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Abstract. Fault-injection (FI) campaigns provide an in-depth resilience
analysis of safety-critical systems in the presence of transient hardware
faults. However, FI campaigns require many independent injection ex-
periments and, combined, long run times, especially if we aim for a high
coverage of the fault space. Besides reducing the number of pilot injections
(e.g., with def-use pruning) in the first place, we can also speed up the
overall campaign by speeding up individual experiments. From our exper-
iments, we see that the timeout failure class is especially important here:
Although timeouts account only for 8 percent (QSort) of the injections,
they require 32 percent of the campaign run time.

In this paper, we analyze and discuss the nature of timeouts as a failure
class, and reason about the general design of dynamic timeout detectors.
Based on those insights, we propose ACTOR, a method to identify and
abort stuck experiments early by performing autocorrelation on the
branch-target history. Applied to seven MiBench benchmarks, we can
reduce the number of executed post-injection instructions by up to 30
percent, which translates into an end-to-end saving of 27 percent. Thereby,
the absolute classification error of experiments as timeouts was always
less than 0.5 percent.

1 Introduction

Functional safety standards, such as ISO 26262 or IEC 61508 [15, [14], demand
that we assess (and, if necessary, mitigate) the effects of transient hardware faults
(soft errors) on our systems. As soft errors are rare in reality [28, [21], we often
use fault injection (FI) |1} |29] to quantify the resilience of a program. Unlike
radiation or heat experiments [9], which are probabilistic by nature, FI also
gives us the chance to gain systematic insights as we can inject different faults
into repeated re-executions of the same program. By observing the resulting
erroneous misbehavior(s), we can classify the failure of the system-under-test
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Fig. 1: Injection Count vs. Simulated Executions

(SUT) and provide a summarized overview. [Fig. 1a]shows the (unweighted) failure
classification for seven MiBench benchmarks if injected on the ISA level.

If the campaign designer wants to cover the entire fault space (FS), which
gives the most comprehensive picture of the potential misbehavior, we have
to execute millions of injections. Even after applying standard fault-pruning
methods , our benchmarks require 2.8 - 107 injections. For these, our
simulation-assisted FI platform executed 1.3 - 10'? instructions after the
injection, which took us around 13 CPU days (at 1.16 MHz simulation rate).
And although FI sampling [8] can reduce the number of injections, long-running
programs with a large state will still require many independent injections.

Whenever the injected program execution deviates from the golden run (i.e.,
the fault is not benign), this typically also impacts its execution time, that is,
the time it takes until the error is detected and the simulation terminates with a
failure classification. However, the different failure classes can differ significantly
in their share of the simulation time (see : For example, although 15.6
percent of all QSort injections yield a trap (e.g., division by zero), they only
account for 0.4 percent of the simulated instructions, so apparently, trap errors
are detected early. On the other hand, timeout faults are detected late: 8.1 percent
of faults in QSort account for 32.3 percent of the simulated instructions.

Timeout is meant to catch fault-induced endless loops and is a special failure
class: It does not convey a ground truth, as deriving the ground truth would
imply a solution for the halting problem. Instead, we need to heuristically classify
an experiment as a timeout (and abort the simulation) by invoking the timeout-
handler after some time tj,, € [t1,00), with t; being the fault-free execution
time. The selection of ¢, is a tradeoff between accidentally misclassifying longer-
running experiments as timeout (false positives) and prolonging simulation time
(as each true positive runs until tinv)EI The common approach is to select ti,, by

! In hard real-time settings, the situation is somewhat different: Here, the respective
task’s deadline would actually define a ground truth for timeout errors and, thus,
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stretching the execution time t; by a timeout factor. This factor is arbitrary by
definition; in the literature, commonly a factor between two and five is chosen
without any further justification |24, (17}, 23], some even suggest a factor of ten
[6]! Following this, we assume the apparently most common factor of three (i.e.,
tiny = 3t1) throughout this paper, which, for our above campaign, let to 3.6
CPU days for alleged endless loops to complete. To sum up: Timeout detection
is notoriously imprecise, while accounting for a considerable share of simulation
time in FI campaigns.

