
MELF: Multivariant Executables for a Heterogeneous World

Dominik Töllner
Leibniz Universität Hannover

Christian Dietrich
Hamburg University of Technology

Illia Ostapyshyn
Leibniz Universität Hannover

Florian Rommel
Leibniz Universität Hannover

Daniel Lohmann
Leibniz Universität Hannover

Abstract
Compilers today provide a plethora of options to optimize
and instrument the code for specific processor extensions,
safety features and compatibility settings. Application pro-
grammers often provide further instrumented variants of
their code for similar purposes, controlled again at compile-
time by means of preprocessor macros and dead-code elim-
ination. However, the global once-for-all character of
compile-time decisions regarding performance-, debugging-,
and safety/security-critical features limits their usefulness in
heterogeneous execution settings, where available processor
features or security requirements may evolve over time or
even differ on a per-client level.

Our Multivariant ELF (MELF) approach makes it possi-
ble to provide multiple per-function compile-time variants
within the same binary and flexibly switch between them at
run-time, optionally on a per-thread granularity. As MELFs
are implemented on binary level (linker, loader), they do not
depend on specific language features or compilers and can be
easily applied to existing projects. In our case studies with
SQLite, memcached, MariaDB and a benchmark for hetero-
geneous architectures with overlapping ISAs, we show how
MELFs can be employed to provide per-client performance
isolation of expensive compile-time security or debugging
features and adapt to extended instruction sets, when they
are actually available.

1 Introduction

Modern compilers provide a plethora of options to statically
optimize and instrument the code. Natural examples for
such at-compile-time tailoring include support for hardware-
specific processor extensions, but also compiler-specific de-
bugging, program instrumentation, and sanitizing aid. These
options commonly do not alter the semantics of the code, but
influence its nonfunctional properties with respect to perfor-
mance, safety, security, and compatibility. They are put un-
der the control of the developer, because they reflect impor-
tant tradeoffs: Exploiting special instruction-set extensions

can greatly improve performance [1], but at the cost of los-
ing compatibility to smaller or older processors. Letting the
compiler instrument the code with extra sanity checks in-
creases safety and security [2]–[6], but comes at a signifi-
cant performance cost. This also holds for many higher-level
instrumentations that are inserted manually by the develop-
ers, often by means of the preprocessor: Typical examples
are executable asserts [7], [8], tracing, and logging support,
which have been shown to actively increase safety [9] and
security [10], but are commonly disabled at compile time in
production builds due to their performance overhead.

However, in a world of increasing dynamic hardware and
use-case heterogeneity, the global once-for-all character of
compile-time decisions regarding performance-, debugging-
, and safety/security-critical features limits their usefulness:
In heterogeneous cloud environments or on machines with
heterogeneous ISAs, the availability of processor features
may change over time, even for individual threads. The per-
formance costs of the extra sanity checks might be accept-
able while processing input from external users, but not in
general. In a DevOps setting, it would be useful to temporar-
ily enable tracing and logging, but only for that specific client
who is having troubles.

In short: It would be useful to decide at run time, depend-
ing on the dynamic context, on features that are technically
bound at the compile time of the code. We call this flexibility
semi-dynamic variability, which conceptually lays between
static and dynamic variability in that the code of all variants
is still generated at the compile-time of the project (thus, fa-
cilitating whole-program optimization), but the actually used
variants can be decided on at run time.

While there are special-purpose solutions for semi-
dynamic variability in some domains (e.g, math libraries [11]
or the Linux kernel [12]) that adapt at load or initialization
time to the actually available hardware features, these solu-
tions are limited in scope, require manual intervention, and
typically involve costly extra indirections via proxies [13] or
inherently fragile means of fine-grained run-time code patch-
ing [12]; often they have to prevent inlining.

shared
mapping decoupled

mapping

shared
mapping

1. Multi-Variant Compilation
main.c

foo.c

f, g, h

main.o

foo-A.o

foo-B.o

CC
CCA

CC
B

2. MELF Linker Script
VARIANT_OVERLAY foo {

A { foo _A . o { . t e x t * } }
B { foo _B . o { . t e x t * } }

}

3. Input-Section Alignment

A sA,f sA,g

B sB,f sB,g sB,h

4. Output-Section Placement

Virtual .text A .data

B

Load .text A B .data

5. Variadic MMViews

main:
ca l l f
c a l l * gp t r

f A : . . .

nop,nop

g A : . . .

gptr = &f
val = 23

0x1000: .text 0x2000: foo 0x3000: .data

main:
ca l l f
c a l l * gp t r

fB : . . .

gB : . . .

hB : . . .

nop,nop

gptr = &f
val = 23

vie
w
α

vie
w
β

Figure 1: Overview about the MELF approach. At compile time (1), parts of the program are compiled into multiple variants
(A and B), which are captured and organized in the linker script in the variant overlay foo (2). In the linker, the matched input
sections are aligned (3) and the resulting output sections (4) are placed in the virtual- and load-address space. At run time
(5), the variants are loaded into different MMViews, which share everything but the decoupled regions; common symbols and
pointers are stable across views.

About this Paper
We present multivariant ELF (MELF) as an easy-to-apply
approach for the inclusion of multiple compile-time variants
within the same binary and flexible switching between them
at run time on function/section granularity. MELFs are im-
plemented solely on binary level, hence mostly independent
of the employed languages and compilers (as long as they
produce ELF-compatible objects), which also makes them
easy to apply to existing software projects. Function vari-
ants are aligned by the MELF linker to the same virtual ad-
dress, so that existing pointers or relocations remain valid
even in case of a variant switch at run time. They can option-
ally be loaded by the MELF loader into additional in-process
address spaces (with the MMViews kernel extension, taken
from [14]), where multiple variants can coexist at the same
time to be applied on a per-thread level.

In particular, we claim the following contributions:

• We provide the MELF concept, as an end-to-end solution
for semi-dynamic variability.

• We describe our MELF linker (an extension to LLVM’s
LLD linker) and the MELF loader.

• We demonstrate the MELF benefits and costs in four case
studies from different domains.

2 The MELF Approach

The MELF approach (see Fig. 1) provides semi-dynamic
variability on function granularity for compiled functions by
aligning functions (and data) with a modified LLD at link
time. At run time, either one of variants is loaded into the

process’s address space or, with the help of the MMViews,
multiple variants can coexist simultaneously. We describe
our approach for executable and linking file format (ELF)
and Linux processes, but are confident that our approach is
generalizable to other binary formats (e.g., COFF, Mach-O)
and process models.

2.1 System Model

We target programs written in compiled languages (e.g., C,
C++, Rust, . . .) that organize their binary code in regular,
hierarchically-called functions (e.g., unlike Haskell, Forth).
For a subset of all functions (i.e., not main()), it is intended
to include multiple function variants in the final binary. For
these functions, the signature (including the mangled symbol
name) must be equal and their side effects on the program’s
object space must be compatible. The compiler must be able
to put functions into their individual binary section.

2.2 Compile-Time: Static Variant Generation

First (Fig. 1, step 1), we have to statically generate multiple
variants of our functions at compile time. These static vari-
ants can, for example, originate from translating the same
translation unit multiple times with different compiler flags
or CPP configurations. But also, manual variant encoding
(e.g., directly in assembler) or programmatically in the com-
piler via guided-function specialization [15] is possible.

In Lst. 1, we show that this variant generation is simple
with modern build systems, like CMake [16]. In the exam-
ple, which is taken from our SQLite3 case study (Sec. 3.1),
we compile the SQLite source files twice into two static

libraries.1 Both libraries are compiled with different pre-
defined CPP macros and linked into the main executable.

Collect SQLite 3 Source files
file(GLOB SRCS sqlite3/*.c)

The Non-Debug Version
add_library(sql-ndebug STATIC ${SRC})
target_compile_options(sql-ndebug -DNDEBUG=1)

The Debug Version
add_library(sql-debug STATIC ${SRC})
target_compile_options(sql-debug -DSQLITE_DEBUG=1)

Case-Study Executable: main
add_executable(main main.cc melf_loader.c)
target_link_libraries(main sql-ndebug sql-debug ..)

Listing 1: Multi-Variant compilation with CMake

Besides the multi-variant compilation, the ELF [17] stan-
dard forces us to put each function and each data object into
their own section. In order to understand this requirement,
we now take a quick detour into the ELF standard, which is
also necessary to understand the MELF linker.

Excursus: ELF Sections vs. Functions The executable
and linking file format (ELF) is a format that is used for link-
ing and for loading programs. An ELF contains multiple
byte streams (code, data, debug info, . . .) that are arranged in
two views: In the link view, those byte streams are called sec-
tions, while they are called program headers (or segments)
in the load view. Additionally, the link view makes use of
symbols as named offsets into a section. Further, relocations
specify how to edit a byte stream while linking it to a vir-
tual address. In a nutshell, the linker arranges the link-time
sections into load-time segments while resolving (most) re-
locations.

The basic unit of linking is the section and not a (language-
level) function or (global) data object. In fact, the linker
has no idea about those, and it cannot (due to compile-time
resolved relocations) break up a section back into smaller
pieces. Therefore, as we want to align the function’s start
address, we have to instruct the compiler2 to put each func-
tion (and data-object) into its own section, named like the
(mangled) function name. For example, the C++ function
void foo(int) will end up in the section .text._Z3fooi.

