denormalized operand, DE
Overflow, OE

Underflow, UE

Precision, PE

X — AVX and SSE exception
A — AVX exception
S — SSE exception

DO nn
DO nn
X[X[X X[X[X

Instruction Reference CVTPD2PS, VCVTPD2PS 91

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

CVTPS2DQ Convert Packed Single-Precision Floating-Point
VCVTPS2DQ to Packed Doubleword Integers

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value is a NaN, infinity, or the result of the conversion is larger than the maximum signed dou-
bleword (—23 To +231 - 1), the instruction returns the 32-bit indefinite integer value (8000 _0000h)
when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTPS2DQ

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VCVTPS2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Converts eight packed single-precision floating-point values in a YMM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted values to a YMM
register.

Instruction Support

Form Subset Feature Flag
CVTPS2DQ SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTPS2DQ AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTPS2DQ xmm1, xmm2/mem128 66 OF 5B /r Converts four packed single-precision floating-point
values in xmm2 or mem128 to four packed
doubleword integers in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 5B /r
VCVTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5B /r

92 CVTPS2DQ, VCVTPS2DQ Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Related Instructions

AMDG64 Technology

(V)CVTDQ2PS, (V)CVTSI2SS, (V)CVTSS2SL, (V)CVTTPS2DQ, (V)CVTTSS2SI

rFLAGS Affected

None

MXCSR Flags Affected

MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M

17 | 15 14\13 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED MASK[2:1]!=11b
A | VEX.vwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foatngrpoi, ¢ | 5 | s | x | Snmasked SIUD Rostnazpoint excepton whle CRAOSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

CVTPS2DQ, VCVTPS2DQ 93

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

CVTPS2PD Convert Packed Single-Precision Floating-Point
VCVTPS2PD to Packed Double-Precision Floating-Point

Converts packed single-precision floating-point values to packed double-precision floating-point val-
ues and writes the converted values to the destination.

There are legacy and extended forms of the instruction:
CVTPS2PD

Converts two packed single-precision floating-point values in the two low order doubleword ele-
ments of an XMM register or a 64-bit memory location to two double-precision floating-point values
and writes the converted values to an XMM register. Bits [255:128] of the YMM register that corre-
sponds to the destination are not affected.

VCVTPS2PD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts two packed single-precision floating-point values in the two low order doubleword ele-
ments of an XMM register or a 64-bit memory location to two double-precision floating-point values
and writes the converted values to an XMM register. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.

YMM Encoding

Converts four packed single-precision floating-point values in a YMM register or a 128-bit memory
location to four double-precision floating-point values and writes the converted values to a YMM
register.

Instruction Support

Form Subset Feature Flag
CVTPS2PD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTPS2PD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTPS2PD xmm1, xmm2/mem64 OF 5A/r Converts packed single-precision floating-point values
in xmm2 or mem64 to packed double-precision floating-
point values in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTPS2PD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.00 5A Ir
VCVTPS2PD ymm1, ymm2/mem128 C4 RXB.00001 X.1111.1.00 5A Ir

Related Instructions
(V)CVTPD2PS, (V)CVTSD2SS, (V)CVTSS2SD

94 CVTPS2PD, VCVTPS2PD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

rFLAGS Affected
None
MXCSR Flags Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M
17 | 15 14\13 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED MASK[2:1]!= 11b.
A | VEX.vwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, e | 5 | s | x | Snmasked SIMD fostnazpornt exceptor while R OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

CVTPS2PD, VCVTPS2PD 95

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
CVTSD2SI Convert Scalar Double-Precision Floating-Point
VCVTSD2SI to Signed Doubleword or Quadword Integer

Converts a scalar double-precision floating-point value to a 32-bit or 64-bit signed integer value and
writes the converted value to a general-purpose register.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value i isa NaN infinity, or the result of the conversmn is larger than the maximum signed dou-
bleword (— 23140 4231 — 1) or quadword value (- 2630 +203 — 1), the instruction returns the indefinite
integer value (8000 _0000h for 32-bit integers, 8000 _0000_0000 0000h for 64-bit integers) when the
invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CvTSsD2sI

The legacy form has two encodings:

* When REX.W =0, converts a scalar double-precision floating-point value in the low-order 64 bits
of'an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

* When REX.W =1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTSD2SI

The extended form of the instruction has two 128-bit encodings:

* When VEX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

e When VEX.W =1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

Instruction Support

Form Subset Feature Flag
CVTSD2SI SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTSD2SI AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

96 CVTSD2SI, VCVTSD2SI Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

CVTSD2SI reg32, xmml/mem64 F2 (WO0) OF 2D /r Converts a packed double-precision floating-point value
in xmm1 or mem64 to a doubleword integer in reg32.

CVTSD2SI reg64, xmml/mem64 F2 (W1)OF 2D /r Converts a packed double-precision floating-point value
in xmm1 or mem64 to a quadword integer in reg64.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2D /Ir
VCVTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2D /Ir

Related Instructions

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

rFLAGS Affected

None

MXCSR Flag_;s Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference CVTSD2SI, VCVTSD2sSI 97

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A |XFEATURE_ENABLED MASK[2:1]! = 11b.
A | VEX.vwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, ¢ | 5 | s | x | Snmasked SIUD Rostnazpoint exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

98

CVTSD2SI, VCVTSD2SI

Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

CVTSD2SS Convert Scalar Double-Precision Floating-Point
VCVTSD2SS to Scalar Single-Precision Floating-Point

Converts a scalar double-precision floating-point value to a scalar single-precision floating-point
value and writes the converted value to the low-order 32 bits of the destination. When the result is an
inexact value, it is rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTSD2SS

Converts a scalar double-precision floating-point value in the low-order 64 bits of the second source
XMM register or a 64-bit memory location to a scalar single-precision floating-point value and writes
the converted value to the low-order 32 bits of a destination XMM register. Bits [127:32] of the desti-
nation are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VCVTSD2SS

The extended form of the instruction has a 128-bit encoding only.

Converts a scalar double-precision floating-point value in the low-order 64 bits of a source XMM
register or a 64-bit memory location to a scalar single-precision floating-point value and writes the
converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the destina-
tion are copied from the first source XMM register. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTSD2SS SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTSD2SS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTSD2SS xmm1, xmm2/mem64 F2 OF 5A /r Converts a scalar double-precision floating-point
value in xmm2 or mem64 to a scalar single-precision
floating-point value in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSD2SS xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5A Ir

Related Instructions
(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSS2SD

rFLAGS Affected

None

Instruction Reference CVTSD2SS, VCVTSD2SS 99

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M [M| M M | M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SMD foatngrpoi, e | 5 | s | x | Somasked SIMD fostinazpont oxcepton while CREOSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
' S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception
100 CVTSD2SS, VCVTSD2SS Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

CVTSI2SD Convert Signed Doubleword or Quadword Integer
VCVTSI2SD to Scalar Double-Precision Floating-Point

Converts a signed integer value to a double-precision floating-point value and writes the converted
value to a destination register. When the result of the conversion is an inexact value, the value is
rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTSI2SD

The legacy form as two encodings:

e When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

e When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a 64-bit double-precision floating-point value and
writes the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the
destination XMM register and bits [255:128] of the corresponding YMM register are not affected.

VCVTSI2SD

The extended form of the instruction has two 128-bit encodings:

e When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the
first source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

* When VEX.W =1, converts a signed quadword integer value from a 64-bit source general-purpose
register or a 64-bit memory location to a double-precision floating-point value and writes the
converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the first
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTSI2SD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTSI2SD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference CVTSI2SD, VCVTSI2SD 101

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic Opcode Description

CVTSI2SD xmm1, reg32/mem32 F2 (W0) OF 2A /r Converts a doubleword integer in reg32 or mem32 to a
double-precision floating-point value in xmm1.

CVTSI2SD xmm1, reg64/mem64 F2 (W1) OF 2A /r Converts a quadword integer in reg64 or mem64 to a
double-precision floating-point value in xmmZ1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSI2SD xmm1, xmm2, reg32/mem32 c4 RXB.00001 0.src.X. 11 2A Ir
VCVTSI2SD xmm1, xmm2, reg64/mem64 C4 RXB.00001 1.src.X.11 2A I

Related Instructions

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTTPD2DQ,
(V)CVTTSD2SI

rFLAGS Affected
None
MXCSR Flags Affected
MM | FZ RC PM|UM|OM|ZM |[DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

102 CVTSI2SD, VCVTSI2SD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

w|lnl>

nlm| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK|2:1] I = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

nnun o v

nunun o n

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Page fault, #PF

w

Instruction execution caused a page fault.

Alignment check, #AC

(0)]

XIX|X| X[X[X]| X [X|>|> > 00

Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF

X

Unmasked SIMD floating-point exception while CR4.0OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Precision, PE

S | S | X |Aresu|tcou|d not be represented exactly in the destination format.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

CVTSI2SD, VCVTSI2SD 103

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

CVTSI2SS Convert Signed Doubleword or Quadword Integer
VCVTSI2SS to Scalar Single-Precision Floating-Point

Converts a signed integer value to a single-precision floating-point value and writes the converted
value to an XMM register. When the result of the conversion is an inexact value, the value is rounded
as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTSI2SS

The legacy form has two encodings:

e When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of an XMM register. Bits [127:32] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

e When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of an XMM register. Bits [127:32] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

VCVTSI2SS

The extended form of the instruction has two 128-bit encodings:

e When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the
first source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

* When VEX.W =1, converts a signed quadword integer value from a 64-bit source general-purpose
register or a 64-bit memory location to a single-precision floating-point value and writes the
converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the first
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTSI2SS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VCVTSI2SS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

104 CVTSIZ2SS, VCVTSI2SS Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

CVTSI2SS xmm1, reg32/mem32 F3 (WO0) OF 2A /r Converts a doubleword integer in reg32 or mem32 to a
single-precision floating-point value in xmm1.