About this Paper We propose and analyze Autocorrelation-based Timeout
Restriction (ACTOR), an approach for dynamic timeout prediction that mitigates
the costs of timeouts. ACTOR employs a low-overhead autocorrelation-based
predictor that classifies faults early on as timeouts by observing the jump patterns
of the continued execution, thereby reducing the overall campaign time. In
particular, we claim the following contributions:

— We analyze the nature of the timeout failure class, reason about the maximal
achievable savings of any timeout detector, and give guidelines for their design.

— We propose and implement autocorrelation to heuristically detect faulty exe-
cutions that will lead to a timeout.

— We evaluate our ACTOR prototype on seven MiBench benchmarks and quantify
the achieved end-to-end savings (up to 27.6 %) and the classification error.

The rest of the paper is structured as follows: In we describe our fault-
injection model and discuss the problem of timeout detection. Sourced by those
insights, we design ACTOR in[Sec. 3]and evaluate it in[Sec. 4 After the discussion

of our results (Sec. 5) and the related work (Sec. 6)), we conclude this paper in
bec. 7l

2 Problem Analysis

In a nutshell, we aim to reduce FI-campaign run times by detecting experiments
that are most likely to result in a timeout early and abort their continuation.
For this, we will first describe our targeted models of FI campaigns and reason
afterwards in general about timeout detectors.

2.1 Fault-Injection Model

ACTOR targets systematic FI campaigns, were a single deterministic program
run on a specific system is examined for its resiliency. For this, we record a
fault-free golden run of the SUT and plan a number of faults that cover the
(partial or complete) FS. The start of the golden run is ¢, its end is ¢;. Each

also the upper bound for ti,,. However, depending on the tightness of the deadline,
this might still prolong the simulation time too much.
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fault is identified by its fault location (e.g., register ro bit 3) and its relative fault
time t¢ (i.e., tr=10+a,tog <t < tl).

For injecting a specific fault, the FI platform (e.g., a modified x86 emulator)
forwards the program to the fault time and injects the fault (e.g., toggling one or
multiple fault-location bits). Depending on the FI platform, forwarding is made
more efficient using checkpointing or (hardware-assisted) break points [26].
In contrast, we cannot speedup the post-injection execution as the faulty control
flow can deviate from the golden run. Therefore, this paper looks only on the
time-budget spent after injecting the fault.

After injection, the platform continues the SUT, observes its behavior, and
comes to a failure classification. While such classification is always application-
specific, the classes benign, silent-data corruption (SDC), trap, and timeout are
commonly used.

For our approach, we furthermore assume that the FI platform can report
the last m jumps. This can either be done via actively recording jumps (in a
simulator) or by a hardware-implemented branch-history buffer. Without loss of
generality, we explore the ACTOR approach on an ISA-level fault injection.

2.2 Timeout Detectors
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Fig. 2: Running Experiments for QSort and the Influence of the Timeout-Detector Quality

As already mentioned, timeout is a special failure class as the FI platform
cannot surely classify stuck programs into one of the other classes. Therefore, the
campaign designer must define a timeout detector that classifies the currently
injection as a timeout.

These detectors can either be static and ignore the current system state or they
are dynamic and make a heuristic decision. Furthermore, the detector-invocation
time ti,y can either be relative to the FI time t¢; (e.g., 50 cycles after injection,
tiny = tr + 50), absolute with regard to the golden run (e.g., 300% of the normal
run time, tiny = 3t1), or continuously applied after injection. Also, any real-world
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detector induces an overhead and will produce incorrect results (as they can only
be a heuristic).

Usually, campaign designers define that executions that take N-times longer
(usually N =2...10 [24,(17} |23, [6]) than the golden-run length are considered as
a timeout. In our taxonomy, this is a static detector with an absolute invocation
point at N - t1, whose true positive (TP) and false positive (FP) rate is 1.

To give you a better intuition, shows a stacked histogram of the FI-
experiment “population” (for QSort). Thereby, the population is the number of
parallel running experiments that execute at a given point if we would start them
all in parallel. For example, at ¢y + 20000, we execute one million experiments
and from those 9.4 percent will still execute at 3t;. Please note that this graph
ramps up until ¢£; as we only consider the post-injection time. Furthermore, the
integral over is the total number of executed post-injection instructions
(i.e., the minimal campaign time) that, if broken down by resulting failure class,
has been shown in

For QSort and the static 3t; detector, we spend 32 percent of the campaign
time for executing stuck programs. With the (hypothetical) timeout detector
called OPT (relative, TP=1, FP=0), which surely stops all timeouts at fault
time ¢, = t¢, we reach the theoretical optimum. In OPT removes the
complete blue area. Between these extremes (OPT and 3t¢;), we will now explore
the possible design space of dynamic detectors. Hence, the dynamic detectors are
an addition to the static 3t; detector, which keeps experiments surely bounded.