For data objects (i.e., global variables and read-only data),
we require that all variants share the same (data-) object
space. For this, the linker has to throw away all but one in-
stance, which requires each variable to be located in its own
section3. Furthermore, we restrict the program’s interpreta-
tion of the shared data objects: As objects can be accessed
from different variants, we require that the interpretation of

1Static libraries are fundamentally different from dynamic libraries.
They are only collections of object files, (nearly) transparent for the link-
ing process, and induce no run-time overhead.

2GCC/Clang: -ffunction-sections, MSVC: /Gy
3GCC/Clang: -fdata-sections, MSVC: /Gw

objects, statically and heap allocated, must be compatible
across all variants. This means that matching struct fields
have to be aligned, that language-level types have to be of
equal size, and that variants must have a common under-
standing of the object state. Nevertheless, this restriction
holds for many automatically-applied program transforma-
tions as they are nonfunctional by design. In Sec. 4, we will
discuss this topic further.

After the multi-variant compilation, we end up with a set
of ELF object files whose sections s can be categorized as
follows: A variant v = {sv,1 . . . sv,n} is a collection of sec-
tions that should be visible together; all sections of one vari-
ant have to have the same section type (e.g., code, read-only
data, . . .), which becomes the variant type. A variant over-
lay (overlay, o) is a collection of |o| equally-typed variants
and a variant-overlay group (group) is a set of overlays that
are semantically connected. For a program, multiple inde-
pendent overlays and groups can exist. For example, besides
a math-code overlay (non-AVX vs. AVX2), there can another
overlay group (code and read-only data) for the SQLite li-
brary that allows to en/disable executable assertions. We call
all sections that are not covered by a variant the remaining
sections.

2.3 Link-Time: Virtual-Address Alignment

After the compile-time preparation, the linker generates the
multi-variant ELF (Fig. 1, steps 2-4), for which it must match
and align sections from the different variants within an over-
lay such that they end up with the same virtual address. For
our implementation, we modified LLD [18], the linker of the
LLVM project that is a drop-in replacement for the GNU ld
and gold. We will describe the required linker modifications
on base of this implementation. However, they should be
easily generalizable to other linkers as well.

First (Fig. 1, step 2), the developer must be able to ex-
press the relationship between sections, variants, and over-
lays. For this, we add a VARIANT_OVERLAY statement to the
linker-script language, which is the command language of
ld (and gold/lld). The statement contains multiple variant
statements, which define, similar to other commands, pat-
terns that are matched against the input sections, which the
linker extracts from the object files. The lexically first variant
of an overlay is its primary variant. In the overview exam-
ple, we see a linker-script fragment that defines an overlay
foo with two variants (A, B), which collect the code (text)
sections from the respective foo_{A,B}.o.

Thereafter (Fig. 1, step 3), we align the input sections
within an overlay: For this, we first match sections from
the different variants and identify those sections that occur
only in one variant: Starting with all sections captured by the
overlay, we group the sections by the key (variant, section
name) and select a single section as representative for that
key. While there is usually only one candidate section, ELF

v\n f g h X J
A sA,f sA,g sA,X sA,J

B sB,f sB,g sA,h sB,X sB,J

C sC ,f sC ,g sC ,J

Figure 2: Input-Section Table (extended running example)

section groups4 and weakly-defined functions5 can result in
multiple candidates. In the former case, we can choose any
section as the group representative, in the latter case we ap-
ply the usual override semantic for weakly-defined functions,
but only within the group. With the representatives, we end
up with one section sv,n per (variant, name)–pair and form the
overlay’s input-section table, which tabularizes the results.
In the table (Fig. 2) for the (extended) running example, we
see that f and g are present in all variants and h is private to
variant B. For partially-filled columns (e.g., X) that contain
more than one entry, we report an error.

With the table in place, we validate and manipulate the
symbol table. With multivariant compilation, the linker will
encounter the same symbol, which is a named pointer into
a section, multiple times. Instead of reporting an error, we
collect duplicate symbols and delete all but the symbol that
points to the primary variant. In this process, we verify that
each variant’s symbol points to the same column and has the
same offset.

While we usually report an error if this check fails, some
compiler optimizations (e.g., function-body deduplication)
can result in two aliased symbols pointing to the same sec-
tion in one variant but not in the other. However, as we can-
not align this section to two different sections in the other
variant, we have to solve this rare situation differently: We
equip each variant with a jump table (e.g., sA,J in Fig. 2) and
insert a jmp instruction for one of the aliased symbols. In
each variant’s jump table, the instruction jumps to the cor-
rect section and offset, while we globally redirect the original
symbol to the jump-table entry in the primary variant.

With all symbols being aligned within their column, we
align the columns by padding each sv,n to maxvi∈o svi,n. As
this can induce large padding gaps, we use variant-local sec-
tions as gap-filler sections. Currently, we perform the filling
greedy as we did not encounter a situation where a (more)
optimal algorithm would be required. In the example (Fig. 1,
step 3), the gray areas are padding and sB,h is used for filling
the gap in B that sA,g provokes.

After column alignment, we place the variants in the
ELF’s virtual address space (Fig. 1, step 4). For this, we uti-
lize the fact that the load address (where the loader will copy
the section to) and the virtual address (where the section
“thinks” it is) can disagree. We combine all sections for a
variant (table row) in an output section; an established linker-

4e.g., used for deduplicating functions from C++ template expansions.
5Weak functions are only used if no non-weak counterpart is defined

internal concept that acts as an intermediate step between
input sections and segments. Each output section is linked
(i.e., relocated) to the virtual address of the primary variant,
while we load them, by default, sequentially. Thereby, load
and virtual address only match for the primary variant. All
remaining sections can be linked as usual.

The result of MELF is a regular ELF binary, which is
only special with regard for the non-primary output sections,
whose load and virtual addresses do not match.

2.4 Run-Time: Multivariant Loading

With the MELF binary constructed, it is time to bring our
multi-variant program to execution. As this depends on the
indented usage scenario, this section will only provide the
necessary primitives from which different use cases can be
constructed (see Sec. 3).

First, we have to decide which variant(s) will execute and
initialize the program state. As primary variants are loaded
to their virtual address, the program automatically starts ex-
ecuting in those variants, and it also loads their data-segment
contents. This also requires us to only run the constructors
for global variables of the primary variant, which is done by
discarding the initialization-array entries of the other vari-
ants.

For the usage of MELF’s, we provide two operation modes
by the MELF run-time loader library: With the base mode,
only one variant per overlay is active at the same time, which
the developer can replace with an explicit call into the run-
time library. For this, we use the mprotect() system call
to make the respective overlay region writable and copy the
contents of the desired variant to the primary virtual address.
To make overlay and variant regions known to the MELF
loader, the linker places symbols with virtual and the load
addresses before and after each output section; with these,
the program can reference all variants in the program. Usu-
ally, the developer will only replace text and other read-only
sections, as switching data variants would reinitialize the
global variables. Also, for this mode to work, we demand
that no thread currently executes or has a call frame for a
function from the replaced overlay. This program state is
called global quiescence [14].

As the base mode is of limited use for multithreaded
programs, we also provide the MMView mode, based on
MMViews [14]. Thereby, multiple variants can be active si-
multaneously and threads can switch their variants for which
they only have to be locally quiescent (i.e., they do not
execute a replaced function). As this mode requires the
MMView kernel extension, we give a brief overview of its
semantic.

Excursus: MMViews With MMViews, a process can
have multiple, closely-synchronized, concurrently-active ad-
dress spaces, which have the same structure: all mappings
are equally placed and address-space modifications work si-

multaneously on all MMViews. Also, the contents of most
mappings are synchronized by sharing the physical page
frames. Only for mappings that the user explicitly marked
as decoupled, the kernel will establish a copy-on-write map-
ping, whereby those mappings contain MMView-local mem-
ory. Also, threads can switch between MMViews and can
create a new MMView by cloning their current view.

The existing [14] MMView Linux extension implements
MMViews as separate page-table trees. So, since an
MMView is technically a separate address space, they induce
higher memory overhead (for the page tables) and increase
the TLB pressure if two MMViews are active on the same
core. Also, page-table modifications, although the extension
synchronizes them lazily, have a higher run-time overhead.
However, switching views is rather cheap as the kernel only
exchanges a single CPU register.

Coming back to MELF, we use the described extension to
execute multiple variants in one process concurrently: We
decouple all primary-variant regions, allowing the user to
create one MMView for each desired variant combination.
With the described base-mode primitives, the user can load
different variants into the MMViews. Thereby, an MMView
can combine these variants from the variant-overlay groups.

In Fig. 1, step 5, we see two MMViews α and β, which
currently have loaded variant A resp. B. We see that the non-
multivariant text and data remain shared and only in the over-
lay region (0x2000-0x3000) is decoupled. Since MMViews
have a synchronized structure and the MELF linker aligned
the start address of the multivariant functions, all common
symbols (e.g., call f) and function pointers (e.g., gptr)
are globally valid and threads in different views can easily
co-operate.