CVTSI2SS xmml, reg64/mem64 F3 (W1) OF 2A /r Converts a quadword integer in reg64 or mem64 to a
single-precision floating-point value in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSI2SS xmm1, xmm2, reg32/mem32 c4 RXB.00001 0.src.X.10 2A Ir
VCVTSI2SS xmm1, xmm2, reg64/mem64 C4 RXB.00001 1.src.X.10 2A I

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

rFLAGS Affected
None
MXCSR Flag_;s Affected
MM | FZ RC PM|UM|OM|ZM |[DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference CVTSIZ2SS, VCVTSI2SS 105

AMDAQ

AMDG64 Technology

Exceptions

26568—Rev. 3.22—May 2018

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

wnl nl>

nlm| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

nunn o n

nunn 0w

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Page fault, #PF

w

Instruction execution caused a page fault.

Alignment check, #AC

w

X|X|X|X| X[X| X [X|>Z|> > 00

Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF

X

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Precision, PE

S | S | X |Aresu|tcou|d not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

106

CVTSIZSS, VCVTSIZ2SS

Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
CVTSS2SD Convert Scalar Single-Precision Floating-Point
VCVTSS2SD to Scalar Double-Precision Floating-Point

Converts a scalar single-precision floating-point value to a scalar double-precision floating-point
value and writes the converted value to the low-order 64 bits of the destination.

There are legacy and extended forms of the instruction:
CVTSS2SD

Converts a scalar single-precision floating-point value in the low-order 32 bits of a source XMM reg-
ister or a 32-bit memory location to a scalar double-precision floating-point value and writes the con-
verted value to the low-order 64 bits of a destination XMM register. Bits [127:64] of the destination
and bits [255:128] of the corresponding YMM register are not affected.

VCVTSS2SD

The extended form of the instruction has a 128-bit encoding only.

Converts a scalar single-precision floating-point value in the low-order 32 bits of the second source
XMM register or 32-bit memory location to a scalar double-precision floating-point value and writes
the converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the des-
tination are copied from the first source XMM register. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTSS2SD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)

VCVTSS2SD | AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTSS2SD xmm1, xmm2/mem32 F3 OF 5A/r Converts a scalar single-precision floating-point value
in xmm2 or mem32 to a scalar double-precision
floating-point value in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSS2SD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.10 5A Ir

Related Instructions
(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSD2SS

Instruction Reference CVTSS2SD, VCVTSS2SD 107

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SMD foatngrpoi, e | 5 | s | x | Somasked SIMD fostinazpont oxcepton while CREOSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
' S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

108

CVTSS2SD, VCVTSS2SD

Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
CVTSS2SI Convert Scalar Single-Precision Floating-Point
VCVTSS2SI to Signed Doubleword or Quadword Integer

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a general-purpose register.

When the result of the conversion is an inexact value, the value is rounded as specified by
MXCSR.RC. When the floating-point Value isa NaN infinity, or the result of the conversmn is larger
than the maximum signed doubleword (- 2310 +231 — 1) or quadword value (— 263 t0 +293 — 1), the
indefinite integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers)
is returned when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTSS2sI

The legacy form has two encodings:

e When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

* When REX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

VCVTSS2SI

The extended form of the instruction has two 128-bit encodings:

e When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

* When VEX.W =1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

Instruction Support

Form Subset Feature Flag
CVTSS28I SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VCVTSS2SI AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference CVTSS2SI, VCVTSS2SI| 109

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic Opcode Description

CVTSS2SI reg32, xmm1l/mem32 F3 (WO0) OF 2D /r Converts a single-precision floating-point value in
xmm2l or mem32 to a 32-bit integer value in reg32

CVTSS2SI regb4, xmml/mem64 F3 (W1) OF 2D /r Converts a single-precision floating-point value in
xmm1l or mem64 to a 64-bit integer value in reg64

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSS2SI reg32, xmml/mem32 C4 RXB.00001 0.1111.X.10 2D Ir
VCVTSS2SI reg64, xmml/mem64 C4 RXB.00001 1.1111.X.10 2D /Ir

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTTPS2DQ, (V)CVTTSS2SI

MXCSR Flag_;s Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

110 CVTSS2SI, VCVTSS2S| Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A |XFEATURE_ENABLED MASK[2:1]! = 11b.
A | VEX.vwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, ¢ | 5 | s | x | Snmasked SIUD Rostnazpoint exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception
Instruction Reference CVTSS2SI, VCVTSS2SI 111

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

CVTTPD2DQ Convert Packed Double-Precision Floating-Point
VCVTTPD2DQ to Packed Doubleword Integer, Truncated

Converts packed double-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result is an inexact value, it is truncated (rounded toward zero). When the floating-point
value is a NaN, infinity, or the result of the conversion is larger than the maximum signed doubleword
(—231 to +231 — 1), the instruction returns the 32-bit indefinite integer value (8000 _0000h) when the
invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTPD2DQ

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are not aftected.

VCVTTPD2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two double-
word elements of the destination XMM register. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.

YMM Encoding

Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four signed doubleword integer values and writes the converted values to an XMM regis-
ter. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
CVTTPD2DQ SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTTPD2DQ AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

112 CVTTPD2DQ, VCVTTPD2DQ Instruction Reference

A

MDA

26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic

CVTTPD2DQ xmm1, xmm2/mem128

Mnemonic

VCVTTPD2DQ xmm1, xmm2/mem128
VCVTTPD2DQ xmm1, ymm2/mem256

Related Instructions

Opcode
66 OF E6 /r

AMDG64 Technology

Description

Converts two packed double-precision floating-point
values in xmm2 or mem128 to packed doubleword
integers in xmmZ1. Truncates inexact result.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.01 E6 /r
C4 RXB.00001 X.1111.1.01 E6 /r

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTSD2SI

MXCSR Flags Affected
MM | FZ | RC PM | UM |OM | zZmMm | DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Instruction Reference CVTTPD2DQ, VCVTTPD2DQ 113

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED MASK[2:1]! = 11b
A | VEX.vwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SD foating-pont #xF | s | s | x_ [nmasked SIME feating part excontion e i SXVMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

114

CVTTPD2DQ, VCVTTPD2DQ

Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

CVTTPS2DQ Convert Packed Single-Precision Floating-Point
VCVTTPS2DQ to Packed Doubleword Integers, Truncated

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the max-
imum signed doubleword (=231 to +231 - 1), the instruction returns the 32-bit indefinite integer value
(8000 _0000h) when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTPS2DQ

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. The high-order 128-bits of the corresponding YMM register are not affected.

VCVTTPS2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Converts eight packed single-precision floating-point values in a YMM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted values to a YMM
register.

Instruction Support

Form Subset Feature Flag
CVTTPS2DQ SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTTPS2DQ AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

CVTTPS2DQ xmm1, xmm2/mem128 F3 OF 5B /r Converts four packed single-precision floating-point
values in xmm2 or mem128 to four packed
doubleword integers in xmm1. Truncates inexact

result.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 5B /r
VCVTTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 5B /r

Instruction Reference CVTTPS2DQ, VCVTTPS2DQ 115

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTSS2SI

MXCSR Flags Affected

MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S CRO.EM =1.
S S CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
XFEATURE_ENABLED_MASKJ[2:1]! = 11b

VEX.vvwv ! = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

CRO.TS =1.

Memory address exceeding stack segment limit or non-canonical.
Memory address exceeding data segment limit or non-canonical.
Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.
Instruction execution caused a page fault.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

A source operand was an SNaN value.

Undefined operation.

Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Invalid opcode, #UD

Device not available, #NM
Stack, #SS

Nnnnl | "
Nnnn | "

General protection, #GP

Alignment check, #AC

Page fault, #PF
SIMD floating-point, #XF S

X | X[P| O | X X|X|X| X | X|Z>>>00N

w
w
X

Invalid operation, IE

w
w
X

116 CVTTPS2DQ, VCVTTPS2DQ Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

CVTTSD2SI Convert Scalar Double-Precision Floating-Point
VCVTTSD2SI to Signed Double- or Quadword Integer, Truncated

Converts a scalar double-precision floating-point value to a signed integer value and writes the con-
verted value to a general-purpose register.

When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point Value isa NaN infinity, or the result of the conversmn is larger than the max-
imum signed doubleword (— 23t +231 — 1) or quadword value (- 26310 +203 — 1), the instruction
returns the indefinite integer value (8000 0000h for 32-bit integers, 8000 0000 0000 0000h for 64-
bit integers) when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTSD2SI

The legacy form of the instruction has two encodings:

* When REX.W =0, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

* When REX.W =1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTTSD2SI

The extended form of the instruction has two 128-bit encodings.

* When VEX.W =0, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

* When VEX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

Instruction Support

Form Subset Feature Flag
CVTTSD2SI SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VCVTTSD2SI AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference CVTTSD2SI, VCVTTSD2SI 117

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic Opcode Description

CVTTSD2SI reg32, xmml/mem64 F2 (WO0) OF 2C /r Converts a packed double-precision floating-point
value in xmm1 or mem64 to a doubleword integer in
reg32. Truncates inexact result.

CVTTSD2SI reg64, xmml/mem64 F2 (W1)OF 2C /r Converts a packed double-precision floating-point
value in xmm1 or mem64 to a quadword integer in
reg64.Truncates inexact result.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2C/r
VCVTTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2C/r

Related Instructions

(VYCVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD,
(VYCVTTPD2DQ

MXCSR Flag_;s Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

118 CVTTSD2SI, VCVTTSD2SI Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A |XFEATURE_ENABLED MASK[2:1]! = 11b.
A | VEX.vwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, ¢ | 5 | s | x | Snmasked SIUD Rostnazpoint exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

CVTTSD2SI, VCVTTSD2SI 119

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

CVTTSS2SI Convert Scalar Single-Precision Floating-Point
VCVTTSS2SI to Signed Double or Quadword Integer, Truncated

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a general-purpose register.