First, we ask when to invoke a detector and if its invocation should be
relative to fault-time. For this, we look at the population size at a given t
and its composition. Shortly after ¢1, executions that masked the fault or that
incorporated it into their outputs without running longer terminate. For QSort,
the population shrinks by around 80 percent from its maximum, while the share
of timeout experiments rises from below 10 percent to over 80 percent. Please
note that these experiments check their result within the simulator, whereby
the described drop does not happen immediately at t;. As every detector has
overhead, which multiplies with the population size, the timeout-detection cost
drops significantly after ¢;, which results in larger end-to-end savings.

Furthermore, real-world detectors will have a FP rate > 0 that, if applied to
a population with many non-stuck experiments, will lead to a large number of
false positives (FPs). As FPs skew the failure classification, we consider them to
be more important than false negatives (FNs), which only prolong the campaign.
To illustrate this, (upper half) shows the influence of the FP rate for an
absolute detector on the percentage of false decisions. Before t1, a detector that
is 90 percent correct makes wrong decisions in about 9 percent of the cases, while
after ¢1, even a detector that labels all experiments as timeout (FP=1) quickly
becomes usable. Even better for detectors that have a lower FP rate. Therefore,
we argue that detectors should be invoked after ¢1, which also rules out relative
detectors as they would often become active before t;.

On the other hand, we should invoke the detector as early as possible to
maximize its effect and avoid executing stuck programs. For this, M (lower
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half) shows the campaign-time reduction that absolute detectors with different
TP rates can achieve over the 3t; detector. Before ¢1, which we already ruled
out, an absolute detector cannot help much as many timeout experiments have
not started yet. However, with progressing time, we lose saving potential (Lost
Cycles) as the 3t; limit comes closer and closer. Nevertheless, we also see that
right after ¢; even detectors that achieve only a TP rate of 80 percent save 20
percent of our overall campaign run time. Please also note that absolute detectors
invoked at or after ¢; have a benchmark-specific maximum that they can reach.
For QSort, this upper limit is at 80 percent of OPT’s savings.

To conclude our considerations: We should use absolute timeout detectors that
we invoke shortly after ¢;, where they cannot do much harm, even if they have a
high FP rate. At this point, even if they are bad at detecting stuck programs
(low TP rate), their saving potential is still high.

3 Timeout Detection using Autocorrelation

The core idea of ACTOR is that stuck programs will probably execute in a (rather
tight) loop, whereby their instruction stream becomes periodic. If the observed
periodicity exceeds a certain threshold, which we have to choose above the
periodicities of the fault-free execution, we abort the FI experiment and classify
it as a timeout although we have not waited until 3¢;. We base our detector on
Ibing et. al. |[16], who use autocorrelation on the branch-target history to detect
stuck executions on the fly. We adapt this technique for the FI context to achieve
actual end-to-end savings and chose parameters for the specific benchmark.

b(1) Branch-Target History (b(n),n € [1, m]) b(20)
4 4

o[o]e[c[a[e[o[<[]o[2]<[e[o[o[c[a[o[=]<

lag=1—0

} } } } } } } } 1 | lag=2—=0
} } } i } ! | lag=3—0
} } } } | lag=4—14

Fig. 3: Autocorrelation for Branch-Target History. b(m) is the latest branch, while b(1) is
the oldest recorded branch. For lag 1-3, we cannot fit a periodic pattern, while with lag 4,
the pattern continues throughout the branch-target history.

First, we want to give you a brief overview of the autocorrelation, which
is often used in signal processing and statistical analysis, in the context of
detecting periodic infinite loops [16]. The authors of this article apply discrete
autocorrelation on the branch-target history instead of the full program trace,
since the sequence of jump targets is sufficient to reconstruct the full path through
a program. At a certain point in time, we look at the last m branches and compare
the recorded branch-target sequence with a time-lagged version of itself. The



ACTOR 7

discrete autocorrelation can be simplified to a recursion Ry (I, m), where [ is the
currently examined lag:

Ryn(l,m — 1) + 1,if b(m) = b(m — 1)

0, else

Rbb(l7m) = { (1)

In a nutshell, we count, beginning from the last taken branch (b(m)), how
often we can jump [ branches backwards in time before we hit a branch target
unequal to b(m). If we repeat this with different lags (e.g., I € [1,64]) on a
fixed branch history, we end up with a vector of autocorrelation values Rbb(m).
For example, in the program is stuck within an endless loop that takes
alternating conditional branches with each iteration. As the last branch target ¢
is taken every 4 jumps, we end up with Ryp = (0,0,0,4). If the autocorrelation
value exceeds a given threshold T, it can be classified as a timeout.