With MMViews in place, a thread can switch variants
on function-call granularity, for which call and return edges
have to perform inverse MMView switches. For this, the
run-time library provides a trampoline function (Lst. 2) that
switches to the desired MMView, forwards arguments, re-
stores the previous MMView and returns the return value. As
the trampoline is not part of an overlay, it can also transfer
the control flow between two multi-variant functions. The
call protocol for MELFs defines the following call-chain:

1. Call call_with_helper with a variant index, function
pointer and its arguments

2. Switch to the variant, save old return pointer and replace
it by call_return

3. Jump to provided function pointer

4. Return from provided function pointer (now returns to
call_return)

5. Switch back to the variant before the call-chain started

6. Jump to saved, original return pointer, ending the call-
chain

_threadlocal variant_id_previous = 0;
_threadlocal variant_return = nullptr;
variant_id = 1;
func_pointer = &do_work;
func_arg = 10;
// 1. Call trampoline.
call_with_helper(variant_id , func_pointer , func_arg){

asm {
// 2. Switch view
push variant_id
syscall_variant_switch
// Syscall result is old variant id. Save it.
xchg %rax, variant_id_previous@threadlocal
// Load new return pointer "call_return".
leaq call_return(%rip), %r10
// Exchange return pointer with "call_return".
xchgq %r10, (%rsp)
// Save old return pointer.
xchgq %r10, variant_return@threadlocal
// 3. Jump to function pointer.
jmp func_pointer

}
}

// 4. "func_pointer" will return to this function.
call_return(){

asm {
// 5. Load old variant id and switch back.
mov variant_id_previous@threadlocal , %rax
push %rax
syscall_variant_switch
// 6. Return to original return pointer.
jmp variant_return@threadlocal

}
}

Listing 2: Trampoline function call_with_helper ensures
to call call_return at the end of the call chain to switch
back to the caller’s original application variant.

Since the protocol always requires jumping back to the origi-
nal application variant, we only demand local quiescence per
thread.

3 Case Studies

As the MELF approach is a general semi-dynamic–
variability method for compiled languages, we now provide
multiple case studies to demonstrate the potential of our ap-
proach. We will justify, for each case study, its relevance,
describe the usage of MELF, and show its benefits with a
quantitative evaluation. Thereby, we will only focus on the
MMView mode as we consider it the more interesting appli-
cation mode for MELF.

Benchmark Setup

We cover the server-centric scenarios with a dual-socket
system (Intel Xeon Gold 6252, 2.10GHz, 2×24 physical
cores, 2 NUMA nodes, 384 GiB DRAM, hyperthreading dis-
abled). Additionally, we use a smaller machine with more
restricted hardware (Intel i5-6400, 4 cores, 32 GiB DRAM,
no hyperthreading). On the software side, we used Debian

SQLite 3.39.4 (a29f994989) (both views)
-O3 Required for scalability
DEFAULT_MEMSTATUS=0 Required for scalability
PAGE_CACHE_OVERFLOW_STATS=0 Required for scalability
ENABLE_RTREE=1 Required for workload
Unify struct sqlite3_mutex Required for MELF compatibility
Perf. View NDEBUG=1 Debug View SQLITE_DEBUG=1
Functions: 1432 Functions: 1726
.text=1008.5 K .rodata=27.4 K
.data=2.6 K .bss=1.2 K

.text=1294 K .rodata=51.6 K

.data=2.6 K .bss=2.3 K
MELF Overlay
Aligned Functions: 1310 Padding: 372.3 K (13.48 %)
VM Size: .text=1314.3 K .rodata=61.8 K .data=2.7 K .bss=2.5 K

Table 1: Overview over the SQLite case-study binary

GNU/Linux 11 with an MMView-enabled Linux 5.15 kernel
with Spectre and Meltdown mitigations enabled.

3.1 Case-Study: SQLite Asserts

With this case study, we demonstrate that MELF is able to
overlay multiple handwritten code variants and that we can
performance-isolate both variants for thread-contextualized
execution (with MMViews). More concretely, we build a
MELF binary that contains two variants of the SQLite li-
brary: (1) the debug view, where assert() statements and
additional sanity checks are enabled, and (2) the perfor-
mance view, where these are disabled. Within the same pro-
cess, multiple threads execute read-only SQL queries, either
with the debug view or the performance view. We vary the
total number of threads and the number of threads in the de-
bug view, as well as the benchmark machine.

Scenario Justification Unlike compiler-based security
measures, executable asserts [7], [8] are inserted manually
by the developers to test high-level invariants at run time.
They are an intrinsic part of debug builds, which often in-
clude extended data structures and code paths to check ap-
plication behavior. Thereby, assertions not only assist the
development of safer programs [9], but they are also an ac-
tive security measure [10]. However, due to their complex-
ity, size and performance impact, they are usually disabled
in production in favor of a performance/release build. With
MELF, we can provide a more restricted debug view with
enabled assertions, for example, for SQL queries that han-
dle user input. Technically, this case-study is of interest as
it shows how to manage multiple variants that interpret data
differently.

Workload We use a geospatial proximity search, since
handling two-dimensional data requires complex algorithms
and data structures. On the list of 2856 UK postcodes, we
issue SQL queries that find the geographically closest code
that is not further away than 25 km for randomly chosen
coordinates in the UK. For handling coordinates, we use
SQLite’s R-Tree plugin.

0

5

10

15

0 0
3

0
-0
-1

0
1
-0
-0

0
-0
1
1
-1

0
-0
1
-0
0
1

0
-0
0
1
1
-1
-0

0
-3
-0
-0
-2
1
-0
-1

0
-2
-3
-3
-4
-1
-0
-1
-4

0
-1
2
-2
0
3
2
3
0
2

0
0
-0
2
0
1
2
3
1
-1
2

0
-1
-1
-0
-0
1
-1
-2
1
1
-1
-2

0
-1
-0
3
1
-0
-0
2
2
0
1
0
0

0
-0
2
1
0
1
-2
-1
2
2
2
0
-2
-0

0
1
2
1
1
0
1
1
-1
2
1
2
0
3
2

0
-3
2
2
-2
1
1
1
2
-0
-0
-0
-1
1
1
0

Performance View

1.0
2.0

3.0
4.0

5.0
6.0

6.9
8.1

9.2
9.8

10.9
12.0

12.8
13.8

14.8
15.8

-40 -39
-41

-40
-43
-42

-41
-42
-42
-43

-40
-42
-44
-44
-45

-45
-45
-47
-48
-48
-50

-40
-42
-46
-44
-44
-50
-54

-42
-42
-45
-47
-46
-52
-50
-52

-41
-46
-44
-50
-50
-51
-55
-53
-58

-40
-45
-46
-47
-43
-45
-46
-55
-56
-53

-41
-42
-46
-47
-48
-49
-52
-49
-57
-58
-60

-40
-46
-47
-44
-49
-50
-51
-53
-55
-58
-67
-62

-40
-41
-41
-46
-45
-50
-54
-48
-51
-54
-56
-61
-64

-45
-46
-46
-47
-48
-51
-52
-55
-55
-56
-57
-66
-69
-70

-40
-43
-42
-44
-45
-47
-53
-55
-51
-54
-56
-65
-68
-67
-67

-40
-44
-46
-44
-46
-44
-49
-52
-51
-64
-64
-66
-71
-70
-67
-72

Debug View

Xeon Gold 6252, 48 cores

⟵ Baseline Speed-Up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

5

10

15

0 0
-1

0
1
2

0
0
2
1

0
-0
-2
-2
-1

0
-1
0
-2
-1
1

0
-0
-2
-3
-4
-2
-5

0
1
2
2
2
1
-1
-4

0
-1
-0
2
-3
-0
1
-1
-2

0
0
-1
-2
-3
-3
-5
-2
-3
-2

0
3
3
3
1
0
1
-1
2
1
1

0
-0
3
0
2
-0
-0
1
2
2
1
-0

0
-0
-0
-0
-0
-0
-2
-1
-1
-1
-3
-1
-1

0
-1
0
-0
-1
1
-3
-2
0
0
-0
-1
-3
2

0
0
-4
0
-1
-2
-2
-2
-2
-0
-1
-3
-3
-3
-2

0
1
1
-1
-1
1
2
-2
0
0
-1
-0
1
-1
-1
0

1.0
2.0

2.9
3.9

3.9
4.0

4.0
3.9

3.9
4.0

3.9
3.9

4.0
3.9

4.0
3.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-40 -39
-40

-39
-40
-40

-38
-40
-39
-40

-39
-41
-40
-40
-42

-40
-40
-40
-41
-41
-41

-39
-40
-41
-41
-41
-42
-42

-40
-39
-39
-40
-41
-41
-41
-41

-40
-39
-41
-40
-39
-41
-41
-42
-41

-41
-40
-41
-42
-41
-42
-42
-43
-42
-41

-39
-39
-39
-40
-40
-40
-41
-40
-40
-39
-41

-39
-40
-39
-40
-40
-40
-41
-40
-40
-40
-41
-40

-41
-41
-40
-41
-42
-41
-41
-42
-41
-42
-42
-42
-42

-41
-40
-40
-42
-40
-40
-41
-41
-40
-41
-41
-40
-41
-40

-41
-41
-40
-40
-41
-41
-42
-41
-41
-40
-41
-41
-43
-42
-42

-39
-40
-41
-40
-40
-39
-41
-41
-39
-40
-41
-40
-40
-41
-40
-40

i5-6500T, 4cores

⟵ Baseline Speed-Up

Relative Query Rate per Thread [Δ%]

Total Number of Threads

Th
re

ad
s i

n
De

bu
g

Vi
ew

Δ Percentage Points

−60 −40 −20 0

Figure 3: SQLite Performance Measurements

Benchmark In Tab. 1, we provide a comprehensive
overview about the used benchmark binary. Since SQLite’s
default configuration did not scale beyond a single core,
we had to disable some statistic features to limit con-
tention. While running both views concurrently worked
out-of-the-box for most parts, we had to unify the struct
sqlite_mutex as the debug view requires additional fields
to track mutex ownership. Without a unified data type, the
address calculation for array elements differed and provoked
a crash. In total, we had to change 30 lines of code.