When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point Value isa NaN infinity, or the result of the converswn is larger than the max-
imum signed doubleword (— 2314 4230 — 1) or quadword value (- 2630 +293 — 1), the indefinite inte-
ger value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers) is returned
when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTSS2SI

The legacy form of the instruction has two encodings:

e When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

* When REX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

VCVTTSS2SI

The extended form of the instruction has two 128-bit encodings:

e When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

* When VEX.W =1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

Instruction Support

Form Subset Feature Flag
CVTTSS2SI SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VCVTTSS2SI AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

120 CVTTSS2SI, VCVTTSS2SI Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

CVTTSS2SI reg32, xmml/mem32 F3 (WO0) OF 2C /r Converts a single-precision floating-point value in
xmm2l or mem32 to a 32-bit integer value in reg32.
Truncates inexact result.

CVTTSS2SI regb4, xmml/mem64 F3 (W1) OF 2C /r Converts a single-precision floating-point value in
xmml or mem64 to a 64-bit integer value in reg64.
Truncates inexact result.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTTSS2SI reg32, xmm1l/mem32 C4 RXB.00001 0.1111.X.10 2C /Ir
VCVTTSS2SI reg64, xmml/mem64 C4 RXB.00001 1.1111.X.10 2C /Ir

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ

MXCSR Flag_;s Affected
MM | FZ RC PM|{UM | OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference CVTTSS2SI, VCVTTSS2SI 121

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A |XFEATURE_ENABLED MASK[2:1]! = 11b.
A | VEX.vwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, ¢ | 5 | s | x | Snmasked SIUD Rostnazpoint exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

122

CVTTSS2SI, VCVTTSS2SI

Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
DIVPD Divide
VDIVPD Packed Double-Precision Floating-Point

Divides each of the packed double-precision floating-point values of the first source operand by the
corresponding packed double-precision floating-point values of the second source operand and writes
the quotients to the destination.

There are legacy and extended forms of the instruction:
DIVPD

Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDIVPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a 128-bit memory location and writes the two results a destination XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

YMM Encoding

Divides four packed double-precision floating-point values in the first source YMM register by the
corresponding packed double-precision floating-point values in either a second source YMM register
or a 256-bit memory location and writes the two results a destination YMM register.

Instruction Support

Form Subset Feature Flag
DIVPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VDIVPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

DIVPD xmm1, xmm2/mem128 66 OF 5E /r Divides packed double-precision floating-point values in
xmm1l by the packed double-precision floating-point
values in xmm2 or mem128. Writes quotients to xmmZ1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VDIVPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5E Ir
VDIVPD ymm1, ymm2, ymm3/mem256 c4 RXB.00001 X.src.1.01 5E /r

Instruction Reference DIVPD, VDIVPD 123

AMDAQ

AMDG64 Technology

Related Instructions

(V)DIVPS, (V)DIVSD, (V)DIVSS

26568—Rev. 3.22—May 2018

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M| M| MI[M][M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatng-poim, x| 5 | s | x | Snmasked SIUD Rostnazpoint exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

124

DIVPD, VDIVPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
DIVPS Divide
VDIVPS Packed Single-Precision Floating-Point

Divides each of the packed single-precision floating-point values of the first source operand by the
corresponding packed single-precision floating-point values of the second source operand and writes
the quotients to the destination.

There are legacy and extended forms of the instruction:
DIVPS

Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDIVPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a 128-bit memory location and writes two results to a third destination XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Divides eight packed single-precision floating-point values in the first source YMM register by the
corresponding packed single-precision floating-point values in either a second source YMM register
or a 256-bit memory location and writes the two results a destination YMM register.

Instruction Support

Form Subset Feature Flag
DIVPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VDIVPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

DIVPS xmm1, xmm2/mem128 OF 5E /r Divides packed single-precision floating-point values in
xmml1l by the corresponding values in xmm2 or mem128.
Writes quotients to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VDIVPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5E Ir
VDIVPS ymm1, ynmm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5E /r

Instruction Reference DIVPS, VDIVPS 125

AMDAQ

AMDG64 Technology

Related Instructions

(V)DIVPD, (V)DIVSD, (V)DIVSS

26568—Rev. 3.22—May 2018

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M| M| MI[M][M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatng-poim, x| 5 | s | x | Snmasked SIUD Rostnazpoint exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

126

DIVPS, VDIVPS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
DIVSD Divide
VDIVSD Scalar Double-Precision Floating-Point

Divides the double-precision floating-point value in the low-order quadword of the first source oper-
and by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the quotient to the low-order quadword of the destination.

There are legacy and extended forms of the instruction:

DIVSD

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The first source register is also the destination register. Bits [127:64]
of the destination are not affected. Bits [255:128] of the YMM register that corresponds to the desti-
nation are not affected.

VDIVSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. Bits [127:64] of the first source operand are copied to bits [127:64] of
the destination. The destination is a third XMM register. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
DIVSD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VDIVSD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

DIVSD xmm1, xmm2/mem64 F2 OF 5E /r Divides the double-precision floating-point value in the low-
order 64 bits of xmm1by the corresponding value in xmm?2
or mem64. Writes quotient to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VDIVSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5E Ir

Related Instructions
(V)DIVPD, (V)DIVPS, (V)DIVSS

Instruction Reference DIVSD, VDIVSD 127

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M| M| M[MI[M][M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, e | 5 | s | x | Snmasked SIMD fostinazpornt exceptor while R OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

128

DIVSD, VDIVSD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
DIVSS Divide Scalar Single-Precision Floating-Point
VDIVSS

Divides the single-precision floating-point value in the low-order doubleword of the first source oper-
and by the single-precision floating-point value in the low-order doubleword of the second source
operand and writes the quotient to the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:

DIVSS

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination register. Bits [127:32]
of the destination are not affected. Bits [255:128] of the YMM register that corresponds to the desti-
nation are not affected.

VDIVSS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is a third XMM register. Bits [127:32] of the first
source operand are copied to bits [127:32] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
DIVSS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VDIVSS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

DIVSS xmm1, xmm2/mem32 F3 OF 5E /r Divides a single-precision floating-point value in the low-
order doubleword of xmm1 by a corresponding value in
xmm2 or mem32. Writes the quotient to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VDIVSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5E Ir

Related Instructions
(V)DIVPD, (V)DIVPS, (V)DIVSD

Instruction Reference DIVSS, VDIVSS 129

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M| M| M[MI[M][M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, e | 5 | s | x | Snmasked SIMD fostinazpornt exceptor while R OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

130

DIVSS, VDIVSS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
DPPD Dot Product
VDPPD Packed Double-Precision Floating-Point

Computes the dot-product of the input operands. An immediate operand specifies both the input val-
ues and the destination locations to which the products are written.

Selectively multiplies packed double-precision values in a source operand by the corresponding val-
ues in a second source operand, writes the results to a temporary location, adds the results, writes the
sum to a second temporary location and selectively writes the sum to a destination.

Mask bits [5:4] of an 8-bit immediate operand perform multiplicative selection. Bit 5 selects bits
[127:64] of the source operands; bit 4 selects bits [63:0] of the source operands. When a mask bit=1,
the corresponding packed double-precision floating point values are multiplied and the product is
written to the corresponding position of a 128-bit temporary location. When a mask bit = 0, the corre-
sponding position of the temporary location is cleared.

After the two 64-bit values in the first temporary location are added and written to the 64-bit second
temporary location, mask bits [1:0] of the same 8-bit immediate operand perform write selection. Bit
1 selects bits [127:64] of the destination; bit 0 selects bits [63:0] of the destination. When a mask bit =
1, the 64-bit value of the second temporary location is written to the corresponding position of the
destination. When a mask bit = 0, the corresponding position of the destination is cleared.

When the operation produces a NaN, its value is determined as follows.

Source Operands (in either order) NaN Result!
QNaN Any non-NaN floating-point value Value of QNaN
(or single-operand instruction)
SNaN Any non-NaN floating-point value Value of SNaN,
(or single-operand instruction) converted to a QNaN?
QNaN QNaN First operand
QNaN SNaN First operand
(converted to QNaN if SNaN
SNaN SNaN First operand
converted to a QNaN?
Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when both
multiplications produce NaNs, the one that corresponds to bits [64:0] is written to all indicated fields
of the destination, regardless of how those NaNs were generated from the sources. When the high-
order multiplication produces NaNs and the low-order multiplication produces infinities of opposite
signs, the real indefinite QNaN (produced as the sum of the infinities) is written to the destination.

NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results.

Instruction Reference DPPD, VDPPD 131

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

There are legacy and extended forms of the instruction:
DPPD

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDPPD

The extended form of the instruction has a single 128-bit encoding.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
DPPD SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VDPPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

DPPD xmm1, xmm2/mem128, imm8 66 OF 3A 41 /rib Selectively multiplies packed double-precision
floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VDPPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 41 /rib

Related Instructions

(V)DPPS

MXCSR Flag_;s Affected

MM | FZ RC PM|UM|OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M M

17 | 15 | 14 ‘ 13 | 12 | 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

132 DPPD, VDPPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

wl nl >

0nlwm| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XFEATURE_ENABLED_MASK]2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

DOnn v

DOnn | nw

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

X | X[P] O | X OX|X|X| X | X|Z>>>0W0V

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE

A source operand was an SNaN value.

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

Overflow, OE

Rounded result too large to fit into the format of the destination operand.

Underflow, UE

Rounded result too small to fit into the format of the destination operand.

Precision, PE

DO nn

DO nnw

X[X[X X[X[X

A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

DPPD, VDPPD 133

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
DPPS Dot Product
VDPPS Packed Single-Precision Floating-Point

Computes the dot-product of the input operands. An immediate operand specifies both the input val-
ues and the destination locations to which the products are written.

Selectively multiplies packed single-precision values in a source operand by corresponding values in
a second source operand, writes results to a temporary location, adds pairs of results, writes the sums
to additional temporary locations, and selectively writes a cumulative sum to a destination.