3.1 Adaption as Timeout Detector

To use autocorrelation as an absolute, dynamic timeout detector, we have to make
adaptions and choose parameters. A static 3¢t; detector is used as a fallback for
potential false negatives. The main problem with the integration is the overhead
of the detector and detection latency, as both are crucial to achieve actual
end-to-end savings.

First, we have to decide on the history length and when to execute the
autocorrelation (AC). Ibing et.al. [16], which looked at natively run programs,
used the binary-instrumentation package Pin [22] to hook all branches. They ran
the autocorrelation continuously on every branch and, for a history length of 100,
they report slowdown factors of 100x to 225x, which would diminish all savings
that we could achieve with a timeout detector.

Therefore, guided by our discussion of timeout detectors (see 7 we
diverge in several points from Ibing et.al: (1) Since recording branches will
slowdown most FI platforms, we only start recording branches at ¢; where the
execution’s population starts to dwindle quickly (see [Fig. 2a)). (2) From thereon,
we record branches until the branch-history buffer is filled up to a certain level
and then execute the autocorrelation exactly once. This bounds the overhead per
experiment but comes at the cost of detecting less timeouts. If ACTOR. does
not detect a timeout, no further overheads are induced afterwards. Now, we only
have to choose three parameters: the history length, the maximal lag l,,.x, and
the threshold T at which we classify an experiment as a timeout.

For the history length m, we look at the development of the population
size . As we have argued that time detector should run shortly after
t1, we choose to run the detector-invocation point at around 1.2¢;. To achieve
this, we derive the size of the history buffer from the average-branch density
and the length of the golden run. For example, for a benchmark where every
tenth instruction is a branch and ¢; = 1000 instrs., we set the history length to
0.2 - 1990 — 90 branches. Please note that, since the faulty programs can deviate

10
from the original program, the branch buffer can be filled before or after 1.2¢;.
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The second parameter that we have to choose is the maximal lag ;.. With
a large lax, our detector becomes sensitive to patterns with a larger periodicity,
which we expect to result in more brittle decisions (higher FP rate). For example,
with a lag of 128, ACTOR could detect periodic sequences that repeat only every
128 branches. Therefore, we choose our maximum lag to be 16, which also is in
concordance with our goal of detecting tight loops.

At the threshold T', we classify an experiment as a timeout, which challenges
us to choose T' such that ACTOR does not trigger on regular program behavior
but is still able to detect timeouts. Since Ibing et al. [16] did not restrict the
history length, they could use a rather large threshold (i.e., T = 500) that
was applied regardless of the lag. However, with our fixed-sized history length,
Ry, (1, m) is always less than |m/l|, whereby the need for a lag-specific threshold
vector T = (T4, ..., Tj,..), which we will compare against Ry, (m), arises. If any
observed value surpasses its threshold, we report a timeout.

T,=1+ sE[O,I(I\lgj\K—m)] Ryun(l, H[s, s +m]) (2)

To calculate T; for lag I, we find the maximum Ry, value that we observe
if we perform autocorrelation on the golden run and increase it by 1. For this,
we shift an m-sized window over the branch-target history H of the golden run
and calculate the autocorrelation. With the resulting f, ACTOR cannot trigger
if confronted with a regular program run even if the injected fault shifts the
execution beyond ¢;.