For a seamless interoperability, MELF aligns 1310 func-
tions by inserting a total of 372.3 KiB of padding, which
is 13.48 percent of the combined size in the virtual address
space. MELF already optimized the required padding by us-
ing 109/202 view-private functions in the performance/de-
bug view as gap fillers. For the mutable global data in (.data,
.bss), we align both variants but only use the debug view’s
data.

Performance Isolation In order show that the MELF
approach is able to isolate the impact of the debug view on
threads in the performance view, we run the benchmark with
1 to 16 threads, whereby 0 to 16 threads execute permanently
in the debug view, while the others execute in the perfor-
mance view. We also execute the benchmarks on our 4-core
and on our 48-core machine in order to determine if core
contention has a significant impact. We execute each bench-
mark for 60 seconds, record the number of completed SQL
queries

In Fig. 3, we show the per-thread SQL-query rate and
normalize it to the results where all threads execute in the

performance view (y-axis = 0), which we consider the base-
line for this experiment. For the baseline case, we also show
the speedup to confirm that contention within SQLite itself
is not the cause of performance degradation but only the
usage of MMViews and MELF. As expected, we see near
perfect speedup on the 48-core machine, while the speedup
caps around 4 on the 4-core machine. Please note the highly
asymmetric color scale in this figure.

In the debug view, we see a significant impact of the ad-
ditional assertions and sanity checks on the query rate. As
the slowdown on the 48-core machine (-39 % to -72 %) is
significantly worse for more threads in the debug view than
on the 4-core machine (-38 % to -43 %), we conclude that
the additional sanity checks provoke more contention due to
additional state locking.

In the performance view, we see that the number of threads
in the debug view has no consistent impact on the other
threads, and some results even indicate better indicate a
higher performance with using MMViews. Therefore, we
take a look at the relative standard deviations for the baseline
case to determine if these results stem from SQLite itself.
While we cannot derive any conclusions from the relative
standard deviation for the 4-core machine (0.3 %–12.4 %),
the 48-core machine (rel. stdev.: 0.3 %–1.7 %) suggests that
the MELF approach also has a small impact on the perfor-
mance view. If compared to the observed relative query
rates (-4 % to 3.4 %), we conclude that MELF has a negative
performance impact of around 1 percent and adds around 2
percent of jitter. Nevertheless, in relation to the impact of
globally-enabled assertions, the MELF approach isolates the
impact of additional sanity checks in SQLite successfully.

3.2 Case-Study: Thread Pools on
Heterogeneous Instruction-Set Machines

With this case study, we show that MELF eases the program-
ming of non-homogeneous multicore machines where cores
share a common subset instruction-set architecture (ISA) but
have additional heterogeneous ISA extensions. More con-
cretely, we provide a thread-pool abstraction (see Fig. 4) that
accepts jobs together with a hint on which core type the
job will run best. Depending on the current load, the pool
schedules the job (preferably) on a hinted core where it uses
a MELF-prepared code view that exploits the core-specific
ISA extensions or on another core with a different code view
that is optimized for that core. Thereby, the thread-pool user
fully utilizes her heterogeneous architecture without the need
for adapting her code paths for the specific architecture.

Scenario Justification While the first non-uniform mul-
ticores (e.g., , ARM big.LITTLE [19]) came with a uni-
fied ISA, recent work [20]–[22] investigates on the perfor-
mance and energy benefits of heterogeneous ISAs. How-
ever, ISA diversity poses a programmability challenge as
programmer are not keen to distribute their program/data

CPU 00

CPU 11
· · ·

Base ISA

CPU 12

CPU 24
· · ·

AVX2 ISA

Q00

Q11

Q23

Q24

⟨func, AVX2⟩

⟨func, Base⟩Ba
se

Q
ue

ue
s

AV
X2

Q
ue

ue
s

1. local steal

2. global steal

func:

mov $3, %rax

call mmult

func:

vpmulld $3

call mmult

Cores Thread Queues Incoming JobsIncoming JobsMELF Views

Figure 4: Heterogeneous-ISA Thread Pool

flow manually over different ISAs. Therefore, researchers
proposed fault-and-migrate [23], cross-core invocation [24],
and multi-kernel [25] methods to manage this variability.
With MELF, we take a step towards the seamless integration
of heterogeneous ISAs into our programs. Technically, this
case-study is of interest as we make use of different cross-
cutting compiler options on instruction level, something that
is not easily expressible on a language or ifdef level.

System Model As we have no heterogeneous-ISA ma-
chine at hand, we simulate one by virtually dividing one
NUMA node of our 48-core machine into two partitions (see
Fig. 4): On the 12 AVX2 cores, modern AVX/AVX2 vector
instructions are available, while the other 12 cores lack this
ISA extension.

Work Load For our benchmark, we choose two job
types that benefit differently from the AVX2 instructions:
While jobs with a recursive Fibonacci (n=36, Base/AVX:
57.9 ms) do not benefit at all, the duration of a Matrix-
multiplication (565× 565) job drops from 58.3 ms to 38 ms
on the AVX2 core. For the matrix multiplication, we use the
Eigen C++ library (v3.4), which uses explicit ISA special-
ization according to the given compiler flags. Please note,
that we have chosen the parameters such that the base-core
execution time match. As work load, we submit 1000 jobs
with 0 to 100 percent of the jobs being matrix multiplications
(see Fig. 5) and record the end-to-end latency of those 1000
jobs as well as the accumulated job execution time.

Thread-Pool Variants Based on Eigen’s non-blocking
thread pool, which already implements thread-local queues
and work stealing, we build three thread-pool abstractions
that all take a function pointer and a scheduling hint as a
job description: The 1 Pool, Base only variant executes all
jobs on a single 24-worker thread pool and only uses code
without AVX2 instructions; the scheduling hint is ignored.
The 2 Pool variant uses two 12-worker thread pools, one for
the base cores and one for the AVX2 cores; each core ex-
ecutes code specialized for its ISA and workers are pinned
to its core; no stealing happens between the pools; and the
scheduling hint selects the thread pool. The 1 Pool, MELF
variant uses a single 24-worker pool that utilizes MELF:
Each worker thread is pinned to its core and executes in a
MELF code view that is specialized for its ISA. If a worker

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

1
Po

ol
, B

as
e

on
ly

1
Po

ol
, M

EL
F

2
Po

ol
s

Heterogeneous-ISA Thread Pools (12 Base Cores, 12 AVX2 Cores)

Matrix-Multiplication Share (% of 1000 Jobs)

Ti
m

e
[s

]

Accumulated CPU Time
Matrix (base)
Matrix (+avx2)

Fib. (base)
Fib. (+avx2)

Latency for 1000 Jobs
1 Pool, Base only
1 Pool, MELF
2 Pools

Figure 5: Latency and accumulated processing time for a
mixed work load on a 24-core heterogeneous-ISA machine
with different thread-pool configurations. To scale latency
and processing time, the processing time was divided by 24.

queue runs empty, the worker first tries to steal from workers
with the same ISA (see Fig. 4, 1. local steal) before steal-
ing from other ISAs (2. global steal). Please note that steal-
ing from a foreign ISA queue works seamlessly as the local
MMView exposes the same functions but implemented with
different instructions.

Results In Fig. 5, we show the evaluation results on one
NUMA node of our 48-core machine, where we compare
the three pool variants with respect to required processing
time. Please note, that we divided the accumulated process-
ing time by 24 to match its scale to the end-to-end latency.
The remaining difference between latency and processing
time stems from pool overheads and execution phases where
not all workers execute jobs.

For the Base only variant, processing time is, as expected,
only spent in the base code view (less bright colors). The
slight increase in both curves stems from the increased cache
pressure if 24 cores execute matrix multiplications in paral-
lel compared to executing recursive Fibonacci calls on the
(cached) stack. Although the 2 Pool variant spends the least
amount of processing time, its end-to-end latency for 1000
jobs is significant at both ends as it only utilizes 12 cores at 0
and 100 percent matrix-multiplication jobs. Also, it achieves
its best latency at 60 percent multiplications, which is ex-
pected from the ratio between a Fibonacci job (57.9 ms) and
an AVX2-Matrix multiplication (38 ms).