Mask bits [7:4] of an 8-bit immediate operand perform multiplicative selection. Each bit selects a 32-
bit segment of the source operands; bit 7 selects bits [127:96], bit 6 selects bits [95:64], bit 5 selects
bits [63:32], and bit 4 selects bits [31:0]. When a mask bit = 1, the corresponding packed single-preci-
sion floating point values are multiplied and the product is written to the corresponding position of a
128-bit temporary location. When a mask bit = 0, the corresponding position of the temporary loca-
tion is cleared.

After multiplication, three pairs of 32-bit values are added and written to temporary locations.

Bits [63:32] and [31:0] of temporary location 1 are added and written to 32-bit temporary location 2;
bits [127:96] and [95:64] of temporary location 1 are added and written to 32-bit temporary location
3; then the contents of temporary locations 2 and 3 are added and written to 32-bit temporary location
4.

After addition, mask bits [3:0] of the same 8-bit immediate operand perform write selection. Each bit
selects a 32-bit segment of the source operands; bit 3 selects bits [127:96], bit 2 selects bits [95:64],
bit 1 selects bits [63:32], and bit 0 selects bits [31:0] of the destination. When a mask bit = 1, the 64-
bit value of the fourth temporary location is written to the corresponding position of the destination.
When a mask bit = 0, the corresponding position of the destination is cleared.

For the 256-bit extended encoding, this process is performed on the upper and lower 128 bits of the
affected YMM registers.

When the operation produces a NaN, its value is determined as follows.

Source Operands (in either order) NaN Result!
QNaN Any non-NaN floating-point value Value of QNaN
(or single-operand instruction)
SNaN Any non-NaN floating-point value Value of SNaN,
(or single-operand instruction) converted to a QNaN?
QNaN QNaN First operand
QNaN SNaN First operand
(converted to QNaN if SNaN
SNaN SNaN First operand
converted to a QNaN?

Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when all four
multiplications produce NaNs, the one that corresponds to bits [31:0] is written to all indicated fields

134 DPPS, VDPPS Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

of the destination, regardless of how those NaNs were generated from the sources. When the two
highest-order multiplication produce NaNs and the two lowest-low-order multiplications produce
infinities of opposite signs, the real indefinite QNaN (produced as the sum of the infinities) is written
to the destination.

NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results.

There are legacy and extended forms of the instruction:
DPPS

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDPPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

Form Subset Feature Flag
DPPS SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VDPPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

DPPS xmm1, xmm2/mem128, imm8 66 OF 3A 40 /rib Selectively multiplies packed single-precision
floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VDPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 40 /r ib
VDPPS ymm1, ymmz2, ymm3/mem256, imms8 C4 RXB.00011 X.src.1.01 40 /rib

Related Instructions
(V)DPPD

Instruction Reference DPPS, VDPPS 135

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018

MXCSR Flags Affected

MM | FZ RC PM | UM | OM | ZM DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M M

17 | 15 | 14 ‘ 13 | 12 | 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, x| 5 | ' | x | Snmasked SIUD fostnazpoint exceptor whle CRAOSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

136 DPPS, VDPPS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
EXTRACTPS Extract
VEXTRACTPS Packed Single-Precision Floating-Point

Copies one of four packed single-precision floating-point values from a source XMM register to a
general purpose register or a 32-bit memory location.

Bits [1:0] of an immediate byte operand specify the location of the 32-bit value that is copied. 00b
corresponds to the low word of the source register and 11b corresponds to the high word of the source
register. Bits [7:2] of the immediate operand are ignored.

There are legacy and extended forms of the instruction:
EXTRACTPS

The source operand is an XMM register. The destination can be a general purpose register or a 32-bit
memory location. A 32-bit single-precision value extracted to a general purpose register is zero-
extended to 64-bits.

VEXTRACTPS

The extended form of the instruction has a single 128-bit encoding.

The source operand is an XMM register. The destination can be a general purpose register or a 32-bit
memory location.

Instruction Support

Form Subset Feature Flag
EXTRACTPS | SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VEXTRACTPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
EXTRACTPS reg32/mem32, xmm1 66 OF 3A 17 /rib Extract the single-precision floating-point
imm8 element of xmm1 specified by imm8 to
reg32/mema32.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VEXTRACTPS reg32/mem32, xmm1, imm8 C4 RXB.00011 X.1111.0.01 17 Irib

Related Instructions
(V)INSERTPS

Instruction Reference EXTRACTPS, VEXTRACTPS 137

AMDAQ

AMDG64 Technology

Exceptions

26568—Rev. 3.22—May 2018

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

wl nl >

0nlwm| > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK]2:1] ! = 11b.

VEX.vvwv ! = 1111b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Nnnnnn

Nnnnnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

X X|X|X| X[X[X|X|>|> > > > 00

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

138

EXTRACTPS, VEXTRACTPS

Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

EXTRQ Extract Field From Register

Extracts specified bits from the lower 64 bits of the first operand (the destination XMM register). The
extracted bits are saved in the least-significant bit positions of the lower quadword of the destination;
the remaining bits in the lower quadword of the destination register are cleared to 0. The upper quad-
word of the destination register is undefined.

The portion of the source data being extracted is defined by the bit index and the field length. The bit
index defines the least-significant bit of the source operand being extracted. Bits [bit index + length
field — 1]:[bit index] are extracted. If the sum of the bit index + length field is greater than 64, the
results are undefined.

For example, if the bit index is 32 (20h) and the field length is 16 (10h), then the result in the destina-
tion register will be source [47:32] in bits 15:0, with zeros in bits 63:16.

A value of zero in the field length is defined as a length of 64. If the length field is 0 and the

bit index is 0, bits 63:0 of the source are extracted. For any other value of the bit index, the results are
undefined.

The bit index and field length can be specified as immediate values (second and first immediate oper-
ands, respectively, in the case of the three argument version of the instruction), or they can both be
specified by fields in an XMM source operand. In the latter case, bits [5:0] of the XMM register spec-
ify the number of bits to extract (the field length) and bits [13:8] of the XMM register specify the
index of the first bit in the field to extract. The bit index and field length are each six bits in length;
other bits of the field are ignored.

The diagram below illustrates the operation of this instruction.

XMM1

second imm8 first imm38
‘ 0 7 5 0 7 5 0

=7 B

127 6463

shift right -

mask to field length-
|

XMM1 XMM2
127 6463 % 0 127 138 50
shift right <
mask to field length-s
|

Instruction Reference EXTRQ 139

AMDAQ

AMDG64 Technology

Instruction Support

26568—Rev. 3.22—May 2018

Form

Subset

Feature Flag

EXTRQ

SSE4A | CPUID Fn8000_0001_ECX[SSE4A] (bit 6)

Software must check the CPUID bit once per program or library initialization before using the
instruction, or inconsistent behavior may result. For more on using the CPUID instruction to obtain
processor feature support information, see Appendix E of Volume 3.

Instruction Encoding

Mnemonic

EXTRQ xmmil, imm8, imm8

Opcode

66 OF 78 /0 ib ib

Description

Extract field from xmmZ1, with the least significant bit
of the extracted data starting at the bit index
specified by [5:0] of the second immediate byte, with
the length specified by [5:0] of the first immediate
byte.

Extract field from xmmZ1, with the least significant bit
of the extracted data starting at the bit index

EXTRQ xmm1, xmm2 66 OF 79 /r specified by xmm2[13:8], with the length specified
by xmm2[5:0].
Related Instructions
INSERTQ, PINSRW, PEXTRW
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X SSE4A instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[SSE4A] = 0.
Invalid opcode, #UD X X X The emulate bit (EM) of CRO was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.
pelice notavalable, |y X X | The task-switch bit (TS) of CRO was set to 1.
140 EXTRQ Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
HADDPD Horizontal Add
VHADDPD Packed Double-Precision Floating-Point

Adds adjacent pairs of double-precision floating-point values in two source operands and writes the
sums to a destination.

There are legacy and extended forms of the instruction:
HADDPD

Adds the packed double-precision values in bits [127:64] and bits [63:0] of the first source XMM reg-
ister and writes the sum to bits [63:0] of the destination; adds the corresponding doublewords of the
second source XMM register or a 128-bit memory location and writes the sum to bits [127:64] of the
destination. The first source register is also the destination. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VHADDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Adds the packed double-precision values in bits [127:64] and bits [63:0] of the first source XMM reg-
ister and writes the sum to bits [63:0] of the destination XMM register; adds the corresponding dou-
blewords of the second source XMM register or a 128-bit memory location and writes the sum to bits
[127:64] of the destination. Bits [255:128] of the YMM register that corresponds to the destination
are cleared.

YMM Encoding

Adds the packed double-precision values in bits [127:64] and bits [63:0] of the of the first source
YMM register and writes the sum to bits [63:0] of the destination YMM register; adds the corre-
sponding doublewords of the second source YMM register or a 256-bit memory location and writes
the sum to bits [127:64] of the destination. Performs the same process for the upper 128 bits of the
sources and destination.

Instruction Support

Form Subset Feature Flag
HADDPD SSE3 | CPUID Fn0000_0001_ECX[SSE3] (bit 0)
VHADDPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
HADDPD xmm1, xmm2/mem128 66 OF 7C /r Adds adjacent pairs of double-precision values in xmm1
and xmmz2 or mem128. Writes the sums to xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VHADDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7CIr
VHADDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 7CIr

Instruction Reference HADDPD, VHADDPD 141

AMDAQ

AMDG64 Technology

Related Instructions

26568—Rev. 3.22—May 2018

(V)HADDPS, (V)HSUBPD, (V)HSUBPS

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M [M| M M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatng-poim, x| 5 | s | x | Snmasked SIUD Rostnazpoint exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

142

HADDPD, VHADDPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
HADDPS Horizontal Add
VHADDPS Packed Single-Precision

Adds adjacent pairs of single-precision floating-point values in two source operands and writes the
sums to a destination.