3.2 FAIL* Integration

We integrated the ACTOR approach in the simulation-assisted open-source FI
framework FAIL* [25], which provides infrastructure for golden-run tracing, fault
planning, distributed and parallelized campaign execution, and result analysis.
FAIL* utilizes the independence of injections using a client-server-architecture to
highly parallelize FI campaigns. We integrated ACTOR  into the TA-32 injector
client, which is based on the Bochs simulator [19]. With a deterministic timer
breakpoint, we start recording the branch-target history at t1, whereby we use the
FAIL* infrastructure to record branches directly from Bochs’ simulator loop which
keeps the overheads as low as possible. The source code is publicly availableﬂ

4 Evaluation

With our evaluation, we demonstrate that ACTOR  is able to reduce the end-to-
end campaign run-times without skewing the result statistic towards the timeout
class. We use the classification results and the campaign run time of the static
3t1 detector as the ground truth and the baseline. We also show the theoretical
optimum that OPT would achieve (see if invoked at injection time t¢
(OPTy,) and compare ACTOR to a static detector invoked at 1.2¢;.

2 https://doi.org/10.5281/zenodo.6534708
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B Classification Error [A %] 1.2t; Detector ACTOR Detector
enchmark

Ben. SDC Trap TO TO [A %] Inv. TPR FPR
BitCount +0.00 —-0.02 +40.00 +0.02 +0.04 4.69% 98.51% 93.40%
BitCount-TMR —-0.21 —-0.01 +40.00 +0.22 +38.14 43.86 % 86.12% 0.59 %
QSort —0.05 —-0.35 —0.03 +0.43 +1.41 9.01% 88.55% 37.72%
SHA +0.00 -0.16 —0.11 +40.27 +13.75 27.50% 99.75% 42.29%
Blowfish (enc) —0.06 —-0.12 —-0.01 +40.19 +0.31 8.37% 98.27T% 82.40%
Blowfish (dec) —0.07 —-0.13 +0.00 +0.20 +0.28 8.21% 96.76% 84.12%
AES (enc) —0.03 —-0.26 —-0.11 +0.40 +0.46 5.63% 99.92% 56.39%
AES (dec) —0.07 —-0.08 —-0.03 +0.19 +1.49 851% 85.65% 5.27%

Table 1: Quality of the Failure Classification. For each failure class, we report the relative
classification error compared to a static 3¢; timeout detector. For ACTOR, we report the
TP and FP rates, the percentage of experiments involving a detector invocation (Inv.). For
comparison, we also show the classification error in percentage points that a 1.2¢; detector
would exhibit.

We ran seven benchmarks from the automotive and security branch of the
MiBench [10] benchmark suite on FAIL*’s TA-32 backend (Bochs). Additionally,
ACTOR was also applied to a modified BitCount benchmark using triple modular
redundancy (TMR). As a fault model for this evaluation, we use uniformly-
distributed single-bit flips in registers and memory, and classify the failure into
benign, SDC, trap, and timeout (TO). For the evaluation, we also record whether
a timeout was detected by ACTOR or by the static fall-back 3;, detector. We
performed the FIs on a 17-node Intel X5650 @ 2.67 GHz (12 cores) cluster,
leading to 204 simultaneously run simulations. Timestamps were both taken in
simulated instructions and in wall-clock time.

First, we look at the influence of ACTOR on the failure-classification statistic
(see A %). In total, we see that ACTOR has only a small impact on
the failure classification over all benchmarks and that it shifts less than 0.5
percent of all FIs from another failure class into the timeout class. We also see
that our invocation strategy (at around 1.2¢1) successfully restricts the usage
of the ACTOR detector to less than 10 percent of all experiments. Only for
SHA, which exhibits a high number of long-running timeouts (see , and
BitCount-TMR, which naturally has a longer runtime when one of the results is
corrupted, our detector is invoked more often. Furthermore, the ACTOR detector
is very good (TPR > 85%) at aborting experiments that would still execute at
3t1. In all cases, the static 1.2¢; detector, which is invoked at around the same
time as ACTOR, shifts more experiments into the TO class.

However, the FP rate of our ACTOR detector varies widely between 1 to 94
percent, which means that ACTOR marks experiments as timeouts although they
would eventually result in a different classification before 3t;. We still achieve
good results for the classification error for two reasons: (1) we invoke the detector
only on a small share of experiments (see Inv.), and (2) from these
experiments, only a small share will yield a non-timeout (e.g. . Therefore,
even a large FP rate yields small changes in the result. We will discuss the
FP-rate issue in more detail in
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Autocorrelation  Sim. Post-Inj. Instr. [%] E2E