Finally, the MELF-enhanced 1 Pool variant, performs bet-
ter in both dimensions: Compared to Base only, it uses less
processing time as it actually utilizes the AVX2 instructions,
whereby also its latency is better. Compared to the 2 Pool
variant, it always utilizes all cores resulting in a consistently
low latency and only when more than 60 percent of the sub-

mitted jobs are Matrix-multiplications requires more pro-
cessing time.

3.3 Case-Study: Profiling in memcached

In this case study, we dynamically en-/disable compiler-
introduced function-level profiling on a per-thread basis with
MELF and MMViews in memcached (v1.6.10). Similar to
the SQLite study, we combine two memcached variants in
one binary:(1) In the profiling view, the compiler (with the
-pg flag) introduced mcount() calls into function prologues
that record the invocation, while (2) the performance view
contains the same functions but without profiling code. On a
per-connection basis, worker threads either select the profil-
ing or the performance view. For our benchmark, we gradu-
ally change the number of profiled connections and measure
the request handling time within memcached.

Scenario Justification As developers cannot emulate
complex production environments, it is often up to the De-
vOps team to detect and explain performance anomalies af-
ter deployment. For this function-level profiling, as provided
by gprof [26], would provide precise insights about call fre-
quencies and caller–callee relationships, but its cost prohibits
us to have it permanently enabled. Also, in a multi-tiered en-
vironment, where only some clients incur a certain anomaly,
it is desirable to enable profiling only selectively for cer-
tain threads and requests. Because gprof consists of both, a
compiler instrumentation to modify function translation and
a statically-linked profiling library, developers are unable to
define exclusive code paths they want to profile. They can ei-
ther profile the whole application or nothing at all. Thanks to
MELF, the DevOps team can enable gprof-profiling dynam-
ically and selectively, thus limiting the impact to a minimum.

Technically, this case-study is of interest as we reduce
contention on cross-cutting features.

Work Load As a work load for our multi-variant
memcached server, we use the memtier benchmark, which
is a specialized benchmark for key-value databases [27]. On
the client side, we use its default SET–GET ratio of 1:10 and
start 16 threads with 50 clients each, resulting in 800 clients
with 800 active connections to memcached. We execute the
benchmark on the same machine, but pin memcached to one
NUMA node, while pinning memtier onto the other. We
record data request latencies until each view has serviced 100
million requests.

Benchmark Unlike other servers, memcached has an
event-based design and the worker threads execute a state
machine for each connection. Thereby, connections can
be easily rebalanced between workers and one worker rou-
tinely handles many connections. To match the 16 memtier
threads, we start memcached with 16 worker threads that, to-
gether, service all client requests.

For new connections, we decide whether it will execute
in the performance or the profiling view, mimicking scenar-

base 0% 25% 50% 75% 100%

10000

30000

50000

Performance View

base 0% 25% 50% 75% 100%

Profiling View

Per Request CPU Time

Connections in Profiling View

CP
U

Ti
m

e
[n

s]

Figure 6: Memcached Performance Measurements for 1M
sampled Data Points per Violin

ios where certain IP ranges or customers are profiled. In
our benchmark, we use enable profiling for the first N (0 %-
100 %) connections to demonstrate the impact of profiling.
As long as the profiling percentage threshold is not met, each
connection will be profiled. Because memcached distributes
connections round-robin across workers, each worker thread
will serve both, profiling and performance connections. Con-
sequently, every worker thread switches between perfor-
mance and profiling view continuously across the whole
benchmark, which increases TLB pressure since they live
in distinct address spaces. Nevertheless, as we will show,
this penalty is still better than to enable profiling globally
and could even be improved by a profiling-aware connection
scheduling.

For our measurement, we record the execution time of the
drive_machine() function, which is responsible for exe-
cuting the per-connection state machine, making the func-
tion crucial for the request latency. For each benchmark run,
we record request latencies until we reach 100M data points
for each view. Therefore, for the mixed-mode benchmarks
(25 %-75%), we will end up with 200M data points.

Results In Fig. 6, we show violin plots for the
drive_machine() execution times separated by requests
serviced that were serviced in the profiling or the perfor-
mance view. Please note, that the 25% performance violin
on the left matches the 25% profiling violin on the right as
both stem from the same benchmark run. Also, we include
the base variants, which show the results for a memcached
server with statically enabled or disabled profiling without
MELF or MMViews. For preparing the violin plots, we limit
each data set (100M data points) to the [0.01%, 99.99%]-
interval to remove outliers and randomly sample 1 million
representative data points.

By comparing the base variants, we see that profiling has a
significant impact on memcached’s most important function
and increases its execution time by 175 percent. Further,
for both views, the violin with the maximum number per-

formance/profiling connections match the results of the base
variant (i.e., performance base ↔ 0% performance). From
this, we can conclude that MELF enables us to enable and
disable profiling dynamically at run-time without having a
continued run-time impact.

For the profiling view, we see that the impact of profil-
ing per request increases if more connections use the pro-
filing path. This behavior can be explained by looking at
the gprof-induced into the code: For each function, gprof
allocates a counter variable that the compiler-introduced
mcount() function uses to keep track of the number of in-
vocations. As the activated memcached logic is rather small
and executed by 16 threads in parallel, all workers in a profil-
ing view access the same small set of per-function counters.
Together with the fact that gprof does not even cache-align
these counters, profiling results in many cross-core cache in-
validations. Further, this effect scales with the percentage of
threads working in the profiling view as more cache conflicts
happen.

For the performance view, we see a slight increase in the
median and tail latencies if more connections are shifted to
the profiling view. Since workers need to switch views if
the currently active MMView does not match the next pro-
cesses connection, MELF increases the TLB pressure, im-
pacting also workers in the performance view. Also, the fre-
quent cache invalidations in the neighboring profiling view
increases the cache-coherence traffic and puts a burden on
the memory bandwidth. Nevertheless, even with 75 percent
of all connections being profiled, the median over the base
variant only increases by 7.61 percent for performance con-
nections, which is far less than activating profiling globally.
Inspired by these results, one could restrict profiling to a sin-
gle worker thread or a small set of connections to get a statis-
tic picture of the whole memcached process without inflicting
the described cache conflicts from invocation counters.

In total, the MELF approach was able to make the static
gprof method dynamically and selectively applicable with-
out requiring a restart of the process and without touching
the compiler.

3.4 Case-Study: ASAN in MariaDB

With this case study, we demonstrate that MELF is able
to handle multiple variants in complex C++ projects.
We compile MariaDB (> 20000 functions) once with
(-fsanitize-address) and once without address sani-
tizer [5] and use the MELF linker to overlay both variants in
the same binary. At run-time, we decide on a per-user basis
whether a client’s SQL queries are executed with sanitized
or unsanitized MMView.

Scenario Justification Sanitizers [28], like Address-
Sanitizer [5] and UBSan [29], are often implemented as
compiler transformations and they are usually used at de-
velopment time to find bugs. However, due to their high

MariaDB (10.11)
ASAN View Normal View
Functions: 21448 Functions: 20986
.text=16777.4 K .text=4661.6 K
.rodata=1082.2 K .rodata=1079.2 K
.data=173.9 K .data=173.9 K
.bss=218.3 K .bss=218 K
MELF Overlay
Aligned Functions: 20615 Padding: 12487 K (33.87 %)
VM Size: .text=16934 K .rodata=1099 K .data=180 K .bss=224 K

Table 2: Overview of the MariaDB case-study binary

Clients Normal View ASAN View

Normal / ASAN Median 99% Median 99%

24 / 0 63 us 73 us – –
18 / 6 63 us 74 us 90 us 104 us
12 / 12 63 us 74 us 89 us 102 us
6 / 18 64 us 74 us 90 us 102 us
0 / 24 – – 89 us 102 us

Base w/o MELF 47 us 55 us 89 us 100 us

Table 3: Query Latency for Sysbench oltp_point_select
benchmark on MariaDB with and without AddressSanitizer
(ASAN).

overheads, they are then disabled in production, although
they could provide an additional level of sanity checking
for code that handles user input. With MELF, we enable
AddressSanitizer, which was found to be the most common
sanitizer [28], for individual database users in MariaDB,
whereby we mimic a trusted–untrusted customer model.
Technically, this case-study is of interest as MariaDB is a
multi-threaded, large server application. With ASAN being
strongly invasive on the code and data path, it helps to un-
derstand how MELF scales for large code bases.

Work Load As a work load, we use the sysbench [30]
oltp_point_select benchmark. On our 48-core machine,
we execute and pin MariaDB to NUMA node 1, while sys-
bench runs on NUMA node 2. We start MariaDB in the
one-thread-per-connection mode, and always have 24 con-
current sysbench connections. To satisfy the mentioned
trusted–untrusted customer model, we execute two sysbench
instances, each of which connects as different database user.
To vary the load between the ASAN/no-ASAN view, we
vary the distribution of the 24 connections between both in-
stances. We use the output of sysbench, which records the
end-to-end latencies per transaction, as our result data.

Results In Tab. 2, we see an overview of the MariaDB
binary produced by the MELF linker. First, we see that the
application of ASAN increases the number of functions, as
the compiler cannot inline and eradicate some of the smaller
functions. We also see that the ASAN variant’s text section is
2.6 times larger than the normal text section. Together with

the fact that 98 percent of the normal view’s functions had to
be aligned and, therefore, could not be used for gap filling,
explains the larger percentage of padding bytes (33.87 %).

In Tab. 3, we show the end-to-end latency results for
the oltp_point_select benchmark. First of all, we see
that AddressSanitizer has a significant impact on the per-
formance of MariaDB as it increases the median latency by
89 percent. This latency penalty is also inflicted on clients
whose queries are processed in the ASAN view. However,
also clients in the normal view have a 36 percent increased
query latency. This increase can be explained by the fact that
the ASAN run-time library still has to intercept and wrap
heap allocations, which are known to have a major impact on
query performance[31], in order to keep its shadow-memory
map up to date. However, in the normal view, MELF only
removes the additional checks from the query processing and
the additional overhead from the run-time library remains.

4 Discussion

In the following, we discuss limitations and benefits of the
MELF approach.

Multi-Variant Data As we have discussed in Sec. 2.3,
the MELF approach is currently limited to a strict data-object
sharing semantic, where all variants share the data sections
of the primary variant. For this, the data and its interpretation
have to be compatible in all variants, which can, as we have
seen with SQLite (Sec. 3.1), require some manual program
modifications.

The following program demonstrates this limitation as it
is incompatible in three different dimensions: (1) If a lock is
allocated in A, the object would be too small to usage in B,
(2) the field L has different offsets, and (3) both variants have
a different idea about the lock state (1 vs. -1).

// Variant A
struct lock { int L; }
#define LOCKED 1

// Variant B
struct lock {int O; int L;}
#define LOCKED (-1)

Supporting these cases in general is impossible, as it would
require complete program understanding on the language
level. However, for many cases, one could use semi-
automated transformer functions [13], [32], [33], known
from dynamic software updates, to synchronize two copies
of the data.

For data initialization, we use the variant that is active at
the initialization time. Therefore, we use the global data seg-
ment and invoke all global constructors in the primary vari-
ant. Function-local static variables are, in line with C/C++
semantics, initialized at the first call of the respective func-
tion and, thus, in the context of the then active variant.

Besides strict data sharing, the MELF linker also supports
a strict data-object partitioning. For this, the linker has to
keep all data sections, let each variant only reference its own
data sections, and we would run the constructor of all vari-

ants at program start. In this use case, the developer has
to ensure that objects do not flow (i.e., across the univariant
parts of the program) across variant boundaries. This mode
could be useful for using multiple incompatible versions of
libraries that make heavy use of global state.

MMView Dependency We acknowledge that MELF
plays out its benefits particularly in combination with
MMViews, which we use to back the same virtual-address
range with different contents depending on the active thread
of a process. The MMView approach has disadvantages,
such as memory overhead and increased TLB pressure [14].
Because the exact runtime overhead of MMViews highly de-
pends on the size of virtual memory and its physical data
(plain data in RAM, file-backed mappings), a general over-
head cannot be quantified. Furthermore, the measurable ef-
fect on the TLB directly correlates to a thread’s view switch
frequency and memory access patterns, which is individ-
ual to every application. For view creation and switch-
ing, a mean runtime penalty of 7µs with a standard devi-
ation of 6µs has been measured on earlier benchmarks for
memcached and MariaDB [14]. In another recent study of
memcached, the cost of MMViews were only measurable
for context-switches between different views. In general,
however, a transition from one view to another is compa-
rable to a context-switch between two threads of two dif-
ferent processes. As an alternative, multithreaded MELFs
could be facilitated through CPU-assisted segmentation [34],
such as supported by the IA-32 architecture [35]. With seg-
mentation, we would load every variant into its own seg-
ment and each thread could select its variant by setting its
code-segment selector register accordingly. On the IA-32
platform, where call and jump instructions implicitly use the
code segment, this would be equivalent to MMViews. With-
out the separate address-space clones, the memory and TLB
overheads would be replaced by a minor offset calculation
overhead that segmentation entails.

Although segmentation contradicts Linux’s flat memory
model, MELF binaries could easily be supported if (a) the
kernel provides means to initialize and switch hardware
segments and (b) if the code-segment register is preserved
between thread switches. Unfortunately, segmentation as
a virtual memory primitive is currently not in fashion on
modern platforms. Particularly, it has been removed from
AMD64 [35] and was never available on RISC architec-
tures. Given that segmentation has other advantages, such
as safety benefits, we would applaud a renaissance of this
virtual memory primitive. However, even without segmenta-
tion, we could theoretically implement text variants, using
position-independent code coupled with the segmentation
remnants in AMD64 (FS/GS register) to facilitate variant-
adherence for indirect jumps. However, this would require
intrusive linker and compiler modifications.

Switching For both modes (base and MMView), we de-
mand that switching the variant takes only place at func-

tion boundaries. This limitation stems from the fact that
MELF only aligns function start addresses, but all other
intra-function addresses could be unaligned. For example,
saved return addresses may not be valid in the other vari-
ant. However, with additional compiler support, this qui-
escence requirement could be weakened: For example, if
the compiler would also align call sites and would make
the call frames at those call sites compatible across variants,
we could switch variants flexibly at every call and return
edge. Such an extension could be beneficial for supporting
workloads on heterogeneous ISA as it would, for example,
ease thread migration between different ISAs without stack
rewriting [36].

Applicability and Benefits With our case studies, we
have shown that the MELF approach is applicable to a
wide range of programs. By covering not only C but also
C++ projects, which result in more complex object files
(e.g., C++templates are a main user for COMDAT), we have
demonstrated that MELF works on multiple programming
languages. Further, as our approach only requires a com-
piler to produce “sectioned” object files, we are in principle
language agnostic and widely applicable.

Also, MELF is agnostic to the source of the code
modification. As shown, we support automatically-
introduced compiler transformations (e.g., profiling) as well
as manually-encoded variants (e.g., SQLite). Thereby,
MELF covers more scenarios than pure language-based
methods, like aspect-oriented programming (AOP) [37].
Further, as MELF prepares everything at link time, static
binary validation could make MELF safer than dynamic-
binary instrumentation (e.g., Intel Pin [38]), which was crit-
icized to ease an exploiter’s life [39].

Further, we have shown that MELF’s semi-dynamic ap-
proach to variability is able to cover a wide range of use
cases that are security-related (assertions, ASAN), provide
DevOps with deeper insights (profiling), and ease the support
of coming hardware generations (heterogeneous ISAs). We
believe that especially the DevOps and the heterogeneous-
ISA scenario will require semi-dynamic variability, since:
(1) We need more dynamically-observed metrics to under-
stand our complex systems down to the individual hot path.
(2) Extensible architectures, such as RISC-V platform [40],
with its many ISA compatibility levels, will boost the spread-
ing of heterogeneous-ISA machines. (3) In many settings,
we simply have not the choice to drop existing applications
in favor of from-scratch developed software.

Although three of our four case-studies do not dynami-
cally switch views during runtime, we were able to gain rea-
sonable performance isolation in each application scenario:
For profiling in memcached we achieved performance iso-
lation of profiling connections and do dynamically switch
a thread’s view based on the connection currently being
served. In the other case-studies, we were able to obtain:
(a) Performance isoliation and improved robustness for dy-

namic assertions in SQLite. (b) Performance maximization
via ISA-specialized function variants with thread-pools. (c)
Performance isolation and improved security for ASAN in
MariaDB. Additionally, function pointers work “out-of-the-
box” for MELF, which eases a programmer’s life.

We also imagine that MELF can be used in an em-
bedded setting, where no MMU is available to implement
MMViews: For these machines, MELF can prepare variant
overlays of in-flash text segments, which then can be ex-
changed at run-time by partially rewriting the flash memory.
Thereby, multiple software variants can be supported in one
device without inducing indirection overhead.

Also, we have seen that MELF’s function alignment only
induces moderate memory overheads (see Tab. 1), while
the run-time overhead in combination with MMViews de-
pends on the concrete case study. Nevertheless, even in the
memcached case study, where threads switch on a regular ba-
sis between views, the run-time overhead was limited to less
than 8 percent. Furthermore, Fig. 6 shows that the median
runtime latency in the performance view is equal for the base
and 0% variant.

Summarized, MELF is a cheap, language-agnostic
method to lift static code variability to the semi-dynamic
level. MELF is widely applicable and provides us with a
framework for further explorations of semi-dynamic vari-
ability.

5 Related Work

Technically, text overlays [41], [42] are a closely related
topic: They were used to reduce a program’s primary-storage
requirement by loading only the currently used subset of
functions into the memory. While overlays have a renais-
sance [43], [44] for managing complex memory hierarchies,
they are fundamentally different as they partition one pro-
gram to fit it into a smaller memory. In contrast, MELF
overlays multiple but similar programs in one binary and,
with MMViews, execute those variants concurrently.

On the language level, aspect-oriented programming [45]
if applied dynamically [46], [47] is similar to MELF. How-
ever, as aspects only add code before, after, or around func-
tion (calls), it does not support variants that stem from
generic and cross-cutting code transformations.

Function Multiversioning [48] is a GCC extension to gen-
erate multiple versions per function, each of which special-
ized for the availability of different instruction-set exten-
sions. The loader selects one variant on function granularity,
which, unlike with MELFs, cannot be changed later on.