There are legacy and extended forms of the instruction:
HADDPS

Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source XMM regis-
ter and writes the sum to bits [31:0] of the destination; adds the packed single-precision values in bits
[127:96] and bits [95:64] of the first source register and writes the sum to bits [63:32] of the destina-
tion. Adds the corresponding values in the second source XMM register or a 128-bit memory location
and writes the sum to bits [95:64] and [127:96] of the destination. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VHADDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source XMM regis-
ter and writes the sum to bits [31:0] of the destination XMM register; adds the packed single-preci-
sion values in bits [127:96] and bits [95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding values in the second source XMM register or a
128-bit memory location and writes the sum to bits [95:64] and [127:96] of the destination. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source YMM regis-
ter and writes the sum to bits [31:0] of the destination YMM register; adds the packed single-preci-
sion values in bits [127:96] and bits [95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding values in the second source YMM register or a
256-bit memory location and writes the sums to bits [95:64] and [127:96] of the destination. Performs
the same process for the upper 128 bits of the sources and destination.

Instruction Support

Form Subset Feature Flag
HADDPS SSE3 | CPUID Fn0000_0001_ECX[SSE3] (bit 0)
VHADDPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference HADDPS, VHADDPS 143

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic Opcode Description
HADDPS xmm1, xmm2/mem128 F2 OF 7C /r Adds adjacent pairs of single-precision values in xmm1
and xmm2 or mem128. Writes the sums to xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VHADDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 7CIr
VHADDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 7CIr

Related Instructions
(V)HADDPD, (V)HSUBPD, (V)HSUBPS

MXCSR Flag_;s Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M M M M

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

144 HADDPS, VHADDPS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SD foating-paint #xF | s | s | x [nmasked SIMD featig part excontion i a0 SXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

HADDPS, VHADDPS 145

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
HSUBPD Horizontal Subtract
VHSUBPD Packed Double-Precision

Subtracts adjacent pairs of double-precision floating-point values in two source operands and writes
the sums to a destination.

There are legacy and extended forms of the instruction:
HSUBPD

The first source register is also the destination.

Subtracts the packed double-precision value in bits [127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination; subtracts the corre-
sponding values of the second source XMM register or a 128-bit memory location and writes the dif-
ference to bits [127:64] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are not affected.

VHSUBPD
The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Subtracts the packed double-precision values in bits [127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination XMM register; sub-
tracts the corresponding values of the second source XMM register or a 128-bit memory location and
writes the difference to bits [127:64] of the destination. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

YMM Encoding

Subtracts the packed double-precision values in bits [127:64] from the value in bits [63:0] of the of
the first source YMM register and writes the difference to bits [63:0] of the destination YMM regis-
ter; subtracts the corresponding values of the second source YMM register or a 256-bit memory loca-
tion and writes the difference to bits [127:64] of the destination. Performs the same process for the
upper 128 bits of the sources and destination.

Instruction Support

Form Subset Feature Flag
HSUBPD SSE3 | CPUID Fn0000_0001_ECX[SSE3] (bit 0)
VHSUBPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

146 HSUBPD, VHSUBPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic

HSUBPD xmm1, xmm2/mem128

Opcode

66 OF 7D /r

AMDG64 Technology

Description

Subtracts adjacent pairs of double-precision floating-

point values in xmm1 and xmm2 or mem128. Writes the
differences to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VHSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7D /Ir
VHSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 7D Ir
Related Instructions
(V)HSUBPS, (V)HADDPD, (V)HADDPS
MXCSR Flags Affected
MM | FZ RC PM UM |OM | ZM DM | IM (DAZ| PE | UE | OE | ZE | DE | IE
M M M M M
17 15 | 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Instruction Reference HSUBPD, VHSUBPD 147

AMDAQ

AMDG64 Technology

26568—Rev. 3.22—May 2018

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SD foating-paint #xF | s | s | x [nmasked SIMD featig part excontion i a0 SXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

148

HSUBPD, VHSUBPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
HSUBPS Horizontal Subtract Packed Single
VHSUBPS

Subtracts adjacent pairs of single-precision floating-point values in two source operands and writes
the differences to a destination.

There are legacy and extended forms of the instruction:
HSUBPS

Subtracts the packed single-precision values in bits [63:32] from the values in bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination; subtracts the packed
single-precision values in bits [127:96] from the value in bits [95:64] of the first source register and
writes the difference to bits [63:32] of the destination. Subtracts the corresponding values of the sec-
ond source XMM register or a 128-bit memory location and writes the differences to bits [95:64] and
[127:96] of the destination. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VHSUBPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Subtracts the packed single-precision values in bits [63:32] from the value in bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination XMM register; sub-
tracts the packed single-precision values in bits [127:96] from the value bits [95:64] of the first source
register and writes the sum to bits [63:32] of the destination. Subtracts the corresponding values of the
second source XMM register or a 128-bit memory location and writes the differences to bits [95:64]
and [127:96] of the destination. Bits [255:128] of the YMM register that corresponds to the destina-
tion are cleared.

YMM Encoding

Subtracts the packed single-precision values in bits [63:32] from the value in bits [31:0] of the first
source YMM register and writes the difference to bits [31:0] of the destination YMM register; sub-
tracts the packed single-precision values in bits [127:96] from the value in bits [95:64] of the first
source register and writes the difference to bits [63:32] of the destination. Subtracts the corresponding
values of the second source YMM register or a 256-bit memory location and writes the differences to
bits [95:64] and [127:96] of the destination. Performs the same process for the upper 128 bits of the
sources and destination.

Instruction Support

Form Subset Feature Flag
HSUBPS SSE3 | CPUID Fn0000_0001_ECX[SSE3] (bit 0)
VHSUBPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference HSUBPS, VHSUBPS 149

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic Opcode Description
HSUBPS xmm1, xmm2/mem128 F2 OF 7D /r Subtracts adjacent pairs of values in xmm1 and xmm2
or mem128. Writes differences to xmmZ1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VHSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 7D Ir
VHSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 7D Ir

Related Instructions
(V)HSUBPD, (V)HADDPD, (V)HADDPS

MXCSR Flag_;s Affected
MM | FZ RC PM|UM|OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

150 HSUBPS, VHSUBPS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SD foating-paint #xF | s | s | x [nmasked SIMD featig part excontion i a0 SXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

HSUBPS, VHSUBPS 151

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
INSERTPS Insert
VINSERTPS Packed Single-Precision Floating-Point

Copies a selected single-precision floating-point value from a source operand to a selected location in
a destination register and optionally clears selected elements of the destination. The legacy and
extended forms of the instruction treat the remaining elements of the destination in different ways.

Selections are specified by three fields of an immediate 8-bit operand:

7 |6 | 5] 43][2]1]o0
COUNT_S | COUNT D ZMASK
COUNT _S — The binary value of the field specifies a 32-bit element of a source register, counting

upward from the low-order doubleword. COUNT S is used only for register source; when the source
is a memory operand, COUNT S =0.

COUNT _D — The binary value of the field specifies a 32-bit destination element, counting upward
from the low-order doubleword.

ZMASK — Set a bit to clear a 32-bit element of the destination.
There are legacy and extended forms of the instruction:
INSERTPS

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

When the source operand is a register, the instruction copies the 32-bit element of the source specified
by Count S to the location in the destination specified by Count D, and clears destination elements
as specified by ZMask. Elements of the destination that are not cleared are not affected.

When the source operand is a memory location, the instruction copies a 32-bit value from memory, to
the location in the destination specified by Count D, and clears destination elements as specified by
ZMask. Elements of the destination that are not cleared are not affected.

VINSERTPS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

When the second source operand is a register, the instruction copies the 32-bit element of the source
specified by Count_S to the location in the destination specified by Count_D. The other elements of
the destination are either copied from the first source operand or cleared as specified by ZMask.

When the second source operand is a memory location, the instruction copies a 32-bit value from the
source to the location in the destination specified by Count D. The other elements of the destination
are either copied from the first source operand or cleared as specified by ZMask.

Instruction Support

Form Subset Feature Flag
INSERTPS SSE4.1 | CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VINSERTPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

152 INSERTPS, VINSERTPS Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

INSERTPS xmm1, xmm2/mem32, imm8 66 OF 3A 21 /rib Insert a selected single-precision floating-
point value from xmm2 or from mem32 at a
selected location in xmm1 and clear
selected elements of xmm1. Selections
specified by imm8.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VINSERTPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 21/rib

Related Instructions

(V)EXTRACTPS
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference INSERTPS, VINSERTPS 153

AMDAQ

AMDG64 Technology

INSERTQ

26568—Rev. 3.22—May 2018

Insert Field

Inserts bits from the lower 64 bits of the source operand into the lower 64 bits of the destination oper-
and. No other bits in the lower 64 bits of the destination are modified. The upper 64 bits of the desti-
nation are undefined.

The least-significant | bits of the source operand are inserted into the destination, with the least-signif-
icant bit of the source operand inserted at bit position n, where | and n are defined as the field length
and bit index, respectively.

Bits (field length — 1):0 of the source operand are inserted into bits (bit index + field length — 1):(bit

index) of the destination. If the sum of the bit index + length field is greater than 64, the results are
undefined.

For example, if the bit index is 32 (20h) and the field length is 16 (10h), then the result in the destina-
tion register will be source operand[15:0] in bits 47:32. Bits 63:48 and bits 31:0 are not modified.

A value of zero in the field length is defined as a length of 64. If the length field is 0 and the bit index
is 0, bits 63:0 of the source operand are inserted. For any other value of the bit index, the results are
undefined.

The bits to insert are located in the XMM2 source operand. The bit index and field length can be spec-
ified as immediate values or can be specified in the XMM source operand. In the immediate form, the
bit index and the field length are specified by the fourth (second immediate byte) and third operands
(first immediate byte), respectively. In the register form, the bit index and field length are specified in
bits [77:72] and bits [69:64] of the source XMM register, respectively. The bit index and field length
are each six bits in length; other bits in the field are ignored.