Benchmark Savi

H-Ln. l., Cost ACTOR 1.2t; OPT,, aving
BitCount 2705 4.0 64ps —-13.1 —-17.3 —-25.2 -12.66%
BitCount-TMR 5296 4.6 62ps —-9.9 —-146 —-21.1 —-7.39%
QSort 1385 1.6 5H3ps —-19.5 —-23.3 -323 -—-16.07%
SHA 1766 1.0 68pus —-30.6 —44.4 —61.7 —27.64%
Blowfish (enc) 1019 9.6 67ups —-16.1 —20.7 —-28.7 -1591%
Blowfish (dec) 981 9.5 65ps —15.8 —204 —284 —15.712%
AES (enc) 851 1.0 47ps —-17.2 -16.0 —-22.2 —17.59%
AES (dec) 794 1.0 38ps —13.1 —145 -20.1 -12.24%

Table 2: Campaign Run-Time Reductions. Besides the achieved end-to-end savings (w/
overheads), we show the reduction of simulator time for ACTOR, the OPT-detector, and
a 1.2t1 detector. We also quantify the autocorrelation with the history length (H-Ln.), the
average abort lag lavg, and the run-time cost.

In we show the run-time savings that ACTOR achieves by aborting
experiments early. For the number of simulated post-injection instructions, we
reduce the campaign run time by at least 9.9 percent and by up to 30 percent. In
comparison to the theoretical optimum (OPT), ACTOR achieves a respectable
reduction, although it is invoked on average 0.7t; time units later. In direct
competition with a 1.2¢; detector, which acts around the same time as ACTOR,
we stay within 5 percent points (except for SHA). Please note, that ACTOR
sometimes reaches bigger savings than the static detector since executions that
are stuck in a tight loop often fill the history buffer before 1.2¢;.

We are able to translate these simulation-time reduction into actual end-
to-end savings for the campaign run time by at least 7.4 percent and up to 27
percent. This success is rooted in two design decisions: (1) The AC itself is fast
(< 70ps) since we bound the lag and the branch-target history and we invoke the
AC exactly once. (2) Recording the branch-target history within the simulator
loop reduces the simulation frequency by 28 percent. However, as we only activate
this in the interval [1.0,1.2] - t1, the simulation-time reductions translate well
into end-to-end savings.

5 Discussion

Clearly, the decision between aborting an experiment as a timeout and continuing
its execution (also beyond 3t1) is a trade-off between campaign run-time and result
quality. In essence, for programs without a hard deadline, no timeout detector
can distinguish between stuck programs that will never halt and faulty-programs
that execute for a (very) long but bounded time. So, in general, there is no
ground truth for timeout detection but only similarity between different timeout
detectors. Therefore, the absolute share of timeouts is a source of uncertainty in
the resilience assessment of a program and the campaign designer has to decide
whether the observed uncertainty is acceptable in the current design stage.
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Without ACTOR, the only way to reduce the number of timeouts and to
classify more experiments as non-timeouts is to prolong the observation time.
With ACTOR, we are able to achieve campaign run-times similar to an aggressive
1.2¢;, detector (see , but at timeout rates close to the 3t; detector (see
Tab. 1). For example, in the best case (SHA), we produce 13 percent points
less timeouts than 1.2¢; while the end-to-end campaign run time reduces by 27
percent. Therefore, a viable route for a campaign designer is to use ACTOR
in combination with a 3¢, fall-back detector. If the timeout rate exceeds his
safety margins, e.g. those required by a certain standard, he can re-run aborted
experiments with an ACTOR-variant that gets activated later (e.g., 1.4¢1).

The other important aspect to discuss is the widely varying FP rate of our
AC-based detector, which sometimes results in high (> 80 %) FP rates. These FPs
stem from the detection principle of ACTOR to abort highly periodic executions.
For our non-TMR benchmarks, which perform no error mitigation, timeouts occur
if the injected fault hits a loop counter that prolongs the execution by a certain
time depending on the flipped bit: least-significant bit (LSB) flips prolong the
execution only slightly, while a most-significant bit (MSB) hit results in a large
number of additional iterations. While both injections result in a highly-periodic
branch pattern, which triggers ACTOR, some experiments still terminate before
3t1. In our eyes, the categorization of those injections as timeouts at 3t is quite
arbitrary as they could still terminate with an SDC or a benign after this static
time mark. We basically chose 3t; as our “ground truth”, because it best reflects
the numbers commonly reported in the literature [24, |17, [23, [6].

To put these results in more context, we build the TMR-protected variant of
BitCount, which actively schedules a third execution on a detected error, whereby
86 percent of the executions at 1.2¢; will terminate before 3t;. While this is
a similar execution-prolongation pattern as a loop-counter injection, ACTOR
is able to differentiate with a very low FPR of 0.59 percent between the third
execution and a behavior that leads to a timeout. Therefore, we conclude that
ACTOR is well suited to work on benchmarks with enabled mitigation techniques
— which are of special interest for the campaign designers.

ACTOR is furthermore limited to FI scenarios where a fault-free execution
trace is available, which we use to derive the detector parameters (H and T'). If
those parameters can be chosen otherwise, ACTOR can also be used without a
trace. Furthermore, we found the third parameter l;,,,x = 16 worked quite well for
our benchmarks. However, for SUTs with many convoluted loops and conditional
branches a higher limit could be chosen to detect more timeouts.

A threat to the external validity is our limited selection of benchmarks,
which we chose from the automotive and security branch of the MiBench suite
[10] and which is generally considered to be representative for applications in
safety-critical environments. We also evaluated ACTOR only on the ISA level.
However, ACTOR can be generalized to other levels (e.g., RTL, gates) as long as
a mechanism to collect branch targets (i.e., branch-target buffer) is available.
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6 Related Work

ACTOR is a fault-outcome prediction, which makes heuristic decisions about the
outcome of a running experiment. To our knowledge, ACTOR is the first attempt
at dynamic timeout detection for the FI of transient hardware faults into running
programs; usually timeout detectors with a static execution budget [24] are
used. Nevertheless, others have proposed outcome-prediction strategies for other
failure classes. For example, SmartInjector [20] chooses predictor instructions
and trigger values for which the predictor instruction will produce a benign or
SDC result. During the FI experiment, when the faulty control-flow reaches a
predictor instruction, they compare the actual value to trigger value and abort
the experiment in case. On the gate level, we |7] have proposed fault-masking
terms to detect benign faults within the first cycle after injection. GangES [13]
runs several FI experiments in parallel and looks for equal execution states in
different experiments. If two experiments have the same state, only one experiment
is completed and its outcome is transferred to the other. However, they only
perform matching for a limited time after injection, whereby their measures
become ineffective for experiments that become stuck late.

In a broader sense, infinite loops can, as discussed throughout the paper, be
detected by autocorrelation [16], although the original 100x to 225x overhead
makes the unmodified approach unsuitable for FI. Another approach is Looper [4],
which use an SMT theorem solver to generate non-termination formulas, which
are checked at run-time. However, they also report prohibitive run-time overheads
of up to 10000x. The third route is to detect recurring program states, which
was done by Carbin et al. [5]. They record the whole program state and report an
infinite loop if that state did not change in between two loop iterations. However,
for our FI benchmarks, we have observed that timeouts often continue to change
their program state (e.g., decrementing a faulty loop counter).

Fault pruning, which reduces the number of planned faults by choosing pilot
injections that represent a group of faults, are a different way to speed up FI
campaigns. These techniques are complementary to ACTOR. Bartsch et al. [2]
have proposed a static program analysis based on unrolled data-flow graphs
(“program netlists”) that finds faults that will surely become benign. Relyzer by
Hari et al. [12] applies heuristic known-outcome pruning to reduce the amount of
experiments but is only able to find benign, SDC and trap experiments.

7 Conclusion

With this paper, we investigate on the nature of the failure classification timeout
in the context of FI campaigns for transient hardware faults. We observe that
timeouts require an over-proportional large amount of execution time, which
makes them a prime target for experiment-speedup techniques. From our analysis,
we derive that timeout detectors should execute shortly after the fault-free program
run-time to achieve the highest end-to-end savings while limiting their negative
effect of the failure classification.
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Based on this, we present ACTOR, an autocorrelation-based dynamic timeout

detector that detects highly-periodic branch patterns and aborts the FI experi-
ment early if it exceeds thresholds we derive from the golden run. Applied to seven
benchmarks from the MiBench benchmark suite, ACTOR achieves end-to-end
savings that range from 7.4 percent up to 27.6 percent in comparison to a static
timeout detector. Thereby, ACTOR maintains a low classification error of less
than 0.5 percentage points and a high (> 85 %) true-positive rate for experiments
that can be stopped early.
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