Fat binaries support multiple processor architectures by
embedding program versions for the different processor
types into one executable or library [49]–[54]. The variant
to execute can be either selected directly by the operating
system [54] or through a polyglot opcode string that is in-
terpretable by both architectures [52]. Nextstep’s Mach-O

format, which was later adopted by Mac OS X, even sup-
ports “multifat” binaries that allow more than two different
architectures (68K, x86, HP PA-RISC, SPARC) [50], [53],
[54]. Going one step further, Cha et al. propose a system for
generating multi-architecture binaries that, in contrast to fat
binaries, use the same program string which is transformed
in a way to be correctly interpretable by multiple processor
types [55]. Similarly to the architecture heterogeneity of fat
binaries, the Windows Portable Executable format has sup-
port for multiple platforms as it contains a DOS and Win-
dows program in parallel [56]. Whereas the DOS part is
usually just a small stub nowadays, it has been used to ship
binaries that work under DOS and Windows in the past. In
contrast to MELF, in all these approaches the variant selec-
tion covers the whole program, that means it is determined
at process start, and cannot be changed later.

6 Conclusion

Multivariant ELF (MELF) is as a binary-level approach for
the inclusion of multiple compile-time variants within the
same binary and flexible switching between them at run
time on function/section granularity. This facilitates the im-
plementation of semi-dynamic variability, that is, dynamic
switching between feature-variants at run time that are never-
theless generated and known at compile time, whereby even
highly cross-cutting compiler features become configurable
at run time. In combination with a kernel extension for in-
process address spaces, this even works on the level of indi-
vidual threads.

MELFs are implemented solely on binary level and mostly
independent of the employed languages and compilers.
Function variants are aligned by the MELF linker to the
same virtual address, so that existing pointers or reloca-
tions remain valid even in case of a variant switch at run
time. Thereby, MELFs are relatively easy to apply to exist-
ing projects. We demonstrated this on the example of four
case studies, ranging over a wide range of multithreaded C
and C++ projects. In all cases, MELF was able to isolate the
costs and benefits of the compiler/developer-induced code
variants to those threads, that use it at run time.

Acknowledgments

We thank our anonymous reviewers and our shepherd Kenji
Kono for their constructive feedback and the efforts they
made to improve this paper. This work was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – 468988364, 501887536.

References

[1] G. Mitra, B. Johnston, A. P. Rendell, E. McCreath,
and J. Zhou, “Use of simd vector operations to accel-
erate application code performance on low-powered
arm and intel platforms,” in 2013 IEEE International
Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum, 2013, pp. 1107–1116.
DOI: 10.1109/IPDPSW.2013.207.

[2] C. Cowan, C. Pu, D. Maier, et al., “Stackguard: Au-
tomatic adaptive detection and prevention of buffer-
overflow attacks,” in Proceedings of the 7th Con-
ference on USENIX Security Symposium - Volume 7
(SSYM ’98), San Antonio, Texas: USENIX Associa-
tion, 1998, p. 5.

[3] C. Cowan, S. Beattie, J. Johansen, and P. Wagle,
“Pointguardtm: Protecting pointers from buffer over-
flow vulnerabilities,” in Proceedings of the 12th Con-
ference on USENIX Security Symposium - Volume 12
(SSYM ’03), Washington, DC: USENIX Association,
2003, p. 7.

[4] N. Nethercote and J. Seward, “Valgrind: A frame-
work for heavyweight dynamic binary instrumenta-
tion,” ACM SIGPLAN Notices, vol. 42, no. 6, pp. 89–
100, 2007.

[5] K. Serebryany, D. Bruening, A. Potapenko, and D.
Vyukov, “AddressSanitizer: A fast address sanity
checker,” in 2012 USENIX Annual Technical Confer-
ence (USENIX ATC 12), 2012, pp. 309–318.

[6] C. Courbet, “NSan: A floating-point numerical san-
itizer,” in Proceedings of the 30th ACM SIGPLAN
International Conference on Compiler Construction
(CC ’21), Virtual, Republic of Korea: Associa-
tion for Computing Machinery, 2021, 83–93, ISBN:
9781450383257. DOI: 10.1145/3446804.3446848.

[7] S. Saib, “Executable assertions - an aid to reliable
software,” in 1977 11th Asilomar Conference on
Circuits, Systems and Computers, 1977. Conference
Record., 1977, pp. 277–281. DOI: 10.1109/ACSSC.
1977.748932.

[8] B. Meyer, “Applying ’design by contract’,” Com-
puter, vol. 25, no. 10, pp. 40–51, 1992. DOI: 10.1109/
2.161279.

[9] C. Casalnuovo, P. Devanbu, A. Oliveira, V. Filkov,
and B. Ray, “Assert use in github projects,” in 2015
IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1, 2015, pp. 755–766. DOI:
10.1109/ICSE.2015.88.

[10] J. Wagner, V. Kuznetsov, G. Candea, and J. Kinder,
“High system-code security with low overhead,” in
2015 IEEE Symposium on Security and Privacy,
2015, pp. 866–879. DOI: 10.1109/SP.2015.58.

[11] Intel® oneapi math kernel library, 2022. [Online].
Available: https : / / www. intel . com / content / www /
us/en/developer/tools/oneapi/onemkl.html (visited on
12/23/2022).

[12] J. Corbet, Smp alternatives, Dec. 2005. [Online].
Available: https: / / lwn.net/Articles/164121/ (visited
on 12/22/2022).

[13] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol,
“Practical dynamic software updating for c,” in Pro-
ceedings of the 27th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
ser. PLDI ’06, Ottawa, Ontario, Canada: ACM, 2006,
pp. 72–83, ISBN: 1-59593-320-4. DOI: 10 . 1145 /
1133981.1133991.

[14] F. Rommel, C. Dietrich, D. Friesel, M. Köppen, C.
Borchert, M. Müller, O. Spinczyk, and D. Lohmann,
“From global to local quiescence: Wait-free code
patching of multi-threaded processes,” in 14th Sym-
posium on Operating System Design and Implemen-
tation (OSDI ’20), Nov. 2020, pp. 651–666.

[15] F. Rommel, C. Dietrich, M. Rodin, and D. Lohmann,
“Multiverse: Compiler-assisted management of dy-
namic variability in low-level system software,” in
Fourteenth EuroSys Conference 2019 (EuroSys ’19),
(Dresden, Germany), New York, NY, USA: ACM
Press, 2019, ISBN: 978-1-4503-6281-8. DOI: 10.1145/
3302424.3303959.

[16] CMake – Cross platform make, http: / /www.cmake.
org/, visited 2023-01-03. [Online]. Available: http://
www.cmake.org/.

[17] Elf(5) - format of exectuable and linking format (ELF)
files, Linux Progammer’s Manual, Mar. 2021. [On-
line]. Available: https://man7.org/linux/man-pages/
man5/elf.5.html.

[18] LLD - the LLVM linker. [Online]. Available: https://
lld.llvm.org/ (visited on 01/03/2023).

[19] P. Greenhalgh, “Big. little processing with arm cortex-
a15 & cortex-a7: Improving energy efficiency in high-
performance mobile platforms,” white paper, ARM
Ltd, 2011.

[20] S. K. Bhat, A. Saya, H. K. Rawat, A. Barbalace,
and B. Ravindran, “Harnessing energy efficiency of
heterogeneous-isa platforms,” ACM SIGOPS Operat-
ing Systems Review, vol. 49, no. 2, pp. 65–69, 2016.

[21] P. Nasahl, R. Schilling, M. Werner, and S. Man-
gard, “HECTOR-V: A heterogeneous CPU architec-
ture for a secure RISC-V execution environment,” in
Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security, ser. ASIA
CCS ’21, Virtual Event, Hong Kong: Association

https://doi.org/10.1109/IPDPSW.2013.207
https://doi.org/10.1145/3446804.3446848
https://doi.org/10.1109/ACSSC.1977.748932
https://doi.org/10.1109/ACSSC.1977.748932
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/ICSE.2015.88
https://doi.org/10.1109/SP.2015.58
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://lwn.net/Articles/164121/
https://doi.org/10.1145/1133981.1133991
https://doi.org/10.1145/1133981.1133991
https://doi.org/10.1145/3302424.3303959
https://doi.org/10.1145/3302424.3303959
http://www.cmake.org/
http://www.cmake.org/
http://www.cmake.org/
http://www.cmake.org/
https://man7.org/linux/man-pages/man5/elf.5.html
https://man7.org/linux/man-pages/man5/elf.5.html
https://lld.llvm.org/
https://lld.llvm.org/

for Computing Machinery, 2021, 187–199, ISBN:
9781450382878. DOI: 10.1145/3433210.3453112.

[22] W. Lee, D. Sunwoo, C. D. Emmons, A. Gerstlauer,
and L. K. John, “Exploring heterogeneous-isa core ar-
chitectures for high-performance and energy-efficient
mobile socs,” in Proceedings of the on Great Lakes
Symposium on VLSI 2017, ser. GLSVLSI ’17, Banff,
Alberta, Canada: Association for Computing Machin-
ery, 2017, 419–422, ISBN: 9781450349727. DOI: 10.
1145/3060403.3060408.