The diagram below illustrates the operation of this instruction.

first second
XMM2 imm38 imm38

127 6463 075 075 0
X | ‘ E I
127 6463 ‘ 0 select number of bits to insert «¢——
select bit position for insert -«
|
XMM1 XMM2
77 69
127 6463 0 127 72 6463 0

Lselect number of bits to insert

I
L select bit position for insert

154 INSERTQ Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Instruction Support

AMDG64 Technology

Form Subset

Feature Flag

INSERTQ SSE4A | CPUID Fn8000_0001_ECX[SSE4A] (bit 6)

Software must check the CPUID bit once per program or library initialization before using the
instruction, or inconsistent behavior may result. For more on using the CPUID instruction to obtain
processor feature support information, see Appendix E of Volume 3.

Instruction Encoding

Mnemonic

INSERTQ xmm1, xmm2, imm8,

imm8

Opcode

F20F 78 /ribib

Description

Insert field starting at bit 0 of xmm2 with the length
specified by [5:0] of the first immediate byte. This
field is inserted into xmm1 starting at the bit position
specified by [5:0] of the second immediate byte.

Insert field starting at bit 0 of xmm2 with the length
specified by xmm2[69:64]. This field is inserted into

INSERTQ xmm1, xmm2 F20F79/r xmm?1 starting at the bit position specified by
xmm2[77:72].
Related Instructions
EXTRQ, PINSRW, PEXTRW
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X SSE4A instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[SSE4A] = 0.
Invalid opcode, #UD X X X The emulate bit (EM) of CRO was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.
peyice notavaiable, |y X X | The task-switch bit (TS) of CRO was set to 1.

Instruction Reference

INSERTQ 155

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
LDDQU Load
VLDDQU Unaligned Double Quadword

Loads unaligned double quadwords from a memory location to a destination register.

Like the (V)MOVUPD instructions, (V)LDDQU loads a 128-bit or 256-bit operand from an
unaligned memory location. However, to improve performance when the memory operand is actually
misaligned, (V)LDDQU may read an aligned 16 or 32 bytes to get the first part of the operand, and an
aligned 16 or 32 bytes to get the second part of the operand. This behavior is implementation-specific,
and (V)LDDQU may only read the exact 16 or 32 bytes needed for the memory operand. If the mem-
ory operand is in a memory range where reading extra bytes can cause performance or functional
issues, use (V)MOVUPD instead of (V)LDDQU.

Memory operands that are not aligned on 16-byte or 32-byte boundaries do not cause general-protec-
tion exceptions.

There are legacy and extended forms of the instruction:
LDDQU

The source operand is an unaligned 128-bit memory location. The destination operand is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination register are not
affected.

VLDDQU

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The source operand is an unaligned 128-bit memory location. The destination operand is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination register are cleared.

YMM Encoding

The source operand is an unaligned 256-bit memory location. The destination operand is a YMM reg-
ister.

Instruction Support

Form Subset Feature Flag
LDDQU SSE3 | CPUID Fn0000_0001_ECX[SSE3] (bit 0)
VLDDQU AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
LDDQU xmm1, mem128 F2 0F FO /r Loadi a 128-bit value from an unaligned mem128 to
xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VLDDQU xmm1, mem128 C4 RXB.00001 X.1111.0.11 FO /r
VLDDQU ymm1, mem256 C4 RXB.00001 XA111.1.11 FO /r

156 LDDQU, VLDDQU Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Related Instructions

AMDG64 Technology

(V)MOVDQU
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Alignment check, #AC S S X | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

LDDQU, VLDDQU 157

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
LDMXCSR Load
VLDMXCSR MXCSR Control/Status Register

Loads the MXCSR register with a 32-bit value from memory.

For both legacy LDMXCSR and extended VLDMXCSR forms of the instruction, the source operand
is a 32-bit memory location and the destination operand is the MXCSR.

If an MXCSR load clears a SIMD floating-point exception mask bit and sets the corresponding
exception flag bit, a SIMD floating-point exception is not generated immediately. An exception is
generated only when the next instruction that operates on an XMM or YMM register operand and
causes that particular SIMD floating-point exception to be reported executes.

A general protection exception occurs if the instruction attempts to load non-zero values into reserved
MXCSR bits. Software can use MXCSR_MASK to determine which bits are reserved. For details,
see “128-Bit, 64-Bit, and x87 Programming” in Volume 2.

The MXCSR register is described in “Registers” in Volume 1.

Instruction Support

Form Subset Feature Flag
LDMXCSR SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VLDMXCSR AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
LDMXCSR mem32 OF AE /2 Loads MXCSR register with 32-bit value from memory.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VLDMXCSR mem32 C4 RXB.00001 X.1111.0.00 AE /2

Related Instructions

(V)STMXCSR
MXCSR Flag_;s Affected
MM | FZ RC PM|{UM | OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

M M M M M M M M M M M M M M M M M
17 15 14 13 12 " 10 9 8 7 6 5 4 3 2
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

N
o

158 LDMXCSR, VLDMXCSR Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S |CRO.EM=1.
. S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A | VEX.vwwwv ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Null data segment used to reference memory.
S S X | Attempt to load non-zero values into reserved MXCSR bits
Page fault, #PF X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

LDMXCSR, VLDMXCSR 159

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MASKMOVDQU Masked Move
VMASKMOVDQU Double Quadword Unaligned

Moves bytes from the first source operand to a memory location specified by the DS:rDI register.
Bytes are selected by mask bits in the second source operand. The memory location may be
unaligned.

The mask consists of the most significant bit of each byte of the second source register.
When a mask bit = 1, the corresponding byte of the first source register is written to the destination;
when a mask bit = 0, the corresponding byte is not written.

Exception and trap behavior for elements not selected for storage to memory is implementation
dependent. For instance, a given implementation may signal a data breakpoint or a page fault for
bytes that are zero-masked and not actually written.

The instruction implicitly uses weakly-ordered, write-combining buffering for the data, as described
in “Buffering and Combining Memory Writes” in Volume 2. For data that is shared by multiple pro-
cessors, this instruction should be used together with a fence instruction in order to ensure data coher-
ency (see “Cache and TLB Management” in Volume 2).

There are legacy and extended forms of the instruction:
MASKMOVDQU

The first source operand is an XMM register and the second source operand is an XMM register. The
destination is a 128-bit memory location.

VMASKMOVDQU

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is an XMM register. The
destination is a 128-bit memory location.

Instruction Support

Form Subset Feature Flag
MASKMOVDQU | SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMASKMOVDQU | AVX |CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
MASKMOVDQU xmm1, xmm2 66 OF F7 /r Move bytes selected by a mask value in xmm2 from
xmml1 to the memory location specified by DS:rDI.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMASKMOVDQU xmm1, xmm2 C4 RXB.00001 X.1111.0.01 F7/r

Related Instructions
(VIMASKMOVPD, (V)MASKMOVPS

160 MASKMOVDQU, VMASKMOVDQU Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

wl nl >

0nlwm| > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK]2:1] ! = 11b.

VEX.vvwv ! = 1111b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N unn

N unn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X 0 [X|X|X|X[X|>I> > >0

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MASKMOVDQU, VMASKMOVDQU 161

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MAXPD Maximum
VMAXPD Packed Double-Precision Floating-Point

Compares each packed double-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically greater value into the corre-
sponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXPD

Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VMAXPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

YMM Encoding
Compares four pairs of packed double-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

Instruction Support

Form Subset Feature Flag
MAXPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMAXPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

162 MAXPD, VMAXPD Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

MAXPD xmm1, xmm2/mem128 66 OF 5F /r Compares two pairs of packed double-precision values in
xmml and xmm2 or mem128 and writes the greater value
to the corresponding position in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMAXPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5F /r
VMAXPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5F /r

Related Instructions
(VIMAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flag_;s Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference MAXPD, VMAXPD 163

AMDAQ

AMDG64 Technology

Exceptions

26568—Rev. 3.22—May 2018

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

w|lnl>

nlm| > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK|2:1] I = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

N n | v

DO v v

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

X [X[>P| O [X0 X|X[X| X |X>>> OO

Unmasked SIMD floating-point exception while CR4.0OSXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

w

(%))

x

A source operand was an SNaN value.

Invalid operation, |E

w

(%))

>

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

164

MAXPD, VMAXPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
MAXPS Maximum
VMAXPS Packed Single-Precision Floating-Point

Compares each packed single-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically greater value into the corre-
sponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXPS

Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VMAXPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

YMM Encoding
Compares eight pairs of packed single-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

Instruction Support

Form Subset Feature Flag
MAXPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMAXPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference MAXPS, VMAXPS 165

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic Opcode Description

MAXPS xmm1, xmm2/mem128 OF 5F /r Compares four pairs of packed single-precision values in
xmm2l and xmm2 or mem128 and writes the greater

values to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMAXPS xmm1, xmm2, xmm3/mem128 c4 RXB.00001 X.src.0.00 5F Ir
VMAXPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5F Ir

Related Instructions
(V)IMAXPD, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flag_;s Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

166 MAXPS, VMAXPS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

w|lnl>

nlm| > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK|2:1] I = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

N n | v

DO v v

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

X [X[>P| O [X0 X|X[X| X |X>>> OO

Unmasked SIMD floating-point exception while CR4.0OSXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

w

(%))

x

A source operand was an SNaN value.

Invalid operation, |E

w

(%))

>

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MAXPS, VMAXPS 167

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MAXSD Maximum
VMAXSD Scalar Double-Precision Floating-Point

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 64 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXSD

The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. The first source register is also the destination. When the second source is
a 64-bit memory location, the upper 64 bits of the first source register are copied to the destination.
Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register that corresponds
to the destination are not affected.

VMAXSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is an XMM register. When the second source is a 64-
bit memory location, the upper 64 bits of the first source register are copied to the destination. Bits
[127:64] of the destination are copied from bits [127:64] of the first source. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MAXSD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMAXSD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MAXSD xmm1, xmm2/mem64 F2 OF 5F /r Compares a pair of scalar double-precision values in the
low-order 64 bits of xmm1 and xmm2 or mem64 and
writes the greater value to the low-order 64 bits of xmm.1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMAXSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5F Ir

Related Instructions
(VIMAXPD, (V)MAXPS, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

168 MAXSD, VMAXSD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M | M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, e | 5 | s | x | Snmasked SIMD fostinazpornt exceptor while R OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MAXSD, VMAXSD 169

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MAXSS Maximum
VMAXSS Scalar Single-Precision Floating-Point

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 32 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXSS

The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the destina-
tion are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VMAXSS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is an XMM register. Bits [127:32] of the destination
are copied from the first source operand. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

Instruction Support

Form Subset Feature Flag
MAXSS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMAXSS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MAXSS xmm1, xmm2/mem32 F3 OF 5F /r Compares a pair of scalar single-precision values in the
low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the greater value to the low-order 32 bits of xmmZ1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMAXSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5F /r

Related Instructions
(VIMAXPD, (V)MAXPS, (V)IMAXSD, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

170 MAXSS, VMAXSS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M | M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, e | 5 | s | x | Snmasked SIMD fostinazpornt exceptor while R OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MAXSS, VMAXSS 171

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MINPD Minimum
VMINPD Packed Double-Precision Floating-Point

Compares each packed double-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically lesser value into the corre-
sponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINPD

Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VMINPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

YMM Encoding
Compares four pairs of packed double-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

Instruction Support

Form Subset Feature Flag
MINPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMINPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

172 MINPD, VMINPD Instruction Reference

AMDA
26568—Rev. 3.22—May 2018 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

MINPD xmm1, xmm2/mem128 66 OF 5D /r Compares two pairs of packed double-precision values in
xmml and xmm2 or mem128 and writes the lesser value

to the corresponding position in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMINPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5D /r
VMINPD ymm1, ymm2, ynm3/mem256 C4 RXB.00001 X.src.1.01 5D /r

Related Instructions
(V)IMAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flag_;s Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference MINPD, VMINPD 173

AMDAQ

AMDG64 Technology

Exceptions

26568—Rev. 3.22—May 2018

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

w|lnl>

nlm| > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK|2:1] I = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

N n | v

DO v v

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

X [X[>P| O [X0 X|X[X| X |X>>> OO

Unmasked SIMD floating-point exception while CR4.0OSXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

w

(%))

x

A source operand was an SNaN value.

Invalid operation, |E

w

(%))

>

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

174

MINPD, VMINPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018 AMDG64 Technology
MINPS Minimum
VMINPS Packed Single-Precision Floating-Point

Compares each packed single-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically lesser value into the corre-
sponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINPS

Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VMINPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

YMM Encoding
Compares eight pairs of packed single-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

Instruction Support

Form Subset Feature Flag
MINPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMINPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Reference MINPS, VMINPS 175

AMDA1
AMDG64 Technology 26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic Opcode Description

MINPS xmm1, xmm2/mem128 OF 5D /r Compares four pairs of packed single-precision values in
xmml and xmm2 or mem128 and writes the lesser values

to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMINPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5D /r
VMINPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5D /r

Related Instructions
(VIMAXPD, (V)MAXPS, (V)MAXSD, (VIMAXSS, (V)MINPD, (V)MINSD, (V)MINSS

MXCSR Flag_;s Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

176 MINPS, VMINPS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

w|lnl>

nlm| > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK|2:1] I = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

N n | v

DO v v

Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

Instruction execution caused a page fault.

SIMD floating-point, #XF

X [X[>P| O [X0 X|X[X| X |X>>> OO

Unmasked SIMD floating-point exception while CR4.0OSXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

w

(%))

x

A source operand was an SNaN value.

Invalid operation, |E

w

(%))

>

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MINPS, VMINPS 177

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MINSD Minimum
VMINSD Scalar Double-Precision Floating-Point

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser
value into the low-order 64 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINSD

The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. The first source register is also the destination. Bits [127:64] of the destina-
tion are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VMINSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is an XMM register. Bits [127:64] of the destination
are copied from the first source operand. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

Instruction Support

Form Subset Feature Flag
MINSD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMINSD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MINSD xmm1, xmm2/mem64 F2 OF 5D /r Compares a pair of scalar double-precision values in the
low-order 64 bits of xmm1 and xmm2 or mem64 and
writes the lesser value to the low-order 64 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMINSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5D /r

Related Instructions
(VIMAXPD, (V)MAXPS, (VIMAXSD, (V)IMAXSS, (V)MINPD, (V)MINPS, (V)MINSS

178 MINSD, VMINSD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M | M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, e | 5 | s | x | Snmasked SIMD fostinazpornt exceptor while R OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MINSD, VMINSD 179

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MINSS Minimum
VMINSS Scalar Single-Precision Floating-Point

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser
value into the low-order 32 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINSS

The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the destina-
tion are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VMINSS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is an XMM register. Bits [127:32] of the destination
are copied from the first source operand. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

Instruction Support

Form Subset Feature Flag
MINSS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMINSS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description

MINSS xmm1, xmm2/mem32 F3 OF 5D /r Compares a pair of scalar single-precision values in the
low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the lesser value to the low-order 32 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMINSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5D /r

Related Instructions
(VIMAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD

180 MINSS, VMINSS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M | M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x [Snmasked SIUD fostnazpont exceptor whle CRAOSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MINSS, VMINSS 181

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MOVAPD Move Aligned
VMOVAPD Packed Double-Precision Floating-Point

Moves packed double-precision floating-point values. Values can be moved from a register or mem-
ory location to a register; or from a register to a register or memory location.

A memory operand that is not aligned causes a general-protection exception.

There are legacy and extended forms of the instruction:

MOVAPD

Moves two double-precision floating-point values. There are encodings for each type of move.

* The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVAPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves two double-precision floating-point values. There are encodings for each type of move:

* The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves four double-precision floating-point values. There are encodings for each type of move:

e The source operand is either a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

* The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

Instruction Support

Form Subset Feature Flag
MOVAPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVAPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

182 MOVAPD, VMOVAPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic

MOVAPD xmm1, xmm2/mem128

MOVAPD xmm1/mem128, xmm2

Mnemonic

VMOVAPD xmm1, xmm2/mem128
VMOVAPD xmm1/mem128, xmm2
VMOVAPD ymm1, ymm2/mem256
VMOVAPD ymm1/mem256, ymm2

Related Instructions

AMDG64 Technology

Opcode Description
66 OF 28 /r Moves two packed double-precision floating-point

values from xmm2 or mem128 to xmm1.

66 OF 29 /r Moves two packed double-precision floating-point

values from xmm1 or mem128 to xmm2.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.01 28 Ir
C4 RXB.00001 X.1111.0.01 29 /r
C4 RXB.00001 X.1111.1.01 28 Ir
C4 RXB.00001 X.1111.1.01 29 /r

(V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

wln|>

nlm| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK|2:1] ! = 11b.

VEX.vvwv ! = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on a 16-byte boundary.

N nnn

N nnn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| P | XX X|X|X|> > >> OO

Instruction execution caused a page fault.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVAPD, VMOVAPD 183

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MOVAPS Move Aligned
VMOVAPS Packed Single-Precision Floating-Point

Moves packed single-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.

A memory operand that is not aligned causes a general-protection exception.

There are legacy and extended forms of the instruction:
MOVAPS

Moves four single-precision floating-point values.

There are encodings for each type of move.

e The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVAPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves four single-precision floating-point values. There are encodings for each type of move.

* The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

e The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Moves eight single-precision floating-point values. There are encodings for each type of move.

e The source operand is either a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

* The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

Instruction Support

Form Subset Feature Flag
MOVAPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMOVAPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

184 MOVAPS, VMOVAPS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic
MOVAPS xmm1, xmm2/mem128

MOVAPS xmm1/mem128, xmm2

Mnemonic

VMOVAPS xmm1, xmm2/mem128
VMOVAPS xmm1/mem128, xmm?2
VMOVAPS ymm1, ymm2/mem256
VMOVAPS ymm1/mem256, ymm2

Related Instructions

AMDG64 Technology

Opcode Description

OF 28 /r Moves four packed single-precision floating-point
values from xmm2 or mem128 to xmm1.

OF 29 /r Moves four packed single-precision floating-point
values from xmm1 or mem128 to xmm2.
Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.00 28 Ir
C4 RXB.00001 X.1111.0.00 29 /r
C4 RXB.00001 X.1111.1.00 28 Ir
C4 RXB.00001 X.1111.1.00 29 /r

(V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,

(V)MOVUPS
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |VEX.vwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
S S S | Memory operand not aligned on a 16-byte boundary.
General protection, #GP S S X | Write to a read-only data segment. .
A VEX256: Memory operand not 32-byte al!gned.
VEX128: Memory operand not 16-byte aligned.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVAPS, VMOVAPS 185

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MOVD Move
VMOVD Doubleword or Quadword

Moves 32-bit and 64-bit values. A value can be moved from a general-purpose register or memory
location to the corresponding low-order bits of an XMM register, with zero-extension to 128 bits; or
from the low-order bits of an XMM register to a general-purpose register or memory location.

The quadword form of this instruction is distinct from the differently-encoded (V)MOVQ instruction.

There are legacy and extended forms of the instruction:

MOVD

There are two encodings for 32-bit moves, characterized by REX.W = 0.

* The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The
destination is an XMM register. The 32-bit value is zero-extended to 128 bits.

e The source operand is an XMM register. The destination is either a 32-bit general-purpose register
or a 32-bit memory location.

There are two encodings for 64-bit moves, characterized by REX.W = 1.

e The source operand is either a 64-bit general-purpose register or a 64-bit memory location. The
destination is an XMM register. The 64-bit value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either a 64-bit general-purpose register
or a 64-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVD

The extended form of the instruction has four 128-bit encodings:

There are two encodings for 32-bit moves, characterized by VEX.W = 0.

e The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The
destination is an XMM register. The 32-bit value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either a 32-bit general-purpose register
or a 32-bit memory location.

There are two encodings for 64-bit moves, characterized by VEX.W = 1.

* The source operand is either a 64-bit general-purpose register or a 64-bit memory location. The
destination is an XMM register. The 64-bit value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either a 64-bit general-purpose register
or a 64-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MOVD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

186 MOVD, VMOVD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

For more on using the CPUID instruction to obtain processor feature support information, see Appen-

dix E of Volume 3.

