
LLFREE: Scalable and Optionally-Persistent Page-Frame Allocation

Lars Wrenger
Leibniz Universität Hannover

Florian Rommel
Leibniz Universität Hannover

Alexander Halbuer
Leibniz Universität Hannover

Christian Dietrich
Hamburg University of Technology

Daniel Lohmann
Leibniz Universität Hannover

Abstract
Within the operating-system’s memory-management sub-

system, the page-frame allocator is the most fundamental com-
ponent. It administers the physical-memory frames, which
are required to populate the page-table tree. Although the
appearance of heterogeneous, nonvolatile, and huge memo-
ries has drastically changed the memory hierarchy, we still
manage our physical memory with the seminal methods from
the 1960s.

With this paper, we argue that it is time to revisit the de-
sign of page-frame allocators. We demonstrate that the Linux
frame allocator not only scales poorly on multi-core sys-
tems, but it also comes with a high memory overhead, suffers
from huge-frame fragmentation, and uses scattered data struc-
tures that hinder its usage as a persistent-memory allocator.
With LLFREE, we provide a new lock- and log-free allocator
design that scales well, has a small memory footprint, and
is readily applicable to nonvolatile memory. LLFREE uses
cache-friendly data structures and exhibits antifragmentation
behavior without inducing additional performance overheads.
Compared to the Linux frame allocator, LLFREE reduces
the allocation time for concurrent 4 KiB allocations by up
to 88 percent and for 2 MiB allocations by up to 98 percent.
For memory compaction, LLFREE decreases the number of
required page movements by 64 percent.

1 Introduction

In any virtual-memory subsystem, the allocation of physical
memory is a vital base primitive. Classically, the OS hands out
physical memory in page frames of MMU-imposed sizes and
uses simple free lists [42, 50] (Windows, Darwin) or special-
ized buddy-allocators [28] (Linux, FreeBSD) to manage mul-
tiple frame sizes. However, recent hardware trends (i.e., high
core counts and NVRAM) challenge these frame-allocator
designs.

One significant trend is the appearance of fast [49] byte-
addressable nonvolatile RAM (NVRAM) in the form of Intel

1 8 16 26
Threads

0

500

1000

Av
g.

 ti
m

e 
(n

s)

Order 0

1 8 16 26
Threads

0

20000

40000

60000

Order 9

Operation
alloc
free

Figure 1: Linux frame allocator performance for concurrent allocations
of 4 KiB (order 0) and 2 MiB (order 9) huge frames.

Optane DIMMs. Inspired by their persistence property, new
programming models [5, 39, 45, 52], file systems [10, 40, 48],
and crash-tolerant data structures [8, 13, 46] were proposed
and evaluated. And while Intel’s announcement [25] to wind
down its Optane business will make NVRAM harder to
obtain in the next years, it has been shown that low-cost,
high-capacity NVRAM is feasible and has significant po-
tential [1, 23, 31]. Furthermore, multiple researchers real-
ized that persistence and scalability are deeply entangled
properties [26, 29] that benefit both from lock-free algo-
rithms [8, 16, 46] and constructive avoidance of inconsistent
intermediate states.

Together with many cores competing for resources, large-
capacity NVRAM modules provoke the question of how, at
which costs, and with what guarantees the OS hands out the
available memory, which might be used for persistent data.
For example, for databases, current virtual-memory subsys-
tems can have a significant impact on their design [12, 35],
query-processing speeds [14] and buffer management [12,32].
Therefore, we believe it is time to revisit the whole virtual-
memory stack, starting from the bottom; the frame allocator.

First, we investigated whether the Linux frame alloca-
tor [18] and its underlying buddy system [28] still match to-
day’s requirements, not only for safely allocating frames from
NVRAM but also for the scalable management of DRAM.
Fig. 1 shows the multi-core scalability of bulk allocations.
With all 26 cores allocating in parallel, 4 KiB allocations slow
down by a factor of ten (94 ns→984 ns), while 2 MiB alloca-



tions are even 27 times slower! This poor scalability affects
many multicore and memory-heavy workloads [7]. The root
causes are the scattered allocator state and the usage of global
locks, both of which are also problematic [16, 17] for a crash-
tolerant NVRAM adaptation.

About this paper
We propose LLFREE, a persistent, lock- and log–free page-
frame allocator that: (1) focuses on memory-management
unit (MMU)-specific memory sizes, (2) scales well on mul-
ti-core systems by reducing memory sharing, (3) is memory
efficient due to its small amount of metadata, (4) has auto-
matic huge-frame defragmentation, and (5) is always in a
consistent state and, thus, well suited for persistent memory.
In this paper, we claim the following contributions:

• We explore the weaknesses of the Linux buddy allocator
and simpler list-based frame allocators.

• We derive design principles for hardware-centric lock-
and log-free physical memory management.

• With LLFREE, we provide a page-frame allocator that
is suited for both volatile and nonvolatile memory.

• We replace the Linux buddy allocator with LLFREE and
conduct a comprehensive evaluation to compare the two
allocators in terms of performance, scalability, spatial
overhead, fragmentation behavior, and crash consistency.

2 Problem Analysis: Linux Frame Allocator

The page-frame allocator must provide physical-memory
frames, which have MMU-specific granularities, are naturally
aligned, and are used to set up virtual address spaces. For
this paper, we will stick to the AMD64 MMU and its frame
sizes (4 KiB, 2 MiB, 1 GiB), which we call natural (alloca-
tion) sizes. However, the general design can be adapted to
other page sizes. For 4 KiB, we will use the term base frame,
for 2 MiB huge frame, and for 1 GiB giant frame, respectively.
While some kernels (e.g., Windows and Darwin) use sim-
ple free lists [42, 50], Linux (and FreeBSD) use the buddy
system [18, 28].

Linux Buddy Allocator A buddy allocator avoids external
fragmentation by allowing only allocation sizes of the form
2o×P, where P is the smallest size and o is the allocation
order. For each order, the buddy system keeps a bucket of
naturally-aligned free blocks. If an allocation hits an empty
bucket o, a block from the bucket o + 1 is requested and
halved into two buddies, whose start addresses differ only in
a single bit. One buddy is returned, the other is put into the
order-o bucket. The free operation tries to recursively merge
the block with already freed buddy blocks before putting the
block into a bucket. To speed up merging, buckets are usually
implemented as doubly-linked lists and a one-bit flag is used
to track which blocks are available for merging.

0 1 2 3 4 5 6 7 8 9 10
Allocation size (order)

101

103

105

Qu
an

tit
y

Allocation
Kernel
User

Figure 2: Requested allocation sizes during system startup and a
120 s memcached+memtier benchmark.

Linux employs one buddy allocator per memory
zone (e.g., for each NUMA node), supports the orders
o ∈ {0, . . . ,10}, and uses the base-frame size as P. Therefore,
the supported sizes are between 4 KiB and 4 MiB on AMD64.
Unlike a general-purpose buddy allocator, Linux does not
store the list pointers within the free memory, as this would
require all memory to be mapped, which is not supported
by all architectures. Instead, it uses the struct page for its
metadata.1 Also, each zone allocator is protected by a spin
lock, which serializes all split and merge operations. In order
to reduce contention on these locks, Linux further employs
per-CPU caches for the most frequently-used orders.

Problem 1: Mixing of Concerns Linux’s frame allocator is
not only used for hardware-sized page frames but also for allo-
cating contiguous physical-memory ranges of various orders.
Although this was necessary for allocating direct-memory
access (DMA) buffers before the widespread adoption of I/O-
MMUs, there is no technical requirement for this anymore.
However, the Linux developers still use those non-native sizes
to allocate larger kernel objects (e.g., stacks). To get a feeling
for this, we recorded the requested sizes during boot and a
subsequent memcached benchmark (see Fig. 2): We see that
userspace memory gets only requested for the natural orders 0
and 9, whereas the kernel mostly requests non-natural orders.
Allocating contiguous blocks of frames for kernel objects
might still be beneficial to save TLB entries (Linux identity-
maps all physical memory into the kernel space with giant
frames). However, by mixing frame- and kernel-object alloca-
tion, the allocator has to provide all orders via its interface,
which leads to a number of secondary problems.

Problem 2: Merge Cost Because there are nine buddy
orders between the base and huge frames, the transition be-
tween both is costly: In the worst case, starting from 512
4 KiB frames, it takes 511 buddy-merge operations to form
a single 2 MiB frame. For each merge and under lock, we
have to manipulate list pointers in five cache lines; four are in
struct pages that are usually not yet in the cache.

Problem 3: Scalability Furthermore, as we have seen in
Fig. 1, these already costly operations scale poorly if re-

1With struct page, Linux has a per-frame information store that is used
and repurposed by different subsystems. On AMD64, it is 64 bytes large.



quested by multiple threads. The reason for this is the con-
tention at the mentioned per-zone lock, which Linux tries
to mitigate by maintaining per-CPU caches for some orders.
Each per-CPU cache keeps a list of free blocks, which are
drained on memory pressure or if the cache exceeds a water-
mark. While for a long time, only order-0 allocations were
cached, Linux 5.13 extended the caches to order 1-3 and or-
der 9 (2 MiB). However, allocation-heavy workloads easily
overwhelm these per-CPU caches. Also, they aggravate frag-
mentation and complexity.
Problem 4: Huge-Frame Fragmentation Although the
buddy system prioritizes the smallest-fitting bucket, it has
a problem with huge-page fragmentation: For example, if a
single 4 KiB piece of an otherwise free 2 MiB frame is in use,
the other 511 base frames exist as 9 blocks of different orders
(4 KiB to 1 MiB). Since buckets are unsorted sets and the
allocator has no concept of “almost-full huge pages”, those
blocks have equal chances of being allocated as any other
block from any other huge frame. As a result, the buddy sys-
tem does not specifically aim to minimize the fragmentation
of huge frames. We will discuss this further in Sec. 5.6.

The per-CPU caches aggravate fragmentation as they delay
merge operations. Even if the last missing 4 KiB frame of
a 2 MiB frame has already been freed, it may reside in a
per-CPU cache that would have to be flushed to complete
the huge frame. Furthermore, as the per-CPU cache hides
memory from the buddy allocator, we cannot employ an intra-
bucket heuristic that increases the likelihood of a huge-frame
merge (e.g., appending to the end of the bucket list). On the
contrary, a recently freed block that could complete a 2 MiB
frame is more likely to be allocated again.

In order to reduce huge-page fragmentation, Linux has
supported “high-atomic page blocks” since 2015 to isolate
larger blocks and prevent them from being fragmented by
small allocations. Furthermore, Linux also employs active
defragmentation (memory compaction), where a background
task iterates through a memory zone and moves pages to the
beginning, clearing larger chunks at the end. However, both
induce additional complexity.
Problem 5: Persistent Allocations Given its current struc-
ture, the Linux frame allocator is unsuitable for persistent
allocations. For persistent NVRAM zones, the allocator must
be able to recover its state in case of a power loss to en-
sure the persistence of the required metadata. This is chal-
lenging [17] for complex algorithms (such as lock-protected
recursive frame merging), distributed state (such as doubly
linked lists), or redundancy (such as per-CPU caches). While
in theory, each of these problems could be solved with ex-
tra logging protocols [36, 41, 45], the performance, memory,
and complexity impact of doing so would be excessive. Also,
this logging overhead would have to be paid for every reg-
ular operation despite crashes being usually extremely rare.
Thus, we do not consider this as a realistic option. To our
knowledge, there are currently no persistent (page-frame) al-

locators that achieve allocation times close to their volatile
counterparts [3, 9, 33, 36, 41, 45, 52].
Problem Summary: Complexity In the end, the Linux
physical-memory allocator suffers from complexity. Mixing
the concerns of frame-sized and other allocation quantities
(Problem 1) motivates the buddy structure, which, however,
leads to high merge costs (Problem 2) and lock-based, doubly-
linked traversals that hamper multi-core scalability (Problem
3). This is mitigated by an increasing number of per-CPU
caches, which (combined with the buddy system) unfortu-
nately worsens huge-frame fragmentation (Problem 4), requir-
ing additional mechanisms such as high-atomic page blocks
and memory compaction that further increase the complexity.
All this results in a design that is unsuitable for persistent allo-
cations (Problem 5) due to redundant and distributed storage
of data and state.

All these design decisions were most probably well-
founded when they were made. We argue that the time has
come to revisit the design and structure of the most fundamen-
tal memory manager in our systems, the page-frame allocator.

3 The LLFREE Page-Frame Allocator

We originally designed LLFREE as a page-frame allocator
for natural frame sizes (4 KiB, 2 MiB) only, with the goal of
high scalability and suitability for persistent allocations. For
the Linux integration, we later had to extend it to support also
non-natural allocation orders, which to our surprise, worked
out without having to compromise on any of our design goals.
In the following, we describe the original design, while the
integration particularities are left to Sec. 4.

3.1 Design Principles
For our allocator, we specified three major design principles:

Respect Hardware The hardware characteristics define both
the structural elements for and the features of the software
implementation. We leverage MMU-defined frame sizes,
cache-line granularity in data structures, and available atom-
ics in algorithms.

Avoid Sharing On systems with multiple CPUs, both true
and false sharing are major bottlenecks for scalability, be-
coming even more significant on NUMA systems. Locks are
a frequent cause of sharing. We reduce access to shared data
structures and do not use locks.

Careful Redundancy Redundant information (such as soft-
ware caches and replicas) must be kept in sync. This is
especially difficult to accomplish when targeting crash con-
sistency on persistent memory since a potential crash can
disrupt the synchronization of these redundant data struc-
tures. Therefore, we strictly limit redundancy for the state
that is required for crash recovery.



CPU  0

cU r
r
r
r
r
r
r

r

cU

cU

cU

cU

cU

cU

cU

cL a
a

a

cL

cL

64 MiB Trees
2 MiB Children 4 KiB Bit Fields

(Persistent in NVRAM)

N=32

512 bit (512 frames)
(= 64 B cache line)

Upper Level Lower Level

10 + 1 bit
(2 B aligned)

(32 · 2 B = 64 B)

15 + 1 bit
(2 B aligned)

Flag

Free frames counter

Reservedr
Tree reservationt

Start PFN

Allocateda

s

c

In treeU

In bit fieldL

In preferred treeP

Last frees countercF

Last frees tree indexi

CPU  1 cL a
a

a

cL

cL

- Preferred tree
cP t s

cF i
- Last frees

- Preferred tree
cP t s

cF i
- Last frees

Figure 3: Architecture of the LLFREE allocator: The tree entries, child entries, and bit fields are stored consecutively in large arrays. From a PFN,
we can directly extract the indices of the corresponding tree entry, child entry, bit field, and the frame’s allocated bit within.

We do not claim fundamental novelty for these principles: The
first two are well established in the domain of scalable OS
kernel development; their benefits have been reported many
times [6, 15, 22, 47]. This does not particularly hold for the
third principle, which is more targeted at reaching crash con-
sistency than scalability. On the contrary, employing rather
than limiting redundancy is a common technique in kernel de-
sign to avoid sharing and improve scalability (as we have seen
in the previous section), so there is a trade-off between the two.
This deep entangling of persistence and scalability, as well
as the importance of avoiding intermediate states for crash
consistency on NVRAM, has already been reported in the do-
main of data structures and algorithms [8, 16, 26, 29, 46]. The
contribution of this paper is the rigorous combination and ap-
plication of these principles and dealing with their trade-offs
in the design of a page-frame allocator that is both scalable
on DRAM and optionally crash-consistent on NVRAM.

3.2 LLFREE: Design Overview
Fig. 3 depicts the architecture of LLFREE, which has been de-
signed for the natural allocation orders 0 (4 KiB base frames)
and 9 (2 MiB huge frames). Conceptually, LLFREE is divided
into two levels: A lower level that performs the actual allo-
cations and an upper level that implements allocation strate-
gies to avoid sharing and fragmentation. Roughly speaking,
the lower level takes responsibility for crash consistency –
only its state needs to be kept persistent on a crash-consistent
NVRAM zone – while the upper level provides for scalability.

3.2.1 Lower Level - Allocation Mechanisms

The lower level manages de/allocation of base and huge
frames. For this, it employs a table entry and a bit field of
512 bits (Fig. 3: 2 MiB Children, 4 KiB Bit Fields) for every
huge frame to mark the free (0) and taken (1) base frames
from this huge frame. The number of free base frames is also
maintained in the counter cL. Base frames are allocated by

first atomically decrementing cL (this prevents races for the
last free frame) and then searching the bit field for a 0 bit, an
operation supported by special processor instructions. Huge
frames are allocated by just changing the counter cL from
512 to 0 and setting the allocated flat flag a, all within a sin-
gle 16-bit compare-and-swap (CAS) operation. The bit field
remains untouched, and all-zero in this case, the necessary
bookkeeping (e.g., for crash recovery) is done in the a flag.

Thus, in most cases, the lower-level allocator needs to touch
only two cache lines for de/allocating a base frame (table
entry, bit field) and just one cache line for a huge frame (table
entry).2 Still, even if the current child/tree does not contain
enough frames for an allocation, our sequential search fits
well with the processor’s cache-line prefetching.

3.2.2 Upper Level - Allocation Strategies

The upper level provides for scalability by using allocation
strategies that constructively minimize (false) sharing and
huge-frame fragmentation. Technically, it manages the physi-
cal memory as an array of chunks we call trees (Fig. 3): Each
tree root refers to a lower-level table with N children that, in
turn, refer to N bit fields, each managing 512 frames, similar
to a page-table tree. We chose N = 32 so that child arrays
(in the lower level) occupy a single cache line; hence a tree
manages 16384 base frames, respectively 64 MiB.

Each tree root contains the count cU of free base frames
(for allocation strategies), as well as a reserved flag r (for per-
CPU pinning). Our early benchmarks showed that allocations
suffer from false sharing when entries in the lower-level child
array are updated concurrently. Hence, to avoid sharing, each
CPU can pin (r = 1) a preferred tree for its allocations.

If there are no free frames left in the preferred tree, a new
tree has to be reserved. The reservation algorithm follows
a search heuristic to avoid fragmentation of huge frames by
using cU to classify trees into one of three classes:

2One additional cache-line access will happen in the upper level.



allocated Almost all frames are taken (cU < 12.5 %).
free Almost all frames are free (cU > 87.5 %).

partial Everything in between.

The heuristic prioritizes partial trees over free and allocated
ones. Thereby, (almost) free trees have a higher chance of
becoming entirely free over time. However, we still select
free trees before allocated ones for a new CPU-preferred tree,
as the latter bear a high probability that allocations might
(soon) fail again, especially for huge frames. This is a trade-
off between performance and fragmentation.

The thresholds determining whether a tree is free, partial, or
allocated are configurable. Our benchmarks showed that the
thresholds of 12.5 percent (2048 free base frames for N = 32)
for free and 87.5 percent for allocated ones are sufficient
to avoid fragmentation (Sec. 5.6). The actual search for an
appropriate tree is done in the following order:

1. First, the neighborhood of the current CPU tree is
searched for partial or free trees, with neighborhood
being defined as the 31 other tree roots that reside on the
same cache line.

2. If this does not succeed, the whole trees array is sequen-
tially searched (first-fit) for a partial tree.

3. If no partial tree is found, the search is repeated for a
free tree or an allocated one with enough free pages.

4. As last resort, the allocator drains (unreserves) the trees
of other CPUs and steals them.

Note, however, that even the slow path of reserving a new
tree does not require locks and can be done fully parallel, as
the reservation itself requires only the atomic update of the
reserved flag of an entry. Given a memory zone of 256 GiB,
the algorithm accesses 128 cache lines in the worst case.

CPU-Local Tree Roots: Despite using per-CPU reserva-
tions, the updates on the tree array can still suffer from false
sharing when multiple CPUs concurrently update the free
counters of entries sharing a cache line. This can be solved in
two ways: either by aligning the 2 B tree entries to the cache
line size (64 B on x86) or by splitting the counter into a global
and a CPU-local part. We followed the second approach to
keep the memory and cache overhead low. On tree reserva-
tion, a CPU moves the free counter cU of the reserved tree
to its CPU-local data cP and sets cU to zero. Allocations and
frees from this CPU now change only the local counter cP.
Allocations from other CPUs no longer happen, as the tree is
reserved, but foreign frees from previous allocations may still
happen. In this case, only the global counter cU in the trees
array is incremented, which avoids invalidating the cache line
of the respective local entry. The counters are synchronized
if a local allocation runs out of memory (cP = 0) or, in rare
cases, by remotely draining a reserved tree from another CPU,
which also clears the tree’s reservation.

Besides the local free counter cP, the CPU-local entries
also contain an in-tree reservation flag t, and the start PFN,

combined into a single 64 bit data type. The start PFN con-
tains the last allocated base frame number; it acts as a last-fit
pointer to speed up allocations in the child array (divide by
512) and also identifies the reserved tree (divide by 512 ·N).

The t flag is atomically set during the reservation of a new
per-CPU tree to prevent races with remote draining or parallel
reservation attempts. The latter could only happen if the zone
is too small for one tree per core. If this is the case, the per-
CPU data is shared between multiple cores and the t-flag
coordinates the allocation of a new tree.3

Reserve-on-Free: While per-CPU trees prevent contention
and false sharing for concurrent allocations, frees must always
go to the tree that was the origin of the respective frame. If the
source CPU of the frame has meanwhile switched to a new
tree or the free is invoked from another CPU, this tree is not
the per-CPU tree. Especially on memory-intensive workloads,
frees thereby may still suffer from false sharing.

To mitigate this, LLFREE provides a reserve-on-free heuris-
tic that assumes that allocation and free workloads exhibit
locality: A CPU reserves a tree as its preferred tree after F
consecutive free operations targeted it, expecting that subse-
quent frees will also affect this tree (cF and i in Fig. 3). The
threshold F = 4 performed best in our benchmarks.

4 KiB Bit Fields
2 MiB Children

DRAM - Zone

Per-CPU

Page Frames Metadata

64 MiB Trees

NVRAM - Zone

Page Frames Persistent
Metadata

...

Zone Page

...

DRAM

Volatile
Metadata

Lower Level Upper Level

Figure 4: Layout of LLFREE-managed memory zones in persistent
and non-persistent memory.

3.2.3 Crash Consistency

LLFREE optionally provides crash-consistency on NVRAM
zones. For a crash-consistent NVRAM zone, only the allo-
cator’s lower level (cf. Fig. 3) has to be stored within the
persistent memory – plus one extra zone page storing a magic
identifier, the size of the memory region, and a startup/shut-
down marker to detect if the system needs to be recovered
after a power loss. The upper level always resides in DRAM
to reduce access latencies and avoid unnecessary writes to
NVRAM. It is restored into DRAM from the lower-level in-
formation. Fig. 4 depicts the zone layout for persistent and
non-persistent memory zones.

3On Linux-x86, this holds only for the 16 MiB DMA zone, which Linux
still offers for compatibility with legacy 16-bit ISA devices.



The key point of LLFREE’s design is that all transactions
authoritatively happen within a single atomic change of a sin-
gle cache line. For base frames, this is the atomic change in
the respective bit field, while huge-frame de/allocation is im-
plemented by the atomic change of a and cL in the child entry.
This ensures memory consistency as each authoritative change
is visible to all cache-coherent cores, and all derived informa-
tion (i.e., counter values) are altered by atomic commutative
operations, which are not affected by reordering.

The single–cache-line property also makes it easy to im-
plement persistence consistency on all systems that provide a
persist granularity [38] of at least one cache line to be written
atomically to the NVRAM at the end of the operation, which
is considered to be the minimum standard for NVRAM hard-
ware [10, 38]. In case of a recovery, each entry in the child
array is checked for the a flag: If it is set, the child entry is
the authoritative information – the entry is a huge page with
cL = 0 (the bit field is all-zero). Otherwise, the entry describes
a set of base pages – the bit field is the authoritative informa-
tion, which is used to restore the value of cL. The upper-level
state can then be restored from the child array.

While a crash during a de/allocation would never result in
an unrecoverable allocator state, it could lead to a lost frame.
This would happen if in an allocation the bit has already been
set, but the frame has not yet reached the caller, or if the
deallocation has been invoked but not yet cleared the bit. The
theoretical worst-case bound for this effect is the maximum
number of parallel operations, that is, the number of CPUs.
This could be mitigated by two-phase de/allocation protocols,
which, however, would also change the interface of the page
allocator. Crashes are rare events – and a crash during the
critical phase of a page-frame allocation even more so (the
endangered code sequences take only a few clock cycles).
Hence, the probability of an actual frame loss during the
lifetime of a system is extremely low, while even in the case
of such an incident, the costs would be acceptable.

4 Implementation

We implemented LLFREE as a Rust module, integrated it
with (and extended it for) the Linux kernel, and replaced the
original Linux buddy allocator with LLFREE. Its allocate
and free algorithms, discussed in the previous section, can be
found in the appendix (Fig. 14).

4.1 Approach
As the Linux community has started to adopt the Rust lan-
guage, we took the chance to explore how well it is suited for
a performance-critical low-level kernel module. Compared to
C, Rust has much more restricted (i.e., safer) memory man-
agement and avoids undefined behavior. We are convinced
that these properties, which prevent entire classes of memory
bugs, simplified the development of the allocator.

The modular LLFREE implementation contains a test en-
vironment that initializes the allocator on a virtual memory
mapping in user space for unit testing and benchmarking. This
made it possible to profile and find performance bottlenecks
early on. Besides standard unit tests, we developed specific
race-condition tests for the possible orders of atomic opera-
tions, which proved quite helpful in finding several design
and logic errors.

Following this approach, we were able to quickly imple-
ment and compare strategies for the upper and lower level
of the allocator. The final implementation consists of 2199
lines of safe Rust code (with 25 unsafe lines for initialization
and address translations) and 1318 lines of unit tests. The
Linux buddy allocator is written in C and mainly contained
in page_alloc.c (excluding reclaiming and memory com-
paction), which alone has 6060 lines of code – without any
tests. However, the buddy allocator is tightly coupled with
other memory subsystem components, making it difficult to
estimate its actual contribution to this source base.

4.2 Replacing the Linux Buddy Allocator
We modified Linux to boot with our LLFREE allocator. The
integration required some modifications to LLFREE (support
for non-natural orders), but especially to Linux itself due to
the tightly coupled implementation of the buddy allocator.
Nonetheless, the system seems stable for everyday workloads.

4.2.1 LLFREE Changes

LLFREE was specifically designed for the natural orders de-
fined by the hardware. Linux, however, requires supporting
all orders up to 10, which we implemented as follows: Orders
1 to 6 (2 to 64 frames) can be allocated similarly to order 0.
The allocation now searches for a large enough, aligned set
of zeros in the bit fields and allocates it, toggling the bits with
a single 64-bit CAS operation.

Orders 7 and 8 (128 and 256 frames) are allocated with an
optimistic lock-free algorithm using 2–4 atomic operations.
If one fails due to a race, the others are safely reverted, and
the search continues. However, these orders are rarely allo-
cated (cf. Fig. 2), and contention could only occur if a tree is
stolen during an allocation or we explicitly share a tree among
multiple CPUs. Hence, an actual conflict is a rare event.4

Order 10 was implemented by allocating two aligned child
entries at once, similar to an order 9 allocation. As these child
entries are only 16 bit large (with alignment), this is done with
a single 32-bit CAS operation. If a higher-order allocation
fails because the tree is fragmented, another one is reserved.
In this case, the allocator searches for a free tree that is not
fragmented before falling back on partial ones.

4This also breaks our assumption for persistence consistency from
Sec. 3.2.3 for orders 7 and 8. However, we can safely ignore this for now, as
non-natural orders are only employed by the kernel, which currently does
not use persistence.



4.2.2 Linux Changes

During boot, the data structures for the LLFREE allocator are
allocated by the early-boot memblock allocator and initialized.
Like the buddy allocator, we create one LLFREE instance per
memory zone and store a pointer to its data directly in the
struct zone. Most further changes in the code base are to
conditionally disable and replace the buddy allocator, its per-
CPU caches, zone locks, and high-atomic page blocks when
our implementation is activated (via a Kconfig option). In to-
tal, the LLFREE module, a thin wrapper around the LLFREE
allocator, added 942 lines. Outside this module, we changed
415 lines with 296 alone in page_alloc.c.

Most functionalities, including page reclamation, were eas-
ily adapted to the new allocator. However, some higher-level
services that directly use the buddy allocator’s internal data
structures, e.g., its free lists, turned out impossible to adapt
without completely rewriting them. Hence, we disabled them
for both allocators in the benchmarks. First, this includes
the memory fragmentation heuristic that decides whether ac-
tive memory compaction should be executed. The heuristic
uses the internal counters of the buddy-allocator’s free lists.
However, the need for active memory compaction is an ex-
ceptional state, only triggered when the allocator is highly
fragmented with almost no huge pages left. It does not hap-
pen in our benchmarks. Instead, we compare fragmentation
and compaction costs in Sec. 5.6. Second, we deactivated the
out-of-memory (OOM) handler, as its checks directly rely on
the internal free lists of the buddy allocator. Considering the
complexity of the OOM procedure, we consider its redesign
is outside the scope of this paper. Our benchmarks do not
trigger OOM events for both allocators.

To make the higher order allocation speeds in Linux com-
petitive, we had to implement two workarounds: The first
reduces the number of write accesses to the struct page

entries. As an aid for kernel-internal debugging (e.g., detect-
ing double frees), Linux reinitializes the flags of all struct
pages backing a higher order allocation, which is a costly
and mostly unnecessary overhead. Linux also differentiates
between standard allocations, which can be freed in parts,
and compound allocations, which can only be freed at once.
For compound allocations, all but the first struct page are
marked as tail page. This scattered, redundant encoding of
compound frames is costly, especially for huge frames. Mod-
ifying all 512 entries (i.e., 512 cache lines) for every de/al-
location is detrimental to the overall performance, making it
hard to distinguish and compare the allocation speeds of both
allocators. Thus, we benchmarked standard allocations and
disabled the flag reinitialization. The latter did not have any
observable consequences.

The second bottleneck that affected especially LLFREE is
the updating of the vmstat free-frames counter, which pro-
vides an estimate of the available free memory. This counter
is updated for de/allocations that escape the per-CPU caches.

To reduce congestion, each CPU has a local counter absorbing
updates up to a certain threshold. However, its current value of
125 is too small for huge frames. We increased the threshold
by 1024 (the size of the order 9 per-CPU caches). Because
the LLFREE allocator does not use these caches, the global
counter remains as accurate as with the buddy allocator using
the original value, as the latter may hide as many frames in
its per-CPU caches.

5 Evaluation

In our evaluation, we show that LLFREE scales well for dif-
ferent allocation patterns and sizes. We also look at the frag-
mentation behavior, quantify the memory overhead, and in-
vestigate crash recovery for the NVRAM case.

5.1 Evaluation Setup and Benchmarks
Our test system is a DELL PowerEdge R750 with two Gen 3
Intel(R) Xeon(R) Gold 5320 CPUs (2× 26 physical cores @
2.20 GHz). Each of the two NUMA nodes has four 32 GiB
DRAM DIMMs (total: 256 GiB DRAM) and four 128 GiB
Optane Gen 2 DIMMs (total: 1 TiB NVRAM). We assume
the eADR persistence guarantees offered by the Gen 3 Xeon
Gold architecture [24] (memory consistency 7→ persistence
consistency) and omit explicit persisting cache flushes (clwb)
in the implementation, as this also provides for a more di-
rect comparison of DRAM and NVRAM allocation speeds.5

For stable results, we disable proactive memory zeroing (a
recently introduced optional hardening feature) and hyper-
threading, which yields similar general performance charac-
teristics, with the exception that memory sharing is costlier
between physical cores than between logical ones. We execute
our benchmarks on the modified Linux 6.0 kernel with and
without LLFREE. As Linux instantiates allocators per mem-
ory zone (e.g., NUMA-1-DRAM) that do not impact each
other, we perform isolated tests with a single NUMA-node
allocator.

As allocator performance is highly work-load specific, we
created three synthetic benchmarks that cover a wide range
of allocation patterns: (1) For the bulk benchmark, all cores
allocate half of the available memory at once and directly free
it up again; this process is repeated. (2) The random bench-
mark allocates all memory(similar to the bulk benchmark)
and frees the frames in random order; we only measure free
operations. (3) For the repeat benchmark, each core allocates
and frees a single frame as fast as possible. Repeat has been
deliberately constructed as a best-case scenario for the Linux
buddy allocator, as it maximizes the expected benefit of the
local per-CPU caches. Nevertheless, this is the least realistic
scenario: Common is lazy allocation (due to demand paging)
with bulk/random free (at program termination).

5Note that LLFREE could also work with weaker persistency (Sec. 3.2.3).



0 2 4 6 8 10
Orders

0

100

200

Av
g.

 ti
m

e 
(n

s)

Bulk

0 2 4 6 8 10
Orders

Rand

0 2 4 6 8 10
Orders

Repeat
Operation

alloc
free
free+alloc

Memory
Volatile
Persistent

Figure 5: Per-order allocation time of standalone LLFREE on DRAM
and NVRAM (8 cores, 128 GiB)

0 2 4 6 8 10
Orders

103

105

Av
g.

 ti
m

e 
(n

s)

Bulk

0 2 4 6 8 10
Orders

Rand

0 2 4 6 8 10
Orders

Repeat
Operation

alloc
free
free+alloc

Allocator
LLFree
Buddy

Figure 6: Per-order allocation time of Linux-integrated LLFREE (8
cores, 128 GiB DRAM, logarithmic scale)

As individual operations execute fast, per-operation time
measurements would distort the results. Therefore, we mea-
sure the time for all operations and divide it by their number.
Since LLFREE benefits from free locality, we expect the ran-
dom benchmark to be especially challenging.

5.2 Allocation Sizes

First, we look at the allocation speeds of the different request
sizes (4 KiB – 4 MiB). For this, eight CPU-pinned threads
manage 128 GiB of DRAM or DAX-mapped Optane memory.
The benchmarks are executed both in our userspace bench-
mark environment to measure the standalone performance of
LLFREE and with a kernel module in the modified Linux.

Fig. 5 shows the average time per operation for the
userspace benchmarks. For bulk and repeat, one operation
costs less than 100 ns, while order 8 (1 MiB), which is the fur-
thest from the next lower natural order, is the most expensive
one. Due to random’s cache-miss and invalidation behavior,
a free operation can take up to 120 ns. Even though Optane
is known to have around twice the random-access latency
of DRAM [49], the resulting allocator performance is very
similar for DRAM and NVRAM, as most updates remain in
the L3 caches.

After these userspace results, we replaced the Linux buddy
allocator with LLFREE for a quantitative in-situ compari-
son. This integration induces higher management overheads
(e.g., updating struct page), which causes additional cache
misses compared to the previous userspace benchmark. As
Linux’s allocator is not crash-consistent, we now only look at
DRAM performance. Again, eight cores on the first NUMA
node execute the respective benchmark in parallel.

Fig. 6 shows that LLFREE is about one order of magni-

tude faster than the original Linux allocator for the bulk and
random benchmarks. For the repeat benchmark, where a sin-
gle frame is reallocated repeatedly, the per-CPU caches (or-
der 0-3, 9) make the buddy allocator faster than LLFREE
(e.g., for order 0: 112 ns vs.183 ns). This stems not only from
the caching itself but also from the fact that some statistics
(i.e., vmstat counters, NUMA hit/miss rates) are not updated
if the cache services a frame request. Nevertheless, for sizes
that are not covered by per-CPU caches, LLFREE is about
100 times faster in the repeat benchmark.

However, the per-CPU caches are not beneficial for all
workloads: In the bulk benchmark, we see that for order-9
allocations, the buddy allocator is about ten times slower than
orders 8 and 10. An in-depth analysis revealed the problem:
As the order-9 caches only have a capacity of two, the cache-
refill operation is invoked for every other frame. This refill
batches the allocation of multiple frames - two in this case -
into a single critical section, reducing the number of acquire
and release operations to the buddy lock. However, this critical
section also contains a check for all struct pages of the
allocated frames, which is especially expensive for higher-
order allocations. Therefore, the lock is held longer, increasing
lock contention compared to the other orders without caches
that perform these checks after releasing the lock.

If we compare Fig. 5 and Fig. 6, we see that there is still
potential for improvement in Linux’s allocation path. As the
other overheads scale linearly with the number of covered
4 KiB frames (for updating struct page), we are currently
unable to fully harvest LLFREE’s performance for 2 MiB
frames. For example, while 4 KiB random frees are equally
fast within the kernel, freeing a huge frame takes 4.48 times
longer.

5.3 Multicore Scalability

0

50

100

150

Av
g.

 ti
m

e 
(n

s)

Bulk Rand

Order 0

Repeat

1 8 16 26
Cores

0

50

100

150

Av
g.

 ti
m

e 
(n

s)

1 8 16 26
Cores

1 8 16 26
Cores

Order 9

Operation
alloc
free
free+alloc

Memory
Volatile
Persistent

Figure 7: Average time per core count on orders 0 and 9 and 128 GiB
memory of LLFREE in volatile and persistent memory

To evaluate multicore scalability, we focus on the two natu-
ral frame sizes and scale the number of requesting cores from
1 to 26. Again, Fig. 7 shows the raw LLFREE performance (in



102

103

104

105

Av
g.

 ti
m

e 
(n

s)

Bulk Rand

Order 0

Repeat

1 8 16 26
Cores

102

103

104

105

Av
g.

 ti
m

e 
(n

s)

1 8 16 26
Cores

1 8 16 26
Cores

Order 9

Operation
alloc
free
free+alloc

Allocator
LLFree
Buddy

Figure 8: Average time per core count on orders 0 and 9 and 128 GiB
memory in the Linux kernel on a logarithmic scale

userspace) on DRAM and NVRAM, while Fig. 8 (log-scale!)
shows the in-kernel performance on DRAM.

For the bulk and repeat userspace benchmarks (Fig. 7), we
see that LLFREE’s operation times remain almost constant,
independent of the number of cores, and the memory type
has only an insignificant influence on the performance. Here,
LLFREE’s allocation and free reservation system avoids most
sharing. Only for random, where cache invalidations and up-
date conflicts on child counters are more frequent, we see
a significant impact of more workers. However, even with
26 workers that request frames in parallel, a DRAM alloca-
tion/free of either order takes less than 170 ns.

In Fig. 8, we see that the Linux performance is heavily
influenced by its per-CPU caches for the natural sizes. For the
repeat benchmark, which is the best case for per-CPU caches,
we see that LLFREE is up to 65.18 percent (26 cores, 4 KiB)
slower than Linux. However, for bulk and random, which
exceed the capacity of the per-CPU caches, the Linux allocator
shows severe performance drops for more cores as memory
is now requested directly from the buddy system. While the
single-core performance for 4 KiB is still almost equal, Linux
takes 7.3/13.5 (bulk allocations/random frees) times longer
with 26 cores than LLFREE. For 26 cores requesting 2 MiB
frames, this changes to 52.5/9.6 times.

5.4 List-Based Allocators

1 8 16 26
Cores

102

104

Av
g.

 ti
m

e 
(n

s)

Bulk

1 8 16 26
Cores

Rand

1 8 16 26
Cores

Repeat Operation
alloc
free
free+alloc

Allocator
LLFree
ListLocked
ListCAS
ListLocal

Figure 9: Average speed of the list and LLFREE allocators per core
count for order 0 on 128 GiB DRAM

Besides the buddy system, simple free lists are a com-
mon design for page-frame allocators in commodity (Win-
dows [50], Darwin [42]) and research (Twizzler [5]) operating
systems. Like Linux, they mitigate lock contention on the
global structures by additional core-local lists. To compare
these allocator concepts with LLFREE, we built three pro-
totypical list-based allocator implementations and evaluated
their scalability. (1) The ListLocked allocator, consisting of
a lock-based shared singly-linked list (Windows, Darwin),
(2) the ListCAS allocator, which uses a LIFO lock-free list
instead [44] (supposed to be preferable over locking), and
(3) the ListLocal allocator, a theoretical allocator that main-
tains per-core lists only, does not need any protection and
never drains (ideal case). All list allocators store their next
pointers in a 64 B aligned array, similar to Linux’s struct

page array.
In Fig. 9, we see the results of this comparison on a logarith-

mic scale. As expected, the locked variant has the worst per-
formance due to the high degree of lock contention. However,
while replacing the lock with atomic operations improves
the situation by 81 percent (26 cores, random), we see that
this still does not solve the fundamental scaling issue; con-
tention basically just moves from the lock to the cache line
that contains the head pointer of the list.

To our surprise, LLFREE even outperforms (from 16 cores
onwards) the ideal ListLocal variant, which is not even suited
as a global frame allocator, but takes 36 percent more time on
26 cores for bulk allocations. This is caused by the state disper-
sion of linked lists: Virtually every allocation and free touches
at least one new cache line – compared to LLFREE’s cache-
friendly structure, where in the best case, 512 allocations
reuse the same three cache lines. In the random benchmarks,
LLFREE also suffers from cache misses due to non-local
frees (the worst case for LLFREE).

5.5 Allocator State Dispersion

To compare allocators’ temporal and spatial costs, we propose
the state-dispersion metric – a quantitative measure denoting
the byte count utilized for metadata storage. Intuitively, state
dispersion is the number of bytes accessed for a full enumer-
ation of the internal state. However, it is critical to under-
stand that state dispersion does not directly translate to mem-
ory overhead, given that allocators often repurpose the free
memory or overload other shared data structures (i.e., struct
page) for their metadata, whereby the plain memory overhead
becomes a less meaningful metric. However, an allocator ex-
hibiting high state dispersion will likely induce more cache
misses during its operation, impacting run-time efficiency.
This, of course, does not only depend on the size of the state
but also its spatial distribution.

In Tab. 1, we break down the state dispersion of LLFREE
and the Linux allocator into the different components. To put
these numbers into perspective, we also show how the disper-



Allocator Pe
r Z

on
e

Pe
r C

P
U

Pe
r 1

G
iB

1 Zone
128 GiB
52CPUs

Full Scan:
Accessed

Cache Lines

LLFREE 4.1 MiB 67 754

4 KiB Bit Fields 32.0 KiB 4.0 MiB 65 536
2 MiB Counters 1.0 KiB 128.0 KiB 2 048
64 MiB Trees 128 B 32 B 10.5 KiB 168
Global 128 B 128 B 2

Linux Buddy Allocator 516.0 MiB 33 555 169

Free Lists 988 B 4.0 MiB 512.0 MiB 33 554 448
Allocated Flag 32.0 KiB 4.0 MiB (within above)

Pageblock Bits 256 B 32.0 KiB 512
Per-CPU Caches 8 B 256 B 13.0 KiB 209

Table 1: Allocator-State Dispersion and Cache Overhead

sion scales to our benchmark machine (52 cores, 128 GiB, 1
memory zone) and how many distinct 64B cache lines would
be accessed for a complete enumeration in this setting.

Due to LLFREE’s usage of bit fields and counter arrays,
its state disperses only to 4.14 MiB (0.0032 % of DRAM)
on the benchmark machine. The primary contributor to this
are the 4 KiB bit fields (4 MiB). Thus, even a full-state scan
can comfortably fit within the machine’s 35 MiB L3 cache,
for which only 67 754 cache lines need to be loaded. Also,
as LLFREE does not repurpose memory, it does not require
physical memory to be mapped by the kernel, and its state
dispersion is equal to its memory overhead.

In contrast, the Linux allocator stores most of its state in
struct page. There, it requires one flag and repurposes the
16 bytes of the LRU list pointers (double-linked list) for its
per-order free lists and for the per-CPU page caches. Due to
the scattered nature of linked lists, the Linux allocator (po-
tentially) spreads its state over 516 MiB (0.39 % of DRAM).
Even worse, as each struct page resides on its own cache
line, a complete state scan would have loaded 33 555 169
cache lines. Hence, in comparison to LLFREE, Linux’s allo-
cator state not only disperses over 125 times more memory,
but even requires 495 times more cache lines to be loaded for
the full scan.

Furthermore, as LLFREE does not rely on the struct

page, this also raises the question if they could be shrunk
or eliminated. These records currently occupy 1.56 percent
of DRAM. Unfortunately, removing the allocator’s depen-
dency on struct page does not directly result in smaller
per-frame records, as other kernel subsystems reuse the LRU
list pointers for various purposes when the frame is allocated
(in the Linux source code, struct page is basically a mess
of unions). Therefore, shrinking or even eliminating struct

page is a deeply cross-cutting and challenging task.
Nevertheless, an allocator that, like LLFREE, does not re-

quire a per-frame record significantly eases this challenge,
since we then would only need per-frame records for allo-
cated frames. For example, with Linux’s current move to
struct folio [11], which describes a bundle of physically
contiguous frames, it could become possible to allocate this

record dynamically. In this sense, we see LLFREE as an im-
portant first step into untangling struct page dependencies.
However, its complete elimination remains a topic of further
research.

5.6 Fragmentation and Compaction Cost

Next, we look at the huge-frame fragmentation behavior of
both allocators. For this, we first define a metric for this frag-
mentation and for the memory-compaction cost that would
be required to remove this fragmentation. To measure frag-
mentation, we count the number of huge frames that can be
allocated if we drain all caches but perform no memory com-
paction. We then compare this to the number of possible huge
frames that could be allocated with compaction to get an idea
of the fragmentation level in the system.

To gauge the compaction cost, we consider the minimal
number of 4 KiB copy operations required to free up the pos-
sible maximum of huge frames. To calculate this metric, we
(1) count the number of free 4 KiB frames in each possible
huge frame, (2) sort the resulting array, and (3) match the
“fullest” with the “emptiest” huge frames while counting the
number of required copy operations. Please note that Linux
skips step 1 and 2 and moves memory to the beginning of
the zone, which results in suboptimal memory compaction.
With LLFREE, however, sorting the children array (see Fig. 3)
would bring us close to the optimal variant.

To compare both allocators, we conduct the following syn-
thetic benchmark: First, we generate an initial memory con-
figuration that is a worst-case scenario for a maximally frag-
mented physical memory. For this, we allocate 90 percent of a
125 GiB region before freeing up half of all 4 KiB frames ran-
domly again. Starting with this fragmented state, we perform
100 iterations, each freeing 10 percent of the allocated mem-
ory in the form of randomly-selected 4 KiB frames and real-
locating the same amount again as individual 4 KiB frames.
After each iteration, we drain the CPU-local caches (buddy),
respectively the tree reservations (LLFREE), and measure the
huge-frame fragmentation and the compaction cost. Note that
we still leave the Linux memory compactor turned off (as
stated in Sec. 4.2.2). Like in our other benchmarks, we do not
trigger unfulfillable allocation requests, which would require
synchronous compaction. We measured the hypothetical com-
paction costs for each iteration for both allocators using the
described offline calculation.

Fig. 10 shows the change of both metrics over time. The
Linux allocator can recover only a single huge frame in this
benchmark, although the whole memory was cycled ten times
over (100 iterations). Also, the compaction cost decreased
only by 3.3 percent, indicating that huge frames are only
getting slowly defragmented over time. Additionally, our sce-
nario benefits Linux as we drain the per-CPU caches and use
the optimal compaction-cost metric. In contrast, LLFREE can
recover 46.6 percent of the initially polluted huge frames over



0 20 40 60 80 100
Iteration

0
10
20
30
40
50

Pe
rc

en
ta

ge

Free Huge Frames

0 20 40 60 80 100
Iteration

0

2

4

6

Pa
ge

 M
ov

es

1e6 Compaction Costs

LLFree
Buddy

Figure 10: Free huge frames (left) and compaction cost (right) over
iterations that randomly reallocate 10% of the allocated memory.

the benchmark. Although it looks like defragmentation only
starts to kick in around iteration 50, a look at the compaction
cost indicates that entropy decreases right from the beginning;
there are just no completely free huge-frame frames yet. After
performing reallocations summing up to the total amount of
memory (10 iterations), we are at 39.1 percent compaction
cost and after 50 iterations, we would only require 4.9 percent
of the initially-required copy operations.

Overall, we see that LLFREE shows a passive defragmen-
tation behavior steered by our subtree-allocation policy. As a
buddy system does not track the “fullness” of split-up buckets,
it cannot imitate this on the cheap.

5.7 Crash Recovery
As validating crash consistency by real system crashes is
too time-consuming to obtain robust results, we simulate
LLFREE’s recovery (Sec. 3.2.3) for regular shutdowns and
crashes using a userspace benchmark on a DAX-mapped
NVRAM region: For this, (1) we initialize the allocator on a
128 GiB region, (2) allocate half of it randomly, and (3) allo-
cate and free memory repeatedly as in Sec. 5.6. For regular
shutdowns, the process terminates after (2), while we simulate
crashes by randomly killing the benchmark with SIGKILL dur-
ing (3). Afterward, another process recovers the allocator’s
state from the persistent memory.

In total, we injected 1000 crashes and LLFREE could re-
cover its state in all cases; in about half of the experiments, we
actually lost frames (at most one per core), which is expected,
as the cores spent all their time in alloc/free. For the recovery
procedure, LLFREE iterates through the bit fields to correct
the child counters, which takes on average 2460 µs. In com-
parison, a regular NVRAM re-initialization, where LLFREE
only needs to iterate over the child tables, takes only 477 µs.
Recovery was done single-threaded but could be parallelized
and partially performed in the background if recovery times
should become an issue.

5.8 Application-Level Benchmarks
As a real-world application benchmark, we used memtier6,
which evaluates the performance of the memcached key-value

6https://github.com/RedisLabs/memtier_benchmark

2 4 8 12 16
Cores

250

500

750

Op
er

at
io

ns
 / 

m
s Gets

2 4 8 12 16
Cores

25

50

75

Sets

Allocator
LLFree
Kernel

Figure 11: Number of Gets / Sets per millisecond for the memtier
benchmark.

1 8 16 24
Cores

0.02

0.04

Av
g.

 ti
m

e 
(s

)

Populate

1 8 16 24
Cores

0.000

0.002

0.004

DontNeed

Allocator
LLFree
Buddy

Figure 12: Average time to populate/free a 128 GiB memory map in
the write benchmark.

store. It measures the throughput of Get and Set requests.
Unfortunately, we see no significant difference as shown in
Fig. 11. As the page allocator is primarily used by the page-
fault handler, which lazily allocates memory, the overhead of
the other involved memory management components might
overshadow any performance gains.

To investigate this hypothesis further, we created the write
benchmark, which maps a large memory region and popu-
lates it in parallel. The population is done by writing a non-
zero value into the first byte of the page, triggering a page
fault and subsequent allocation request. For unmapping, the
madvice/DONTNEED syscall is used. The benchmark is exe-
cuted for 1–26 cores, with the memory region split evenly
between the cores. Again, the results in Fig. 12 show no signif-
icant difference between the buddy and LLFREE allocators,
just like the memtier benchmark.

Utilizing the perf profiler, we measured where most of
the runtime is spent. The flame graph in Fig. 13 shows that
the page allocator (yellow) only accounts for 5.3 percent of
the runtime. Primarily dominant are the struct mm rw-lock
(orange, 17.3 %) and the updates of the LRU, cgroups, reverse
mappings, and struct page flags (green, 28.7 %). Because
most struct page update macros are inlined, the actual time
is probably higher. These memory-management bottlenecks
are consistent with other research [7, 12, 14, 32, 35].

6 Discussion

Our results show (besides crash consistency) that LLFREE
provides excellent scalability in user- and kernel-level bench-
marks, achieved by its consequent lock-free and cache-
friendly design. Nevertheless, these benefits are not yet visible
in end-to-end benchmarks, even though there are applications

https://github.com/RedisLabs/memtier_benchmark


write

charge_m.. vm..
unm..

do_user_addr_fault zap..
do_anonymous_page

f..

asm_exc_page_fault

t..

madv..

r..

down..

c.. tr..

up_..

Flags / LRU / rmap / cgroup
MM rw-lock
Page allocator

Allocate
 

Free
 

Number of samples

S
tack trace

Figure 13: Flame graph for the write benchmark with the Buddy
allocator on 8 cores and 128 GiB DRAM.

for which OS-level memory de/allocation performance al-
ready is a big issue [12, 14, 32, 35].

We argue that, given the deep entangling and grown com-
plexity, the scalability problem could only be solved in a
bottom-up manner and provide LLFREE and its design con-
cepts as a first step in this direction. We believe if nonvolatile
memories will play a role some day, their kernel-level man-
agement has to be designed together with volatile memory
– and see LLFREE as an important step in this direction. Fi-
nally, our results also show that the conjunction of striving for
scalability and persistence [8, 16, 46] works out particularly
well in kernel design if considered from the very beginning.

7 Related Work

Many general-purpose allocators [3, 9, 33, 36, 41, 45, 52]
for nonvolatile memory have been proposed. In contrast to
LLFREE, all of them use logging to ensure crash consistency,
which increases NVM wear [49], and locks for multithreaded
operation; some reduce lock contention by using multiple
allocator instances [36, 41], per-CPU/thread free lists [3, 9] or
range locking [52]. From these, PAllocator [36] has similari-
ties to LLFREE as it comes with antifragmentation measures
and, similar to our lower level, stores only parts of its state in
NVRAM and recovers its volatile state on boot. Nevertheless,
all of these persistent allocators are general-purpose userspace
allocators and, thus, have different design goals compared to
a kernel page-frame allocator like LLFREE.

On the OS side, Twizzler [5] is explicitly built around non-
volatile memory but nevertheless does not contain a persistent
page-frame allocator. Instead, the system rebuilds the alloca-
tor state from the persistent objects on each reboot in DRAM.
To our knowledge, LLFREE is the first persistent page-frame
allocator to be used within the operating system.

While the immunity to external fragmentation was one of
the original motivations for paging [2], its extension to dif-
ferent frame sizes brought back the problem. To ease active
huge-frame reclamation, placement strategies [19–21] cate-
gorize allocations (i.e., movable, reclaimable) and spatially
cluster them onto separate huge frames. For this, Linux has
multiple free lists per buddy order, each of which serves a
different category. LLFREE currently does not support such
categorization. However, it could easily be extended for this

by specialized trees (see Sec. 3.2.2). For Linux, strategies with
better clustering characteristics have been suggested [37].

Other measures to reduce huge-frame fragmentation in-
clude proactive compaction [30] and anticipated continuous
memory reservation [27, 34]. Even hardware solutions have
been proposed, such as building huge frames of noncontin-
uous memory [43], or an additional level in address transla-
tion [51] similar to nested paging [4]. In contrast, LLFREE
is a pure software solution that passively defragments huge
frames while being fast and crash-consistent at the same time.

8 Conclusion

The page-frame allocator, which manages the physical mem-
ory, is at the core of all memory management in modern op-
erating systems. However, as we have shown in the example
of Linux, its classical lock-based design with many lists and
distributed metadata has not kept up with the progress in hard-
ware towards massive-parallel systems with large amounts of
heterogeneous volatile and nonvolatile memories. This results
in internal complexity, poor scalability, high memory fragmen-
tation, and general unfitness for achieving crash-consistent
allocations on nonvolatile memories.

We presented LLFREE, a new log- and lock-free page-
frame allocator that, by its lockless and cache-centric de-
sign, achieves excellent scalability for parallel allocations (53
times faster than the Linux buddy allocator for parallel 2 MiB
DRAM allocations on 26 cores), while constructively keeping
huge-page fragmentation low. All de/allocations manifest in
memory by a one–cache-line transaction, whereby LLFREE
can provide crash-consistency for persistent NVRAM with-
out logging and at near-DRAM speed on eADR systems. Our
integration of LLFREE into Linux was successful, but it also
revealed many further bottlenecks of its memory-management
subsystem and the deep entangling of the buddy allocator with
it. These topics demand further investigation and redesign.
We consider LLFREE a crucial first step towards a complete
structural rethinking of the OS memory management.

Acknowledgments

We thank our anonymous reviewers for their helpful and
constructive comments. Special thanks go to Godmar Back,
whose demanding and encouraging shepherding has helped
us tremendously improve this paper’s content and quality.

This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – 468988364,
501887536.



References

[1] AKRAM, S. Exploiting Intel Optane persistent mem-
ory for full text search. In Proceedings of the 2021
ACM SIGPLAN International Symposium on Memory
Management (New York, NY, USA, 2021), ISMM 2021,
Association for Computing Machinery, p. 80–93.

[2] BENSOUSSAN, A., CLINGEN, C. T., AND DALEY, R. C.
The Multics virtual memory. In Proceedings of the
2nd ACM Symposium on Operating Systems Principles
(SOSP ’69) (New York, NY, USA, 1969), ACM Press,
pp. 30–42.

[3] BHANDARI, K., CHAKRABARTI, D. R., AND BOEHM,
H. Makalu: fast recoverable allocation of non-volatile
memory. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA
2016, part of SPLASH 2016, Amsterdam, The Nether-
lands, October 30 - November 4, 2016 (2016), pp. 677–
694.

[4] BHARGAVA, R., SEREBRIN, B., SPADINI, F., AND
MANNE, S. Accelerating two-dimensional page walks
for virtualized systems. In Proceedings of the 13th
International Conference on Architectural Support for
Programming Languages and Operating Systems (New
York, NY, USA, 2008), ASPLOS XIII, Association for
Computing Machinery, p. 26–35.

[5] BITTMAN, D., ALVARO, P., MEHRA, P., LONG, D.
D. E., AND MILLER, E. L. Twizzler: a data-centric
OS for non-volatile memory. In 2020 USENIX Annual
Technical Conference (USENIX ATC ’20) (July 2020),
USENIX Association, pp. 65–80.

[6] BOYD-WICKIZER, S., CHEN, H., CHEN, R., MAO, Y.,
KAASHOEK, F., MORRIS, R., PESTEREV, A., STEIN,
L., WU, M., DAI, Y., ZHANG, Y., AND ZHANG, Z.
Corey: An operating system for many cores. In 8th
Symposium on Operating System Design and Implemen-
tation (OSDI ’08) (Berkeley, CA, USA, 2008), USENIX
Association, pp. 43–57.

[7] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y.,
PESTEREV, A., KAASHOEK, M. F., MORRIS, R., AND
ZELDOVICH, N. An analysis of Linux scalability to
many cores. In 9th Symposium on Operating System
Design and Implementation (OSDI ’10) (Berkeley, CA,
USA, 2010).

[8] CHEN, Z., HUA, Y., DING, B., AND ZUO, P. Lock-free
concurrent level hashing for persistent memory. In 2020
USENIX Annual Technical Conference (USENIX ATC
20) (July 2020), USENIX Association, pp. 799–812.

[9] COBURN, J., CAULFIELD, A. M., AKEL, A., GRUPP,
L. M., GUPTA, R. K., JHALA, R., AND SWANSON,
S. NV-Heaps: making persistent objects fast and safe
with next-generation, non-volatile memories. ACM
SIGARCH Computer Architecture News 39, 1 (Mar.
2011), 105–118.

[10] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK,
E., LEE, B., BURGER, D., AND COETZEE, D. Better
I/O through byte-addressable, persistent memory. In
Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles (SOSP ’09) (New York,
NY, USA, 2009), ACM, pp. 133–146.

[11] CORBET, J. Clarifying memory management with page
folios, 05 2023.

[12] CROTTY, A., LEIS, V., AND PAVLO, A. Are you sure
you want to use mmap in your database management
system? In CIDR 2022, Conference on Innovative Data
Systems Research (2022).

[13] DAVID, T., DRAGOJEVIĆ, A., GUERRAOUI, R., AND
ZABLOTCHI, I. Log-free concurrent data structures. In
2018 USENIX Annual Technical Conference (USENIX
ATC 18) (Boston, MA, July 2018), USENIX Association,
pp. 373–386.

[14] DURNER, D., LEIS, V., AND NEUMANN, T. Ex-
perimental study of memory allocation for high-
performance query processing. In International Confer-
ence on Very Large Databases (VLDB) (2019), pp. 1–9.

[15] ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE,
J. Exokernel: An operating system architecture for
application-level resource management. In Proceedings
of the 15th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’95) (New York, NY, USA, Dec. 1995),
ACM Press, pp. 251–266.

[16] FRIEDMAN, M., HERLIHY, M., MARATHE, V., AND
PETRANK, E. A persistent lock-free queue for non-
volatile memory. In Proceedings of the 23rd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming (New York, NY, USA, 2018), PPoPP ’18,
Association for Computing Machinery, pp. 28–40.

[17] FU, X., KIM, W.-H., SHREEPATHI, A. P., ISMAIL, M.,
WADKAR, S., LEE, D., AND MIN, C. Witcher: System-
atic crash consistency testing for non-volatile memory
key-value stores. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (New
York, NY, USA, 2021), SOSP ’21, Association for Com-
puting Machinery, p. 100–115.

[18] GORMAN, M. Understanding the Linux virtual memory
manager. Prentice Hall Upper Saddle River, 2004.



[19] GORMAN, M. The performance and behaviour of the
anti-fragmentation related patches. Linux Kernel Mail-
ing List, Mar. 2007. https://lkml.org/lkml/2007/3/1/92.

[20] GORMAN, M., AND HEALY, P. Supporting superpage
allocation without additional hardware support. In Pro-
ceedings of the 7th international symposium on Memory
management - ISMM ’08 (Tucson, AZ, USA, 2008),
ACM Press, p. 41.

[21] GORMAN, M., AND WHITCROFT, A. The what, the
why and the where to of anti-fragmentation. In Proceed-
ings of the Linux Symposium (Ottawa, Ontario, Canada,
Jul 2006), vol. Volume 1, p. 370–384.

[22] HÄRTIG, H., HOHMUTH, M., LIEDTKE, J., SCHÖN-
BERG, S., AND WOLTER, J. The performance of µ-
kernel-based systems. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP ’97)
(New York, NY, USA, Oct. 1997), ACM Press.

[23] HAYOT-SASSON, V., BROWN, S. T., AND GLATARD, T.
Performance benefits of intel optane dc persistent mem-
ory for the parallel processing of large neuroimaging
data. 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID)
(2019), 509–518.

[24] INTEL. eADR: new opportunities for persistent memory
applications, 2021. https://software.intel.com/conte
nt/www/us/en/develop/articles/eadr-new-opportuniti
es-for-persistent-memory-applications.html, visited
2021-10-04.

[25] INTEL. 2022 Q2 – 10-Q earnings report, 2022. https:
//www.intc.com/filings-reports/all-sec-filings/content
/0000050863-22-000030/0000050863-22-000030.pdf.

[26] IZRAELEVITZ, J., MENDES, H., AND SCOTT, M. L.
Linearizability of persistent memory objects under a full-
system-crash failure model. In International Symposium
on Distributed Computing (2016), Springer, pp. 313–
327.

[27] KIM, S.-H., KWON, S., KIM, J.-S., AND JEONG, J.
Controlling physical memory fragmentation in mobile
systems. In Proceedings of the 2015 International Sym-
posium on Memory Management (New York, NY, USA,
2015), ISMM ’15, Association for Computing Machin-
ery, p. 1–14.

[28] KNOWLTON, K. C. A fast storage allocator. Communi-
cations of the ACM 8, 10 (1965), 623–624.

[29] KORGAONKAR, K., IZRAELEVITZ, J., ZHAO, J., AND
SWANSON, S. Vorpal: Vector clock ordering for large
persistent memory systems. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Comput-
ing (2019), pp. 435–444.

[30] KWON, Y., YU, H., PETER, S., ROSSBACH, C. J., AND
WITCHEL, E. Coordinated and efficient huge page man-
agement with ingens. In 12th Symposium on Operating
Systems Design and Implementation (OSDI ’16) (USA,
2016), USENIX Association, p. 705–721.

[31] LEE, S., KWON, M., PARK, G., AND JUNG, M.
Lightpc: Hardware and software co-design for energy-
efficient full system persistence. In Proceedings of the
49th Annual International Symposium on Computer Ar-
chitecture (New York, NY, USA, 2022), ISCA ’22, As-
sociation for Computing Machinery, p. 289–305.

[32] LEIS, V., ALHOMSSI, A., ZIEGLER, T., LOECK, Y.,
AND DIETRICH, C. Virtual-memory assisted buffer
management. In Proceedings of the ACM SIGMOD-
/PODS International Conference on Management of
Data (SIGMOD’23) (New York, NY, USA, June 2023),
ACM.

[33] MEMARIPOUR, A. S., IZRAELEVITZ, J., AND SWAN-
SON, S. Pronto: Easy and fast persistence for volatile
data structures. In ASPLOS ’20: Architectural Sup-
port for Programming Languages and Operating Sys-
tems, Lausanne, Switzerland, March 16-20, 2020 (2020),
pp. 789–806.

[34] NAVARRO, J., IYER, S., AND COX, A. Practical, trans-
parent operating system support for superpages. In
5th Symposium on Operating Systems Design and Im-
plementation (OSDI 02) (Boston, MA, Dec. 2002),
USENIX Association.

[35] NEUMANN, T., AND FREITAG, M. J. Umbra: A disk-
based system with in-memory performance. In Con-
ference on Innovative Data Systems Research (CIDR)
(2020).

[36] OUKID, I., BOOSS, D., LESPINASSE, A., LEHNER, W.,
WILLHALM, T., AND GOMES, G. Memory manage-
ment techniques for large-scale persistent-main-memory
systems. Proc. VLDB Endow. 10, 11 (aug 2017),
1166–1177.

[37] PANWAR, A., PRASAD, A., AND GOPINATH, K. Mak-
ing huge pages actually useful. In Proceedings of the
Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating
Systems (New York, NY, USA, 2018), ASPLOS ’18, As-
sociation for Computing Machinery, p. 679–692.

[38] PELLEY, S., CHEN, P. M., AND WENISCH, T. F. Mem-
ory persistency. In Proceeding of the 41st Annual Inter-
national Symposium on Computer Architecture (ISCA

’14) (2014), IEEE Press, p. 265–276.

https://lkml.org/lkml/2007/3/1/92
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intc.com/filings-reports/all-sec-filings/content/0000050863-22-000030/0000050863-22-000030.pdf
https://www.intc.com/filings-reports/all-sec-filings/content/0000050863-22-000030/0000050863-22-000030.pdf
https://www.intc.com/filings-reports/all-sec-filings/content/0000050863-22-000030/0000050863-22-000030.pdf


[39] PMDK TEAM, I. C. Intel Persistent Memory Develp-
ment Kit (PMDK). https://pmem.io/pmdk, visited
2021-10-05.

[40] RAO, D. S., KUMAR, S., KESHAVAMURTHY, A. S.,
LANTZ, P., REDDY, D., SANKARAN, R., AND JACK-
SON, J. System software for persistent memory. In
Proceedings of the Ninth ACM European Conference
on Computer Systems (EuroSys ’14) (2014), pp. 15:1–
15:15.

[41] SCHWALB, D., BERNING, T., FAUST, M., DRESELER,
M., AND PLATTNER, H. nvm malloc: Memory allo-
cation for NVRAM. In International Workshop on
Accelerating Data Management Systems Using Mod-
ern Processor and Storage Architectures - ADMS 2015,
Kohala Coast, Hawaii, USA, August 31, 2015 (2015),
R. Bordawekar, T. Lahiri, B. Gedik, and C. A. Lang,
Eds., pp. 61–72.

[42] SINGH, A. Mac OS X Internals: A Systems Approach:
A Systems Approach. Addison Wesley, 2016.

[43] SWANSON, M., STOLLER, L., AND CARTER, J. In-
creasing TLB reach using superpages backed by shadow
memory. SIGARCH Comput. Archit. News 26, 3 (apr
1998), 204–213.

[44] TREIBER, R. K. Systems programming: Coping with
parallelism. International Business Machines Incorpo-
rated, Thomas J. Watson Research, 1986.

[45] VOLOS, H., TACK, A. J., AND SWIFT, M. M.
Mnemosyne: lightweight persistent memory. ACM
SIGARCH Computer Architecture News 39, 1 (Mar.
2011), 91–104.

[46] WANG, T., LEVANDOSKI, J., AND LARSON, P.-A.
Easy lock-free indexing in non-volatile memory. In
2018 IEEE 34th International Conference on Data En-
gineering (ICDE) (2018), pp. 461–472.

[47] WENTZLAFF, D., AND AGARWAL, A. Factored oper-
ating systems (fos): the case for a scalable operating
system for multicores. ACM SIGOPS Operating Sys-
tems Review 43 (Apr. 2009), 76–85.

[48] XU, J., AND SWANSON, S. NOVA: A log-structured file
system for hybrid volatile/non-volatile main memories.
In 14th USENIX Conference on File and Storage Tech-
nologies (FAST ’16) (Santa Clara, CA, 2016), USENIX
Association, pp. 323–338.

[49] YANG, J., KIM, J., HOSEINZADEH, M., IZRAELEVITZ,
J., AND SWANSON, S. An empirical guide to the be-
havior and use of scalable persistent memory. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20) (Santa Clara, CA, Feb. 2020), USENIX As-
sociation, pp. 169–182.

[50] YOSIFOVICH, P., RUSSINOVICH, M., SOLOMON,
D. A., AND IONESCU, A. Windows Internals, Part 1
(7th Edition). Microsoft Press, 2017.

[51] ZHANG, L., SPEIGHT, E., RAJAMONY, R., AND LIN,
J. Enigma: Architectural and operating system sup-
port for reducing the impact of address translation. In
Proceedings of the 24th ACM International Conference
on Supercomputing (ICS ’10) (New York, NY, USA,
2010), ICS ’10, Association for Computing Machinery,
p. 159–168.

[52] ZHANG, L., AND SWANSON, S. Pangolin: A fault-
tolerant persistent memory programming library. In
2019 USENIX Annual Technical Conference (USENIX
ATC 19) (Renton, WA, July 2019), USENIX Association,
pp. 897–912.

https://pmem.io/pmdk


Appendix

(1) If reserved counter cP ≥ 2o then cP← cP−2o and continue
with (2).

(a) Otherwise, sync with global cU and repeat (1) if the
counter is now large enough.

(b) Otherwise, reserve a new tree and repeat (1).
(2) Search the corresponding children array sequentially for an

entry with cL ≥ 2o. If this search fails, reserve a new subtree
and repeat (1).

(a) For base frames, decrement cL, search the correspond-
ing bit field for a zero bit, and set it.

(b) For huge frames set cL = 0 and a = 1.
(3) Return the allocated page-frame number (PFN) or NULL.

(a) The allocation of an order o frame.

(1) Check the corresponding child entry.
(a) For base frames, check if cL ≤ 512−2o and a = 0, and

continue with (2).
(b) For huge frames, check for a = 1, set it to zero, and

continue with (4).
(2) Toggle the corresponding bits in the layer-one bit field.
(3) Increment the child counter (cL ← cL + 2o).
(4) Increment the reserved cP or the global cU if this free is in

another tree.
(a) When a global, partial tree entry is updated, reserve it if

the past F allocations also affected it.

(b) The free operation of an order o frame.

Figure 14: The allocation and free algorithms. This description does
not include all edge cases and error paths.



A Artifact Appendix

Abstract

The artifact contains the necessary tools and resources required to evaluate
LLFree, a new lock- and log-free allocator design that scales well, has a small
memory footprint, and is readily applicable to non-volatile memory. To simplify
the evaluation, the artifact is packaged as a Docker image, which includes the
different benchmarks from the paper’s evaluation and any dependencies. These
benchmarks are designed to stress the allocator in various scenarios. They allow
other researchers to compare the performance of LLFree with the traditional
Buddy allocator and reproduce our experimental results. Additionally, this
image contains the raw data and scripts for the paper’s figures, making our
evaluation as transparent as possible.

Scope

These benchmarks show that the LLFree allocator out scales the buddy alloca-
tor on systems and workloads with high parallelism. However, executing them
in a virtual machine (even with KVM) leads to less accurate results. There-
fore, in the paper, we built and tested the modified Linux on raw hardware.
Nonetheless, the results should show similar trends as in the paper’s evaluation.

Contents

The Docker image includes all required dependencies and scripts for building
and running the benchmarks, as well as generating relevant plots and data.
It also features a Python script (run.py) that serves as the central command
center to manage the building, benchmarking, and plotting processes. The
allocator can be tested in both user space and within a custom-built Linux
kernel that incorporates LLFree executed in a QEMU+KVM vm. For the latter,
the image contains a QEMU+KVM virtual machine and scripts to boot it and
run the kernel benchmarks. It further contains the raw data and plots from the
benchmarks shown in the paper.

Hosting

The docker image and the repositories of the allocator, the modified Linux
kernel, and the benchmarks are hosted on GitHub:

• Docker Image: This image contains an execution environment that
makes it easy to run and evaluate the benchmarks.

• llfree-bench: The benchmark scripts and results.
(tag = atc23-artifact-eval)

– The artifact instructions can be found in artifact-eval/README.md.

https://github.com/orgs/luhsra/packages/container/package/llfree_ae
https://github.com/luhsra/llfree-bench


• llfree-rs: The Rust implementation of the LLFree allocator.
(tag = atc23-artifact-eval)

• llfree-linux: The modified Linux Kernel that can be configured to use
LLFree instead of the Buddy allocator.
(tag = atc23-artifact-eval)

• linux-alloc-bench: Kernel module for benchmarking the page allocator.
(tag = atc23-artifact-eval)

Requirements

As our benchmarks are packaged in a Docker image and do not rely on specific
hardware, the only prerequisites are:

• A Linux-based system for KVM. We have tested this on Linux 6.0, 6.1,
and 6.2.

• At least 8 physical cores and 32GB RAM (more is better). Lower specifi-
cations should work, but the results may be less meaningful.

• Hyperthreading and TurboBoost should be disabled for more stable re-
sults. As the VM is not configured for this, the kernel benchmarks might
be especially affected.

• A properly installed and running Docker daemon.

Next Steps

The artifact instructions can be found in the llfree-bench repository under
artifact-eval/README.md. The artifact-eval directory also contains all the
scripts mentioned in the document and also the Dockerfile for building the im-
age by oneself if desired.

https://github.com/luhsra/llfree-rs
https://github.com/luhsra/llfree-linux
https://github.com/luhsra/linux-alloc-bench
https://github.com/luhsra/llfree-bench/blob/atc23-artifact-eval/artifact-eval/README.md