[23] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D.
Reddy, and S. Hahn, “Operating system support for
overlapping-isa heterogeneous multi-core architec-
tures,” in HPCA - 16 2010 The Sixteenth International
Symposium on High-Performance Computer Archi-
tecture, 2010, pp. 1–12. DOI: 10.1109/HPCA.2010.
5416660.

[24] S. Cho, H. Chen, S. Madaminov, M. Ferdman, and
P. Milder, “Flick: Fast and lightweight isa-crossing
call for heterogeneous-isa environments,” in 2020
ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), 2020, pp. 187–198.
DOI: 10.1109/ISCA45697.2020.00026.

[25] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski,
A. Ravichandran, C. Kendir, A. Murray, and B. Ravin-
dran, “Popcorn: Bridging the programmability gap in
heterogeneous-isa platforms,” in Proceedings of the
Tenth European Conference on Computer Systems,
ser. EuroSys ’15, Bordeaux, France: Association for
Computing Machinery, 2015, ISBN: 9781450332385.
DOI: 10.1145/2741948.2741962.

[26] S. L. Graham, P. B. Kessler, and M. K. Mckusick,
“Gprof: A call graph execution profiler,” SIGPLAN
Not., vol. 17, no. 6, 120–126, 1982, ISSN: 0362-1340.
DOI: 10.1145/872726.806987.

[27] RedisLabs, Memtier benchmark on github, https : / /
github.com/RedisLabs/memtier_benchmark, visited:
2023-01-02.

[28] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volck-
aert, P. Larsen, and M. Franz, “Sok: Sanitizing for se-
curity,” in 2019 IEEE Symposium on Security and Pri-
vacy (SP), 2019, pp. 1275–1295. DOI: 10 .1109/SP.
2019.00010.

[29] J. Lee, Y. Kim, Y. Song, C.-K. Hur, S. Das, D. Majne-
mer, J. Regehr, and N. P. Lopes, “Taming undefined
behavior in llvm,” ACM SIGPLAN Notices, vol. 52,
no. 6, pp. 633–647, 2017.

[30] A. Kopytov, Sysbench – scriptable database and
system performance benchmark. [Online]. Available:
https://github.com/akopytov/sysbench.

[31] D. Durner, V. Leis, and T. Neumann, “Experimen-
tal study of memory allocation for high-performance
query processing.,” in International Conference on
Very Large Databases (VLDB), 2019, pp. 1–9.

[32] I. Lee, “Dymos: A dynamic modification system,”
Ph.D. dissertation, University of Wisconsin-Madison,
1983. [Online]. Available: www.cis.upenn.edu/~lee/
mydissertation.doc.

[33] M. Hicks, J. T. Moore, and S. Nettles, “Dynamic soft-
ware updating,” SIGPLAN Not., vol. 36, no. 5, 13–23,
May 2001, ISSN: 0362-1340. DOI: 10.1145/381694.
378798.

[34] J. B. Dennis, “Segmentation and the design of multi-
programmed computer systems,” Journal of the ACM,
vol. 12, no. 4, pp. 589–602, 1965, ISSN: 0004-5411.
DOI: 10.1145/321296.321310.

[35] Intel® 64 and ia-32 architectures software devel-
oper’s manual, combined volumes: 1, 2a, 2b, 2c, 2d,
3a, 3b, 3c, 3d and 4, Intel Corporation, 2022. [On-
line]. Available: https : / / cdrdv2 . intel . com / v1 / dl /
getContent/671200.

[36] K. Makris and R. A. Bazzi, “Immediate multi-
threaded dynamic software updates using stack recon-
struction,” in Proceedings of the 2009 Conference on
USENIX Annual Technical Conference, ser. USENIX
’09, San Diego, California: USENIX Association,
2009, pp. 31–31.

[37] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, and W. G. Griswold, “Getting started with As-
pectJ,” Communications of the ACM, pp. 59–65, Oct.
2001.

[38] Pin - a dynamic binary instrumentation tool, In-
tel Corporation, Santa Clara, California, USA, 2022.
[Online]. Available: https://software.intel.com/sites/
landingpage/pintool/docs/98650/Pin/doc/html/index.
html.

[39] J. Kirsch, Z. Zhechev, B. Bierbaumer, and T. Kit-
tel, “Pwin – pwning intel pin: Why dbi is unsuitable
for security applications,” in Computer Security, J.
Lopez, J. Zhou, and M. Soriano, Eds., Cham: Springer
International Publishing, 2018, pp. 363–382, ISBN:
978-3-319-99073-6.

[40] A. Waterman and K. Asanović, Eds., The risc-v in-
struction set manual, volume i: Unpriviledged isa –
document version 20191213, Dec. 2019.

[41] R. Cytron and P. G. Loewner, “An automatic over-
lay generator,” IBM Journal of Research and Devel-
opment, vol. 30, no. 6, pp. 603–608, 1986. DOI: 10.
1147/rd.306.0603.

https://doi.org/10.1145/3433210.3453112
https://doi.org/10.1145/3060403.3060408
https://doi.org/10.1145/3060403.3060408
https://doi.org/10.1109/HPCA.2010.5416660
https://doi.org/10.1109/HPCA.2010.5416660
https://doi.org/10.1109/ISCA45697.2020.00026
https://doi.org/10.1145/2741948.2741962
https://doi.org/10.1145/872726.806987
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://doi.org/10.1109/SP.2019.00010
https://doi.org/10.1109/SP.2019.00010
https://github.com/akopytov/sysbench
www.cis.upenn.edu/~lee/mydissertation.doc
www.cis.upenn.edu/~lee/mydissertation.doc
https://doi.org/10.1145/381694.378798
https://doi.org/10.1145/381694.378798
https://doi.org/10.1145/321296.321310
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://software.intel.com/sites/landingpage/pintool/docs/98650/Pin/doc/html/index.html
https://software.intel.com/sites/landingpage/pintool/docs/98650/Pin/doc/html/index.html
https://software.intel.com/sites/landingpage/pintool/docs/98650/Pin/doc/html/index.html
https://doi.org/10.1147/rd.306.0603
https://doi.org/10.1147/rd.306.0603

[42] R. J. Pankhurst, “Operating systems: Program overlay
techniques,” Commun. ACM, vol. 11, no. 2, 119–125,
1968, ISSN: 0001-0782. DOI: 10 . 1145 / 362896 .
362923.

[43] M. A. Baker, A. Panda, N. Ghadge, A. Kadne, and
K. S. Chatha, “A performance model and code overlay
generator for scratchpad enhanced embedded proces-
sors,” in Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software code-
sign and system synthesis, 2010, pp. 287–296.

[44] C. Jang, J. Lee, B. Egger, and S. Ryu, “Automatic
code overlay generation and partially redundant code
fetch elimination,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 9, no. 2, pp. 1–
32, 2012.

[45] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-
oriented programming,” in Proceedings of the 11th
European Conference on Object-Oriented Program-
ming (ECOOP ’97), (Finland), M. Aksit and S. Mat-
suoka, Eds., ser. Lecture Notes in Computer Science,
vol. 1241, Springer-Verlag, Jun. 1997, pp. 220–242.

[46] A. Popovici, T. Gross, and G. Alonso, “Dynamic
weaving for aspect-oriented programming,” in Pro-
ceedings of the 1st International Conference on
Aspect-Oriented Software Development (AOSD ’02),
(Enschede, The Netherlands), G. Kiczales, Ed., ACM
Press, Apr. 2002, pp. 141–147.

[47] R. Tartler, D. Lohmann, W. Schröder-Preikschat, and
O. Spinczyk, “Dynamic aspectc++: Generic advice
at any time,” in Proceedings of the 2009 Conference
on New Trends in Software Methodologies, Tools and
Techniques (SoMeT ’09), (Prague, Czech Republic),
H. Fujita and V. Marík, Eds., ser. Frontiers in Artifi-
cial Intelligence and Applications, Amsterdam, The
Netherlands: IOS Press, 2009, pp. 165–186, ISBN:
978-1-60750-049-0. DOI: 10.3233/978-1-60750-049-
0-165.

[48] V. Rodriguez, A. Duenas, and E. Stupachenko, Func-
tion multi-versioning in gcc 6, Jun. 2016. [Online].
Available: https: / / lwn.net/Articles/691932/ (visited
on 01/10/2023).

[49] A. C. Inc., Creating fat binary programs, 1997. [On-
line]. Available: https://developer.apple.com/library/
archive / documentation / mac / runtimehtml / RTArch -
87.html (visited on 01/11/2023).

[50] A. Singh, Mac OS X Internals: A Systems Approach:
A Systems Approach. Addison Wesley, 2016, ISBN:
0134426541.

[51] Fatelf: Universal binaries for linux. [Online]. Avail-
able: https : / / icculus . org / fatelf/ (visited on
01/11/2023).

[52] B. Wilkinson, Something common about ms-dos and
cp/m, 1999. [Online]. Available: https : / / www .
heco . wxwilki . com / commscpm . html (visited on
01/11/2023).

[53] A. Tevanian, M. DeMoney, K. Enderby, D. Wiebe, and
G. Snyder, Method and apparatus for architecture in-
dependent executable files, 1995. [Online]. Available:
https://patents.google.com/patent/US5432937A/en.

[54] A. Tevanian, M. DeMoney, K. Enderby, D. