
ACTOR: Accelerating Fault Injection Campaigns using
Timeout Detection based on Autocorrelation

Tim-Marek Thomas1, Christian Dietrich2, Oskar Pusz1, Daniel Lohmann1

1Leibniz Universität Hannover, 2Technische Universität Hamburg

08.09.2022



Motivation - FI Campaigns

Why?

Transient hardware faults

Test reliability

Be as precise and complete as possible

→ (systematic) Fault Injection Campaign
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Motivation - FI Campaigns

Problem: time

Covering whole fault space is
expensive

Depending on layer even more
(here: ISA)

Solutions:

Pruning fault space e.g. def-use based

Accelerate every single experiment
Expected 
Behavior

Unexpected 
Behavior
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Motivation - Timeouts

Different kinds of results per experiment:
SDC, Benign, Traps, …, Timeouts

Timeouts:
Low amount of experiments: up to 27.05 %
High amount of simulated Instructions: up to 61.67 %

Goal:
Minimize effect on campaign quality → low FP-rate
Maximize campaign time savings → high TP-rate

→ Lets take a look!
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General Musings

t0 t2tf�
tf = tinv

t1

golden run

Threshold

possible timesavings

�
tinv

possible timesavings
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General Musings - QSort
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Timeout Detector Invocation [Instr.]

0 20000 40000 60000 80000 100000 120000
Timeout Detector Invocation [Instr.]

0

5

10

15

20

25

30

C
a
m

p
a
ig

n
-T

im
e
 R

e
d
u
ct

io
n
 [

%
]

Optimum

TP=1

TP=0.9

TP=0.8

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 6 – 13



General Musings - QSort

0 20000 40000 60000 80000 100000 120000
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fa
ls

e
 D

e
ci

si
o
n
 [

%
]

end of golden run

mibench/qsort

FP=1.0

FP=0.1

FP=0.01

Timeout Detector Invocation [Instr.]

0 20000 40000 60000 80000 100000 120000
Timeout Detector Invocation [Instr.]

0

5

10

15

20

25

30

C
a
m

p
a
ig

n
-T

im
e
 R

e
d
u
ct

io
n
 [

%
]

Optimum

TP=1

TP=0.9

TP=0.8

LUH ACTOR: Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation 6 – 13



Autocorrelation as Timeout Detector

Idea from Ibing et.al.[2]:

Interpret branch history as discrete signal

Autocorrelation as indicator for periodicity

High value → High probability of infinite loop

a

b c

a b a c a b a c a b a c a b a c a b a c

lag = 1 → 0
lag = 2 → 0
lag = 3 → 0
lag = 4 → 4

Branch-Target History b(20)b(1)
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Autocorrelation as Timeout Detector

Adaption to FI-Campaigns:

1. Runtime is problematic (slowdown factors of 100x to 225x)

Collection of branches

Amount of invocations

2. Choose parameters:

Invocation time point

History length m

Maximum lag lmax
Threshold T
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Autocorrelation as Timeout Detector

Derive parameters from the golden run:

Ivocation roughly at 1.2t1 → when m is filled

Branch density: m = #Instructions
#Branches ∗ 0.2

lmax = 16, for detecting tight loops

Lag specific threshold Tl :

Tl = 1+ max
s∈[0,(|H|−m)]

Rbb(l,H[s, s +m])

40000 60000 80000 100000

end of golden run

mibench/qsort

Timeout Detector Invocation [Instr.]

… a b a c a b a c a b a c b a a c a a c c …
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Evaluation - Setup

Setup:

Integrated into FAIL*[3] - ISA level FI tool

Static 3t1 detector as ground truth

Seven benchmarks from MiBench [1]
Automotive and security branch

One with added TMR

Fault Model:

Uniformly distributed single-bit flips

In registers and memory

Benign, SDC, trap and timeout (TO)
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Evaluation - Quality

Benchmark Classification Error ∆ % 1.2t1 Detector ACTOR Detector

Ben. SDC Trap TO TO [∆ %] Inv. TPR FPR

BitCount +0.00 −0.02 +0.00 +0.02

+0.04 4.69% 98.51% 93.40%

BitCount-TMR

−0.21 −0.01 +0.00 +0.22

+38.14 43.86% 86.12% 0.59%

QSort

−0.05 −0.35 −0.03 +0.43

+1.41 9.01% 88.55% 37.72%

SHA

+0.00 −0.16 −0.11 +0.27

+13.75 27.50% 99.75% 42.29%

Blowfish (enc)

−0.06 −0.12 −0.01 +0.19

+0.31 8.37% 98.27% 82.40%

Blowfish (dec)

−0.07 −0.13 +0.00 +0.20

+0.28 8.21% 96.76% 84.12%

AES (enc)

−0.03 −0.26 −0.11 +0.40

+0.46 5.63% 99.92% 56.39%

AES (dec)

−0.07 −0.08 −0.03 +0.19

+1.49 8.51% 85.65% 5.27%
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Evaluation - Time Savings

Benchmark Sim. Post-Inj. Instr. [%]
E2E [%]

ACTOR 1.2t1 OPTtf

BitCount −13.1 −17.3 −25.2 −12.66

BitCount-TMR −9.9 −14.6 −21.1 −7.39
QSort −19.5 −23.3 −32.3 −16.07
SHA −30.6 −44.4 −61.7 −27.64
Blowfish (enc) −16.1 −20.7 −28.7 −15.91
Blowfish (dec) −15.8 −20.4 −28.4 −15.72
AES (enc) −17.2 −16.0 −22.2 −17.59
AES (dec) −13.1 −14.5 −20.1 −12.24
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ACTOR

Autocorrelation-based dynamic timeout
detector

Low classification error < 0.5%

High TP-Rate: 85% up to 99.9%

Up to 27.6 % end-to-end savings

t0 t2tf

golden run

Threshold�
tinv

possible timesavings

Takeaways:

Timeouts take (over-proportional) time!

Execute detectors shortly after golden program run-time
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