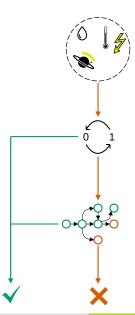
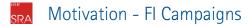


ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation

Tim-Marek Thomas¹, Christian Dietrich², Oskar Pusz¹, Daniel Lohmann¹

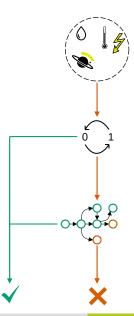
¹Leibniz Universität Hannover, ²Technische Universität Hamburg

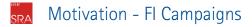

08.09.2022



Why?

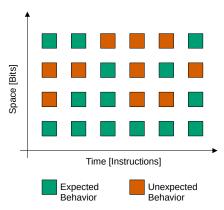
- Transient hardware faults
- Test reliability
- Be as precise and complete as possible
 - ightarrow (systematic) Fault Injection Campaign

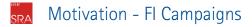




Why?

- Transient hardware faults
- Test reliability
- Be as precise and complete as possible
 - ightarrow (systematic) Fault Injection Campaign

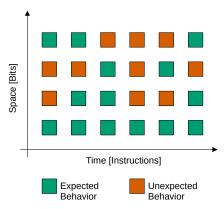



Problem: time

- Covering whole fault space is expensive
- Depending on layer even more (here: ISA)

Solutions:

- Pruning fault space e.g. def-use based
- Accelerate every single experiment



Problem: time

- Covering whole fault space is expensive
- Depending on layer even more (here: ISA)

Solutions:

- Pruning fault space e.g. def-use based
- Accelerate every single experiment

Different kinds of results per experiment:

- SDC, Benign, Traps, ..., <u>Timeouts</u>
- Timeouts:
 - Low amount of experiments: up to 27.05 %
 - High amount of simulated Instructions: up to 61.67 %

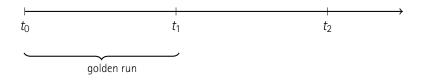
Goal:

- \blacksquare Minimize effect on campaign quality \longrightarrow low FP-rate
- Maximize campaign time savings \rightarrow high TP-rate

ightarrow Lets take a look!

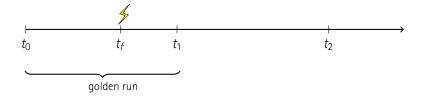
Different kinds of results per experiment:

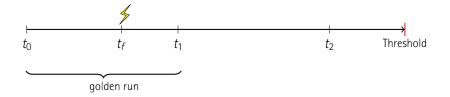
- SDC, Benign, Traps, ..., <u>Timeouts</u>
- Timeouts:
 - Low amount of experiments: up to 27.05 %
 - High amount of simulated Instructions: up to 61.67 %

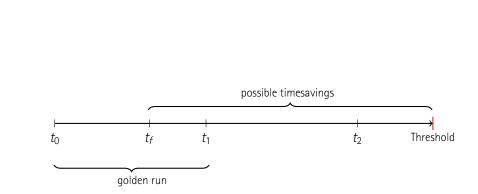

Goal:

- \blacksquare Minimize effect on campaign quality $\ \rightarrow$ low FP-rate
- $\blacksquare \ {\sf Maximize\ campaign\ time\ savings} \ \longrightarrow {\sf high\ TP-rate}$

 \rightarrow Lets take a look!

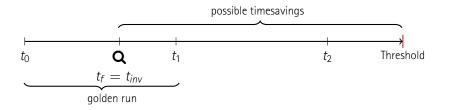


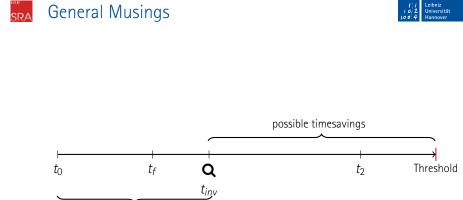




General Musings

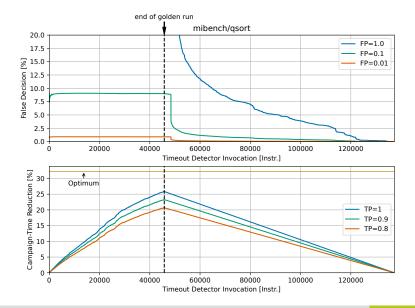
SRA


Leibniz Universität


Hannover

100

golden run



SRA General Musings - QSort

Idea from Ibing et.al.[2]:

- Interpret branch history as discrete signal
- Autocorrelation as indicator for periodicity
- High value \rightarrow High probability of infinite loop

а

b

Idea from Ibing et.al.[2]:

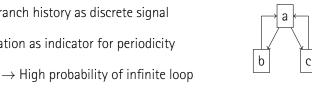
- Interpret branch history as discrete signal
- Autocorrelation as indicator for periodicity
- High value \rightarrow High probability of infinite loop

b(1))	Branch-Target History													Ŀ	(20)			
a	b	а	с	а	b	а	с	а	b	a	с	а	b	а	с	а	b	а	c

Idea from Ibing et.al.[2]:

b(1)

а


а

- Interpret branch history as discrete signal
- Autocorrelation as indicator for periodicity
- High value \rightarrow High probability of infinite loop

а

Branch-Target History

а

 $lag = 1 \rightarrow 0$ $lag = 2 \rightarrow 0$ $lag = 3 \rightarrow 0$ $lag = 4 \rightarrow 4$

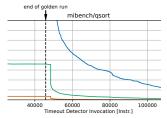
b(20)

Adaption to FI-Campaigns:

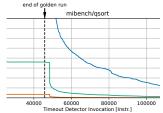
- 1. Runtime is problematic (slowdown factors of 100x to 225x)
 - Collection of branches
 - Amount of invocations

2. Choose parameters:

- Invocation time point
- History length *m*
- Maximum lag I_{max}
- Threshold T

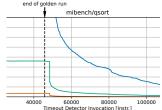

Adaption to FI-Campaigns:

- 1. Runtime is problematic (slowdown factors of 100x to 225x)
 - Collection of branches
 - Amount of invocations
- 2. Choose parameters:
 - Invocation time point
 - History length *m*
 - Maximum lag I_{max}
 - Threshold T

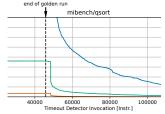

t t Leibniz τσ2 Universität τσσ4 Hannover

Derive parameters from the golden run:

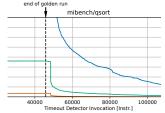
• Ivocation roughly at $1.2t_1 \rightarrow$ when *m* is filled



- Ivocation roughly at $1.2t_1 \rightarrow$ when *m* is filled
- Branch density: $m = \frac{\#\text{Instructions}}{\#\text{Branches}} * 0.2$


- Ivocation roughly at $1.2t_1 \rightarrow$ when *m* is filled
- Branch density: $m = \frac{\#\text{Instructions}}{\#\text{Branches}} * 0.2$
- Imax = 16, for detecting tight loops

- Ivocation roughly at $1.2t_1 \rightarrow$ when *m* is filled
- Branch density: $m = \frac{\#\text{Instructions}}{\#\text{Branches}} * 0.2$
- Imax = 16, for detecting tight loops
- Lag specific threshold T_l:


$$T_{I} = 1 + \max_{s \in [0, (|H| - m)]} R_{bb}(I, H[s, s + m])$$

- Ivocation roughly at $1.2t_1 \rightarrow$ when *m* is filled
- Branch density: $m = \frac{\#\text{Instructions}}{\#\text{Branches}} * 0.2$
- Imax = 16, for detecting tight loops
- Lag specific threshold T_l:

$$T_{I} = 1 + \max_{s \in [0, (|H| - m)]} R_{bb}(I, H[s, s + m])$$

SRA Evaluation - Setup

Setup:

- Integrated into FAIL*[3] ISA level FI tool
- Static 3t₁ detector as ground truth
- Seven benchmarks from MiBench [1]
 - Automotive and security branch
 - One with added TMR

Fault Model:

- Uniformly distributed single-bit flips
- In registers and memory
- Benign, SDC, trap and timeout (TO)

SRA Evaluation - Setup

Setup:

- Integrated into FAIL*[3] ISA level FI tool
- Static 3t₁ detector as ground truth
- Seven benchmarks from MiBench [1]
 - Automotive and security branch
 - One with added TMR

Fault Model:

- Uniformly distributed single-bit flips
- In registers and memory
- Benign, SDC, trap and timeout (TO)

Benchmark	Cla	ssificatio	n Error Z	<u>\</u> % 1	.2t1 Detector	ACTOR Detector		
Benefinark	Ben.	SDC	Trap	TO	TO [Δ %]	Inv.	TPR	FPR
BitCount BitCount-TMR QSort SHA Blowfish (enc) Blowfish (dec) AES (enc) AES (dec)	+0.00	-0.02	+0.00	+0.02				

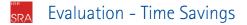
Benchmark	Cla	ssificatio	on Error Z	Δ %	$1.2t_1 \text{ Detector} \qquad \text{ACTOR Detector}$			r
benemiun	Ben.	SDC	Trap	TO	TO [Δ %]	Inv.	TPR	FPR
BitCount	+0.00	-0.02	+0.00	+0.02				
BitCount-TMR	-0.21	-0.01	+0.00	+0.22				
QSort	-0.05	-0.35	-0.03	+0.43				
SHA	+0.00	-0.16	-0.11	+0.27				
Blowfish (enc)	-0.06	-0.12	-0.01	+0.19				
Blowfish (dec)	-0.07	-0.13	+0.00	+0.20				
AES (enc)	-0.03	-0.26	-0.11	+0.40				
AES (dec)	-0.07	-0.08	-0.03	+0.19				

Benchmark	Cla	ssificatio	on Error Z	Δ%	1.2 <i>t</i> ₁ Detector	ACTC	ACTOR Detector		
benefinarik	Ben.	SDC	Trap	TO	TO [Δ %]	Inv.	TPR	FPR	
BitCount	+0.00	-0.02	+0.00	+0.02	+0.04				
BitCount-TMR	-0.21	-0.01	+0.00	+0.22	+38.14				
QSort	-0.05	-0.35	-0.03	+0.43	+1.41				
SHA	+0.00	-0.16	-0.11	+0.27	+13.75				
Blowfish (enc)	-0.06	-0.12	-0.01	+0.19	+0.31				
Blowfish (dec)	-0.07	-0.13	+0.00	+0.20	+0.28				
AES (enc)	-0.03	-0.26	-0.11	+0.40	+0.46				
AES (dec)	-0.07	-0.08	-0.03	+0.19	+1.49				

Benchmark	Cla	ssificatio	n Error Z	Δ%	1.2t ₁ Detector	ACTOR Detector		
benefinarik	Ben.	SDC	Trap	TO	TO [Δ %]	Inv.	TPR	FPR
BitCount	+0.00	-0.02	+0.00	+0.02	+0.04			
BitCount-TMR	-0.21	-0.01	+0.00	+0.22	+38.14			
QSort	-0.05	-0.35	-0.03	+0.43	+1.41			
SHA	+0.00	-0.16	-0.11	+0.27	+13.75			
Blowfish (enc)	-0.06	-0.12	-0.01	+0.19	+0.31			
Blowfish (dec)	-0.07	-0.13	+0.00	+0.20	+0.28			
AES (enc)	-0.03	-0.26	-0.11	+0.40	+0.46			
AES (dec)	-0.07	-0.08	-0.03	+0.19	+1.49			

Benchmark	Cla	ssificatio	n Error Z	Δ %	1.2t1 Detector	ACTOR Detector		
	Ben.	SDC	Trap	TO	TO [Δ %]	Inv.	TPR	FPR
BitCount	+0.00	-0.02	+0.00	+0.02	+0.04	4.69%		
BitCount-TMR	-0.21	-0.01	+0.00	+0.22	+38.14	43.86%		
QSort	-0.05	-0.35	-0.03	+0.43	+1.41	9.01%		
SHA	+0.00	-0.16	-0.11	+0.27	+13.75	27.50%		
Blowfish (enc)	-0.06	-0.12	-0.01	+0.19	+0.31	8.37%		
Blowfish (dec)	-0.07	-0.13	+0.00	+0.20	+0.28	8.21%		
AES (enc)	-0.03	-0.26	-0.11	+0.40	+0.46	5.63%		
AES (dec)	-0.07	-0.08	-0.03	+0.19	+1.49	8.51%		

Benchmark	Cla	ssificatio	n Error Z	Δ %	1.2t1 Detector	AC	ACTOR Detector		
	Ben.	SDC	Trap	TO	TO [Δ %]	Inv.	TPR	FPR	
BitCount	+0.00	-0.02	+0.00	+0.02	+0.04	4.69%	98.51%		
BitCount-TMR	-0.21	-0.01	+0.00	+0.22	+38.14	43.86%	86.12%		
QSort	-0.05	-0.35	-0.03	+0.43	+1.41	9.01%	88.55%		
SHA	+0.00	-0.16	-0.11	+0.27	+13.75	27.50%	99.75%		
Blowfish (enc)	-0.06	-0.12	-0.01	+0.19	+0.31	8.37%	98.27 %		
Blowfish (dec)	-0.07	-0.13	+0.00	+0.20	+0.28	8.21%	96.76%		
AES (enc)	-0.03	-0.26	-0.11	+0.40	+0.46	5.63%	99.92 %		
AES (dec)	-0.07	-0.08	-0.03	+0.19	+1.49	8.51%	85.65%		



Benchmark	Cla	ssificatio	on Error Z	∆ %	1.2t1 Detector	AC	ACTOR Detector		
	Ben.	SDC	Trap	TO	TO [Δ %]	Inv.	TPR	FPR	
BitCount	+0.00	-0.02	+0.00	+0.02	+0.04	4.69%	98.51%	93.40%	
BitCount-TMR	-0.21	-0.01	+0.00	+0.22	+38.14	43.86%	86.12%	0.59%	
QSort	-0.05	-0.35	-0.03	+0.43	+1.41	9.01%	88.55%	37.72%	
SHA	+0.00	-0.16	-0.11	+0.27	+13.75	27.50%	99.75%	42.29%	
Blowfish (enc)	-0.06	-0.12	-0.01	+0.19	+0.31	8.37%	98.27 %	82.40%	
Blowfish (dec)	-0.07	-0.13	+0.00	+0.20	+0.28	8.21%	96.76%	84.12%	
AES (enc)	-0.03	-0.26	-0.11	+0.40	+0.46	5.63 %	99.92 %	56.39%	
AES (dec)	-0.07	-0.08	-0.03	+0.19	+1.49	8.51%	85.65%	5.27%	

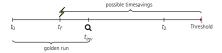


Benchmark	Cla	ssificatio	n Error Z	Δ %	1.2t1 Detector	AC	ACTOR Detector		
	Ben.	SDC	Trap	TO	TO [Δ %]	Inv.	TPR	FPR	
BitCount	+0.00	-0.02	+0.00	+0.02	+0.04	4.69%	98.51%	93.40%	
BitCount-TMR	-0.21	-0.01	+0.00	+0.22	+38.14	43.86%	86.12%	0.59%	
QSort	-0.05	-0.35	-0.03	+0.43	+1.41	9.01%	88.55%	37.72%	
SHA	+0.00	-0.16	-0.11	+0.27	+13.75	27.50%	99.75%	42.29%	
Blowfish (enc)	-0.06	-0.12	-0.01	+0.19	+0.31	8.37%	98.27%	82.40%	
Blowfish (dec)	-0.07	-0.13	+0.00	+0.20	+0.28	8.21%	96.76%	84.12%	
AES (enc)	-0.03	-0.26	-0.11	+0.40	+0.46	5.63 %	99.92 %	56.39%	
AES (dec)	-0.07	-0.08	-0.03	+0.19	+1.49	8.51%	85.65%	5.27%	



Benchmark	Sim. Po	E2E [%]		
	ACTOR	1.2 <i>t</i> ₁	$OPT_{t_{f}}$	[/0]
BitCount	-13.1	-17.3	-25.2	-12.66

Benchmark	Sim. Po	Sim. Post-Inj. Instr. [%]					
	ACTOR	1.2 <i>t</i> ₁	$OPT_{t_{f}}$	E2E [%]			
BitCount	-13.1	-17.3	-25.2	-12.66			
BitCount-TMR	-9.9	-14.6	-21.1	-7.39			
QSort	-19.5	-23.3	-32.3	-16.07			
SHA	-30.6	-44.4	-61.7	-27.64			
Blowfish (enc)	-16.1	-20.7	-28.7	-15.91			
Blowfish (dec)	-15.8	-20.4	-28.4	-15.72			
AES (enc)	-17.2	-16.0	-22.2	-17.59			
AES (dec)	-13.1	-14.5	-20.1	-12.24			


Benchmark	Sim. Po	Sim. Post-Inj. Instr. [%]					
	ACTOR	1.2 <i>t</i> ₁	$OPT_{t_{f}}$	E2E [%]			
BitCount	-13.1	-17.3	-25.2	-12.66			
BitCount-TMR	-9.9	-14.6	-21.1	-7.39			
QSort	-19.5	-23.3	-32.3	-16.07			
SHA	-30.6	-44.4	-61.7	-27.64			
Blowfish (enc)	-16.1	-20.7	-28.7	-15.91			
Blowfish (dec)	-15.8	-20.4	-28.4	-15.72			
AES (enc)	-17.2	-16.0	-22.2	-17.59			
AES (dec)	-13.1	-14.5	-20.1	-12.24			

- Autocorrelation-based dynamic timeout detector
- Low classification error < 0.5%
- High TP-Rate: 85% up to 99.9%
- Up to 27.6 % end-to-end savings

Takeaways:

- Timeouts take (over-proportional) time!
- Execute detectors shortly after golden program run-time

- Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., and Brown, R.B.: MiBench: A free, commercially representative embedded benchmark suite. In: Fourth Annual IEEE Intl. Workshop on Workload Characterization. WWC-4 (2001). DOI: 10.1109/WWC.2001.990739
- Ibing, A., Kirsch, J., and Panny, L.: Autocorrelation-Based Detection of Infinite Loops at Runtime. In: IEEE Int. Conf. Dependable, Autonomic and Secure Computing (2016). DOI: 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.78
- Schirmeier, H., Hoffmann, M., Dietrich, C., Lenz, M., Lohmann, D., and Spinczyk, O.: FAIL*: An Open and Versatile Fault-Injection Framework for the Assessment of Software-Implemented Hardware Fault Tolerance. In: Sens, P. (ed.) 11th European Dependable Computing Conference (EDCC '15) (2015). DOI: 10.1109/EDCC.2015.28