Instruction Encoding

Mnemonic
MOVD xmm, reg32/mem32
MOVD xmm, reg64/mem64
MOVD reg32/mem32, xmm
MOVD reg64/mem64, xmm
Mnemonic

VMOVD?' xmm, reg32/mem32
VMOVQ xmm, reg64/mem64

VMOVD? reg32/mem32, xmm
VMOVQ reg64/mem64, xmm

Opcode Description
66 (W0) OF 6E /r Move a 32-bit value from reg32/mem32 to xmm.
66 (W1) OF 6E /r Move a 64-bit value from reg64/mem64 to xmm.
66 (W0) OF 7E /r Move a 32-bit value from xmm to reg32/mem32
66 (W1) OF 7E /r Move a 64-bit value from xmm to reg64/mem64.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 0.1111.0.01 6E /r
C4 RXB.00001 1.1111.0.01 6E /r
C4 RXB.00001 0.1111.0.01 TE Ir
C4 RXB.00001 1.1111.0.01 TE Ir

Note: 1. Also known as MOVQ in some developer tools.

Related Instructions

(VIMOVDQA, (V)MOVDQU, (V)MOVQ

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

w|lnlx>

0nln| > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK|2:1] ! = 11b.

VEX.vvwv ! = 1111b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

DO nn n

General protection, #GP

D nn n

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

w

Instruction execution caused a page fault.

Alignment check, #AC

X[X|X|X|X| X[X|X|>Z|>|> > > 00

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVD, VMOVD 187

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MOVDDUP Move and Duplicate
VMOVDDUP Double-Precision Floating-Point

Moves and duplicates double-precision floating-point values.
There are legacy and extended forms of the instruction:

MOVDDUP

Moves and duplicates one quadword value.

The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of data in memory. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are not affected.

VMOVDDUP

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves and duplicates one quadword value.

The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of data in memory. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

YMM Encoding

Moves and duplicates two even-indexed quadword values.

The source operand is either a YMM register or the address of the least-significant byte of 256 bits of
data in memory. The destination is a YMM register.Bits [63:0] of the source are written to bits

[127:64] and [63:0] of the destination; bits [191:128] of the source are written to bits [255:192] and
[191:128] of the destination.

Instruction Support

Form Subset Feature Flag
MOVDDUP SSE3 | CPUID Fn0000_0001_ECX[SSE3] (bit 0)
VMOVDDUP AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
MOVDDUP xmm1, xmm2/mem64 F2 OF 12/r Moves two copies of the low 64 bits of xmm2 or
mem64 to xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
MOVDDUP xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.11 12 1/r
MOVDDUP ymm1, ymm2/mem256 C4 RXB.00001 XA111.1.11 12 1/r

188 MOVDDUP, VMOVDDUP Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Related Instructions

(VIMOVSHDUP, (V)MOVSLDUP

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVDDUP, VMOVDDUP 189

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MOVDQA Move Aligned
VMOVDQA Double Quadword

Moves aligned packed integer values. Values can be moved from a register or a memory location to a
register, or from a register to a register or a memory location.

A memory operand that is not aligned causes a general-protection exception.
There are legacy and extended forms of the instruction:
MOVDQA

Moves two aligned quadwords (128-bit move). There are two encodings.
* The source operand is an XMM register. The destination is either an XMM register or a 128-bit
memory location.

* The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVDQA

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves two aligned quadwords (128-bit move). There are two encodings.

* The source operand is an XMM register. The destination is either an XMM register or a 128-bit
memory location.

* The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding
Moves four aligned quadwords (256-bit move). There are two encodings.

* The source operand is a YMM register. The destination is either a YMM register or a 256-bit
memory location.

* The source operand is either a YMM register or a 256-bit memory location. The destination is a
YMM register.

Instruction Support

Form Subset Feature Flag
MOVDQA SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVDQA AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

190 MOVDQA, VMOVDQA Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic

MOVDQA xmm1, xmm2/mem128

MOVDQA xmm1l/mem128, xmm2

Mnemonic

VMOVDQA xmm1, xmm2/mem128
VMOVDQA xmm1l/mem128, xmm2
VMOVDQA ymm1, xmm2/mem256
VMOVDQA ymm1/mem256, ymm2

Related Instructions

AMDG64 Technology

Opcode Description
66 OF 6F /r Moves aligned packed integer values from xmm2

ormem128 to xmm1.

66 OF 7F /r Moves aligned packed integer values from xmm1 or

mem128 to xmm2.
Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.01 6F /r
C4 RXB.00001 X.1111.0.01 6F /r
C4 RXB.00001 X.1111.1.01 TF Ir
C4 RXB.00001 X.1111.1.01 TF Ir

(V)MOVD, (VYMOVDQU, (VMOVQ

Exceptions

Exception

Mode

Cause of Exception

Real

Virt

Prot

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

wl wl >

0nlwm > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on a 16-byte boundary.

N nnn

N nnn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| P | X|OX[|X|X|X|> > >> 00

Instruction execution caused a page fault.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVDQA, VMOVDQA 191

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MOVDQU Move
VMOVDQU Unaligned Double Quadword

Moves unaligned packed integer values. Values can be moved from a register or a memory location to
a register, or from a register to a register or a memory location.

There are legacy and extended forms of the instruction:
MovDQU

Moves two unaligned quadwords (128-bit move). There are two encodings.
* The source operand is an XMM register. The destination is either an XMM register or a 128-bit
memory location.

* The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVDQU

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves two unaligned quadwords (128-bit move). There are two encodings:

* The source operand is an XMM register. The destination is either an XMM register or a 128-bit
memory location.

* The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding
Moves four unaligned quadwords (256-bit move). There are two encodings:

* The source operand is a YMM register. The destination is either a YMM register or a 256-bit
memory location.

* The source operand is either a YMM register or a 256-bit memory location. The destination is a
YMM register.

Instruction Support

Form Subset Feature Flag
MOvVDQU SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVDQU AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

192 MOVDQU, VMOVDQU Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic

MOVDQU xmm1, xmm2/mem128

MOVDQU xmm1/mem128, xmm?2

Mnemonic

VMOVDQU xmm1, xmm2/mem128
VMOVDQU xmm1/mem128, xmm2
VMOVDQU ymm1, xmm2/mem256
VMOVDQU ymm1/mem256, ymm2

Related Instructions

AMDG64 Technology

Opcode Description
F3 OF 6F /r Moves unaligned packed integer values from xmm2 or

mem128 to xmm1.

F3 OF 7F /r Moves unaligned packed integer values from xmm1 or

mem128 to xmm2.
Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.10 6F /r
C4 RXB.00001 X.1111.0.10 6F /r
C4 RXB.00001 X.1111.1.10 TF Ir
C4 RXB.00001 X1111.1.10 TF Ir

(V)MOVD, (V)MOVDQA, (V)MOVQ

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

wln|>

nlm| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK|2:1] ! = 11b.

VEX.vvvv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

nNnnnnn

nNnunnunn

Write to a read-only data segment.

Null data segment used to reference memory.

Alignment check, #AC

w

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

XX X|X| X[X|X|X|> > >> OO0

Instruction execution caused a page fault.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVDQU, VMOVDQU 193

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MOVHLPS Move High to Low
VMOVHLPS Packed Single-Precision Floating-Point

Moves two packed single-precision floating-point values from the high quadword of an XMM regis-
ter to the low quadword of an XMM register.

There are legacy and extended forms of the instruction:
MOVHLPS

The source operand is bits [127:64] of an XMM register. The destination is bits [63:0] of an XMM
register. Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register that cor-
responds to the destination are not affected.

VMOVHLPS

The extended form of the instruction has a 128-bit encoding only.

The source operands are bits [127:64] of two XMM registers. The destination is a third XMM regis-
ter. Bits [127:64] of the first source are moved to bits [127:64] of the destination; bits [127:64] of the
second source are moved to bits [63:0] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MOVHLPS SSE1 | CPUID Fn0000_0001_EDX[SSE] (bit 25)
VMOVHLPS AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Mnemonic Opcode Description
MOVHLPS xmm1, xmm2 OF 12 /r Moves two packed single-precision floating-point
values from xmmz2[127:64] to xmm1[63:0].
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVHLPS xmm1, xmm2, xmm3 C4 RXB.00001 X.src.0.00 12 Ir

Related Instructions

(V)MOVAPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

194 MOVHLPS, VMOVHLPS Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK[2:1]! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVHLPS, VMOVHLPS 195

AMDAQ

AMDG64 Technology 26568—Rev. 3.22—May 2018
MOVHPD Move High
VMOVHPD Packed Double-Precision Floating-Point

Moves a packed double-precision floating-point value. Values can be moved from a 64-bit memory
location to the high-order quadword of an XMM register, or from the high-order quadword of an
XMM register to a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVHPD

There are two encodings.

e The source operand is a 64-bit memory location. The destination is bits [127:64] of an XMM
register.

e The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVHPD

The extended form of the instruction has two 128-bit encodings:

* There are two source operands. The first source is an XMM register. The second source is a 64-bit
memory location. The destination is an XMM register. Bits [63:0] of the source register are written
to bits [63:0] of the destination; bits [63:0] of the source memory location are written to bits
[127:64] of the destination.

* The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

Form Subset Feature Flag
MOVHPD SSE2 | CPUID Fn0000_0001_EDX[SSEZ2] (bit 26)
VMOVHPD AVX | CPUID Fn0000_0001_ECX[AVX] (bit 28)

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

196 MOVHPD, VMOVHPD Instruction Reference

AMDA

26568—Rev. 3.22—May 2018

Instruction Encoding

Mnemonic Opcode
MOVHPD xmm1, mem64 66 OF 16 /r
MOVHPD mem64, xmm1 66 OF 17 /r

Mnemonic

VMOVHPD xmm1, xmm2, mem64
VMOVHPD mem64, xmm1

Related Instructions