
ACTOR: Accelerating Fault Injection Campaigns using
Timeout Detection based on Autocorrelation

Tim-Marek Thomas1, Christian Dietrich2, Oskar Pusz1, Daniel Lohmann1

1Leibniz Universität Hannover, 2Technische Universität Hamburg

08.09.2022

Motivation - FI Campaigns

Why?

Transient hardware faults

Test reliability

Be as precise and complete as possible

→ (systematic) Fault Injection Campaign

0 1

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 2 – 13

Motivation - FI Campaigns

Why?

Transient hardware faults

Test reliability

Be as precise and complete as possible

→ (systematic) Fault Injection Campaign

0 1

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 2 – 13

Motivation - FI Campaigns

Problem: time

Covering whole fault space is
expensive

Depending on layer even more
(here: ISA)

Solutions:

Pruning fault space e.g. def-use based

Accelerate every single experiment
Expected
Behavior

Unexpected
Behavior

Time [Instructions]

S
pa

ce
 [B

its
]

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 3 – 13

Motivation - FI Campaigns

Problem: time

Covering whole fault space is
expensive

Depending on layer even more
(here: ISA)

Solutions:

Pruning fault space e.g. def-use based

Accelerate every single experiment
Expected
Behavior

Unexpected
Behavior

Time [Instructions]

S
pa

ce
 [B

its
]

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 3 – 13

Motivation - Timeouts

Different kinds of results per experiment:
SDC, Benign, Traps, …, Timeouts

Timeouts:
Low amount of experiments: up to 27.05 %
High amount of simulated Instructions: up to 61.67 %

Goal:
Minimize effect on campaign quality → low FP-rate
Maximize campaign time savings → high TP-rate

→ Lets take a look!

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 4 – 13

Motivation - Timeouts

Different kinds of results per experiment:
SDC, Benign, Traps, …, Timeouts

Timeouts:
Low amount of experiments: up to 27.05 %
High amount of simulated Instructions: up to 61.67 %

Goal:
Minimize effect on campaign quality → low FP-rate
Maximize campaign time savings → high TP-rate

→ Lets take a look!

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 4 – 13

General Musings

t0 t2tf�
tf = tinv

t1

golden run

Threshold

possible timesavings

�
tinv

possible timesavings

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 5 – 13

General Musings

t0 t2tf�
tf = tinv

t1

golden run

Threshold

possible timesavings

�
tinv

possible timesavings

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 5 – 13

General Musings

t0 t2tf�
tf = tinv

t1

golden run

Threshold

possible timesavings

�
tinv

possible timesavings

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 5 – 13

General Musings

t0 t2tf�
tf = tinv

t1

golden run

Threshold

possible timesavings

�
tinv

possible timesavings

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 5 – 13

General Musings

t0 t2tf�
tf = tinv

t1

golden run

Threshold

possible timesavings

�
tinv

possible timesavings

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 5 – 13

General Musings

t0 t2tf�
tf = tinv

t1

golden run

Threshold

possible timesavings

�
tinv

possible timesavings

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 5 – 13

General Musings - QSort

0 20000 40000 60000 80000 100000 120000
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fa
ls

e
 D

e
ci

si
o
n
 [

%
]

end of golden run

mibench/qsort

FP=1.0

FP=0.1

FP=0.01

Timeout Detector Invocation [Instr.]

0 20000 40000 60000 80000 100000 120000
Timeout Detector Invocation [Instr.]

0

5

10

15

20

25

30

C
a
m

p
a
ig

n
-T

im
e
 R

e
d
u
ct

io
n
 [

%
]

Optimum

TP=1

TP=0.9

TP=0.8

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 6 – 13

General Musings - QSort

0 20000 40000 60000 80000 100000 120000
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fa
ls

e
 D

e
ci

si
o
n
 [

%
]

end of golden run

mibench/qsort

FP=1.0

FP=0.1

FP=0.01

Timeout Detector Invocation [Instr.]

0 20000 40000 60000 80000 100000 120000
Timeout Detector Invocation [Instr.]

0

5

10

15

20

25

30

C
a
m

p
a
ig

n
-T

im
e
 R

e
d
u
ct

io
n
 [

%
]

Optimum

TP=1

TP=0.9

TP=0.8

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 6 – 13

Autocorrelation as Timeout Detector

Idea from Ibing et.al.[2]:

Interpret branch history as discrete signal

Autocorrelation as indicator for periodicity

High value → High probability of infinite loop

a

b c

a b a c a b a c a b a c a b a c a b a c

lag = 1 → 0
lag = 2 → 0
lag = 3 → 0
lag = 4 → 4

Branch-Target History b(20)b(1)

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 7 – 13

Autocorrelation as Timeout Detector

Idea from Ibing et.al.[2]:

Interpret branch history as discrete signal

Autocorrelation as indicator for periodicity

High value → High probability of infinite loop

a

b c

a b a c a b a c a b a c a b a c a b a c

lag = 1 → 0
lag = 2 → 0
lag = 3 → 0
lag = 4 → 4

Branch-Target History b(20)b(1)

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 7 – 13

Autocorrelation as Timeout Detector

Idea from Ibing et.al.[2]:

Interpret branch history as discrete signal

Autocorrelation as indicator for periodicity

High value → High probability of infinite loop

a

b c

a b a c a b a c a b a c a b a c a b a c

lag = 1 → 0
lag = 2 → 0
lag = 3 → 0
lag = 4 → 4

Branch-Target History b(20)b(1)

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 7 – 13

Autocorrelation as Timeout Detector

Adaption to FI-Campaigns:

1. Runtime is problematic (slowdown factors of 100x to 225x)

Collection of branches

Amount of invocations

2. Choose parameters:

Invocation time point

History length m

Maximum lag lmax
Threshold T

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 8 – 13

Autocorrelation as Timeout Detector

Adaption to FI-Campaigns:

1. Runtime is problematic (slowdown factors of 100x to 225x)

Collection of branches

Amount of invocations

2. Choose parameters:

Invocation time point

History length m

Maximum lag lmax
Threshold T

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 8 – 13

Autocorrelation as Timeout Detector

Derive parameters from the golden run:

Ivocation roughly at 1.2t1 → when m is filled

Branch density: m = #Instructions
#Branches ∗ 0.2

lmax = 16, for detecting tight loops

Lag specific threshold Tl :

Tl = 1+ max
s∈[0,(|H|−m)]

Rbb(l,H[s, s +m])

40000 60000 80000 100000

end of golden run

mibench/qsort

Timeout Detector Invocation [Instr.]

… a b a c a b a c a b a c b a a c a a c c …

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 9 – 13

Autocorrelation as Timeout Detector

Derive parameters from the golden run:

Ivocation roughly at 1.2t1 → when m is filled

Branch density: m = #Instructions
#Branches ∗ 0.2

lmax = 16, for detecting tight loops

Lag specific threshold Tl :

Tl = 1+ max
s∈[0,(|H|−m)]

Rbb(l,H[s, s +m])

40000 60000 80000 100000

end of golden run

mibench/qsort

Timeout Detector Invocation [Instr.]

… a b a c a b a c a b a c b a a c a a c c …

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 9 – 13

Autocorrelation as Timeout Detector

Derive parameters from the golden run:

Ivocation roughly at 1.2t1 → when m is filled

Branch density: m = #Instructions
#Branches ∗ 0.2

lmax = 16, for detecting tight loops

Lag specific threshold Tl :

Tl = 1+ max
s∈[0,(|H|−m)]

Rbb(l,H[s, s +m])

40000 60000 80000 100000

end of golden run

mibench/qsort

Timeout Detector Invocation [Instr.]

… a b a c a b a c a b a c b a a c a a c c …

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 9 – 13

Autocorrelation as Timeout Detector

Derive parameters from the golden run:

Ivocation roughly at 1.2t1 → when m is filled

Branch density: m = #Instructions
#Branches ∗ 0.2

lmax = 16, for detecting tight loops

Lag specific threshold Tl :

Tl = 1+ max
s∈[0,(|H|−m)]

Rbb(l,H[s, s +m])

40000 60000 80000 100000

end of golden run

mibench/qsort

Timeout Detector Invocation [Instr.]

… a b a c a b a c a b a c b a a c a a c c …

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 9 – 13

Autocorrelation as Timeout Detector

Derive parameters from the golden run:

Ivocation roughly at 1.2t1 → when m is filled

Branch density: m = #Instructions
#Branches ∗ 0.2

lmax = 16, for detecting tight loops

Lag specific threshold Tl :

Tl = 1+ max
s∈[0,(|H|−m)]

Rbb(l,H[s, s +m])

40000 60000 80000 100000

end of golden run

mibench/qsort

Timeout Detector Invocation [Instr.]

… a b a c a b a c a b a c b a a c a a c c …

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 9 – 13

Evaluation - Setup

Setup:

Integrated into FAIL*[3] - ISA level FI tool

Static 3t1 detector as ground truth

Seven benchmarks from MiBench [1]
Automotive and security branch

One with added TMR

Fault Model:

Uniformly distributed single-bit flips

In registers and memory

Benign, SDC, trap and timeout (TO)

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 10 – 13

Evaluation - Setup

Setup:

Integrated into FAIL*[3] - ISA level FI tool

Static 3t1 detector as ground truth

Seven benchmarks from MiBench [1]
Automotive and security branch

One with added TMR

Fault Model:

Uniformly distributed single-bit flips

In registers and memory

Benign, SDC, trap and timeout (TO)

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 10 – 13

Evaluation - Quality

Benchmark Classification Error ∆ % 1.2t1 Detector ACTOR Detector

Ben. SDC Trap TO TO [∆ %] Inv. TPR FPR

BitCount +0.00 −0.02 +0.00 +0.02

+0.04 4.69% 98.51% 93.40%

BitCount-TMR

−0.21 −0.01 +0.00 +0.22

+38.14 43.86% 86.12% 0.59%

QSort

−0.05 −0.35 −0.03 +0.43

+1.41 9.01% 88.55% 37.72%

SHA

+0.00 −0.16 −0.11 +0.27

+13.75 27.50% 99.75% 42.29%

Blowfish (enc)

−0.06 −0.12 −0.01 +0.19

+0.31 8.37% 98.27% 82.40%

Blowfish (dec)

−0.07 −0.13 +0.00 +0.20

+0.28 8.21% 96.76% 84.12%

AES (enc)

−0.03 −0.26 −0.11 +0.40

+0.46 5.63% 99.92% 56.39%

AES (dec)

−0.07 −0.08 −0.03 +0.19

+1.49 8.51% 85.65% 5.27%

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 11 – 13

Evaluation - Quality

Benchmark Classification Error ∆ % 1.2t1 Detector ACTOR Detector

Ben. SDC Trap TO TO [∆ %] Inv. TPR FPR

BitCount +0.00 −0.02 +0.00 +0.02

+0.04 4.69% 98.51% 93.40%

BitCount-TMR −0.21 −0.01 +0.00 +0.22

+38.14 43.86% 86.12% 0.59%

QSort −0.05 −0.35 −0.03 +0.43

+1.41 9.01% 88.55% 37.72%

SHA +0.00 −0.16 −0.11 +0.27

+13.75 27.50% 99.75% 42.29%

Blowfish (enc) −0.06 −0.12 −0.01 +0.19

+0.31 8.37% 98.27% 82.40%

Blowfish (dec) −0.07 −0.13 +0.00 +0.20

+0.28 8.21% 96.76% 84.12%

AES (enc) −0.03 −0.26 −0.11 +0.40

+0.46 5.63% 99.92% 56.39%

AES (dec) −0.07 −0.08 −0.03 +0.19

+1.49 8.51% 85.65% 5.27%

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 11 – 13

Evaluation - Quality

Benchmark Classification Error ∆ % 1.2t1 Detector ACTOR Detector

Ben. SDC Trap TO TO [∆ %] Inv. TPR FPR

BitCount +0.00 −0.02 +0.00 +0.02 +0.04

4.69% 98.51% 93.40%

BitCount-TMR −0.21 −0.01 +0.00 +0.22 +38.14

43.86% 86.12% 0.59%

QSort −0.05 −0.35 −0.03 +0.43 +1.41

9.01% 88.55% 37.72%

SHA +0.00 −0.16 −0.11 +0.27 +13.75

27.50% 99.75% 42.29%

Blowfish (enc) −0.06 −0.12 −0.01 +0.19 +0.31

8.37% 98.27% 82.40%

Blowfish (dec) −0.07 −0.13 +0.00 +0.20 +0.28

8.21% 96.76% 84.12%

AES (enc) −0.03 −0.26 −0.11 +0.40 +0.46

5.63% 99.92% 56.39%

AES (dec) −0.07 −0.08 −0.03 +0.19 +1.49

8.51% 85.65% 5.27%

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 11 – 13

Evaluation - Quality

Benchmark Classification Error ∆ % 1.2t1 Detector ACTOR Detector

Ben. SDC Trap TO TO [∆ %] Inv. TPR FPR

BitCount +0.00 −0.02 +0.00 +0.02 +0.04

4.69% 98.51% 93.40%

BitCount-TMR −0.21 −0.01 +0.00 +0.22 +38.14

43.86% 86.12% 0.59%

QSort −0.05 −0.35 −0.03 +0.43 +1.41

9.01% 88.55% 37.72%

SHA +0.00 −0.16 −0.11 +0.27 +13.75

27.50% 99.75% 42.29%

Blowfish (enc) −0.06 −0.12 −0.01 +0.19 +0.31

8.37% 98.27% 82.40%

Blowfish (dec) −0.07 −0.13 +0.00 +0.20 +0.28

8.21% 96.76% 84.12%

AES (enc) −0.03 −0.26 −0.11 +0.40 +0.46

5.63% 99.92% 56.39%

AES (dec) −0.07 −0.08 −0.03 +0.19 +1.49

8.51% 85.65% 5.27%

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 11 – 13

Evaluation - Quality

Benchmark Classification Error ∆ % 1.2t1 Detector ACTOR Detector

Ben. SDC Trap TO TO [∆ %] Inv. TPR FPR

BitCount +0.00 −0.02 +0.00 +0.02 +0.04 4.69%

98.51% 93.40%

BitCount-TMR −0.21 −0.01 +0.00 +0.22 +38.14 43.86%

86.12% 0.59%

QSort −0.05 −0.35 −0.03 +0.43 +1.41 9.01%

88.55% 37.72%

SHA +0.00 −0.16 −0.11 +0.27 +13.75 27.50%

99.75% 42.29%

Blowfish (enc) −0.06 −0.12 −0.01 +0.19 +0.31 8.37%

98.27% 82.40%

Blowfish (dec) −0.07 −0.13 +0.00 +0.20 +0.28 8.21%

96.76% 84.12%

AES (enc) −0.03 −0.26 −0.11 +0.40 +0.46 5.63%

99.92% 56.39%

AES (dec) −0.07 −0.08 −0.03 +0.19 +1.49 8.51%

85.65% 5.27%

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 11 – 13

Evaluation - Quality

Benchmark Classification Error ∆ % 1.2t1 Detector ACTOR Detector

Ben. SDC Trap TO TO [∆ %] Inv. TPR FPR

BitCount +0.00 −0.02 +0.00 +0.02 +0.04 4.69% 98.51%

93.40%

BitCount-TMR −0.21 −0.01 +0.00 +0.22 +38.14 43.86% 86.12%

0.59%

QSort −0.05 −0.35 −0.03 +0.43 +1.41 9.01% 88.55%

37.72%

SHA +0.00 −0.16 −0.11 +0.27 +13.75 27.50% 99.75%

42.29%

Blowfish (enc) −0.06 −0.12 −0.01 +0.19 +0.31 8.37% 98.27%

82.40%

Blowfish (dec) −0.07 −0.13 +0.00 +0.20 +0.28 8.21% 96.76%

84.12%

AES (enc) −0.03 −0.26 −0.11 +0.40 +0.46 5.63% 99.92%

56.39%

AES (dec) −0.07 −0.08 −0.03 +0.19 +1.49 8.51% 85.65%

5.27%

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 11 – 13

Evaluation - Quality

Benchmark Classification Error ∆ % 1.2t1 Detector ACTOR Detector

Ben. SDC Trap TO TO [∆ %] Inv. TPR FPR

BitCount +0.00 −0.02 +0.00 +0.02 +0.04 4.69% 98.51% 93.40%
BitCount-TMR −0.21 −0.01 +0.00 +0.22 +38.14 43.86% 86.12% 0.59%
QSort −0.05 −0.35 −0.03 +0.43 +1.41 9.01% 88.55% 37.72%
SHA +0.00 −0.16 −0.11 +0.27 +13.75 27.50% 99.75% 42.29%
Blowfish (enc) −0.06 −0.12 −0.01 +0.19 +0.31 8.37% 98.27% 82.40%
Blowfish (dec) −0.07 −0.13 +0.00 +0.20 +0.28 8.21% 96.76% 84.12%
AES (enc) −0.03 −0.26 −0.11 +0.40 +0.46 5.63% 99.92% 56.39%
AES (dec) −0.07 −0.08 −0.03 +0.19 +1.49 8.51% 85.65% 5.27%

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 11 – 13

Evaluation - Quality

Benchmark Classification Error ∆ % 1.2t1 Detector ACTOR Detector

Ben. SDC Trap TO TO [∆ %] Inv. TPR FPR

BitCount +0.00 −0.02 +0.00 +0.02 +0.04 4.69% 98.51% 93.40%
BitCount-TMR −0.21 −0.01 +0.00 +0.22 +38.14 43.86% 86.12% 0.59%
QSort −0.05 −0.35 −0.03 +0.43 +1.41 9.01% 88.55% 37.72%
SHA +0.00 −0.16 −0.11 +0.27 +13.75 27.50% 99.75% 42.29%
Blowfish (enc) −0.06 −0.12 −0.01 +0.19 +0.31 8.37% 98.27% 82.40%
Blowfish (dec) −0.07 −0.13 +0.00 +0.20 +0.28 8.21% 96.76% 84.12%
AES (enc) −0.03 −0.26 −0.11 +0.40 +0.46 5.63% 99.92% 56.39%
AES (dec) −0.07 −0.08 −0.03 +0.19 +1.49 8.51% 85.65% 5.27%

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 11 – 13

Evaluation - Time Savings

Benchmark Sim. Post-Inj. Instr. [%]
E2E [%]

ACTOR 1.2t1 OPTtf

BitCount −13.1 −17.3 −25.2 −12.66

BitCount-TMR −9.9 −14.6 −21.1 −7.39
QSort −19.5 −23.3 −32.3 −16.07
SHA −30.6 −44.4 −61.7 −27.64
Blowfish (enc) −16.1 −20.7 −28.7 −15.91
Blowfish (dec) −15.8 −20.4 −28.4 −15.72
AES (enc) −17.2 −16.0 −22.2 −17.59
AES (dec) −13.1 −14.5 −20.1 −12.24

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 12 – 13

Evaluation - Time Savings

Benchmark Sim. Post-Inj. Instr. [%]
E2E [%]

ACTOR 1.2t1 OPTtf

BitCount −13.1 −17.3 −25.2 −12.66
BitCount-TMR −9.9 −14.6 −21.1 −7.39
QSort −19.5 −23.3 −32.3 −16.07
SHA −30.6 −44.4 −61.7 −27.64
Blowfish (enc) −16.1 −20.7 −28.7 −15.91
Blowfish (dec) −15.8 −20.4 −28.4 −15.72
AES (enc) −17.2 −16.0 −22.2 −17.59
AES (dec) −13.1 −14.5 −20.1 −12.24

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 12 – 13

Evaluation - Time Savings

Benchmark Sim. Post-Inj. Instr. [%]
E2E [%]

ACTOR 1.2t1 OPTtf

BitCount −13.1 −17.3 −25.2 −12.66
BitCount-TMR −9.9 −14.6 −21.1 −7.39
QSort −19.5 −23.3 −32.3 −16.07
SHA −30.6 −44.4 −61.7 −27.64
Blowfish (enc) −16.1 −20.7 −28.7 −15.91
Blowfish (dec) −15.8 −20.4 −28.4 −15.72
AES (enc) −17.2 −16.0 −22.2 −17.59
AES (dec) −13.1 −14.5 −20.1 −12.24

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 12 – 13

ACTOR

Autocorrelation-based dynamic timeout
detector

Low classification error < 0.5%

High TP-Rate: 85% up to 99.9%

Up to 27.6 % end-to-end savings

t0 t2tf

golden run

Threshold�
tinv

possible timesavings

Takeaways:

Timeouts take (over-proportional) time!

Execute detectors shortly after golden program run-time

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 13 – 13

Bibliography

1. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., and Brown, R.B.: MiBench:
A free, commercially representative embedded benchmark suite. In: Fourth Annual IEEE
Intl. Workshop on Workload Characterization. WWC-4 (2001). DOI:
10.1109/WWC.2001.990739

2. Ibing, A., Kirsch, J., and Panny, L.: Autocorrelation-Based Detection of Infinite Loops at
Runtime. In: IEEE Int. Conf. Dependable, Autonomic and Secure Computing (2016). DOI:
10.1109/DASC-PICom-DataCom-CyberSciTec.2016.78

3. Schirmeier, H., Hoffmann, M., Dietrich, C., Lenz, M., Lohmann, D., and Spinczyk, O.: FAIL*: An
Open and Versatile Fault-Injection Framework for the Assessment of
Software-Implemented Hardware Fault Tolerance. In: Sens, P. (ed.) 11th European
Dependable Computing Conference (EDCC ’15) (2015). DOI: 10.1109/EDCC.2015.28

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation – 1 – 1

https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.78
https://doi.org/10.1109/EDCC.2015.28

	Motivation - FI Campaigns
	Motivation - FI Campaigns
	Motivation - FI Campaigns
	Motivation - FI Campaigns
	Motivation - Timeouts
	Motivation - Timeouts
	General Musings
	General Musings
	General Musings
	General Musings
	General Musings
	General Musings
	General Musings - QSort
	General Musings - QSort
	Autocorrelation as Timeout Detector
	Autocorrelation as Timeout Detector
	Autocorrelation as Timeout Detector
	Autocorrelation as Timeout Detector
	Autocorrelation as Timeout Detector
	Autocorrelation as Timeout Detector
	Autocorrelation as Timeout Detector
	Autocorrelation as Timeout Detector
	Autocorrelation as Timeout Detector
	Autocorrelation as Timeout Detector
	Evaluation - Setup
	Evaluation - Setup
	Evaluation - Quality
	Evaluation - Quality
	Evaluation - Quality
	Evaluation - Quality
	Evaluation - Quality
	Evaluation - Quality
	Evaluation - Quality
	Evaluation - Quality
	Evaluation - Time Savings
	Evaluation - Time Savings
	Evaluation - Time Savings
	ACTOR
	Appendix
	Bibliography
	References

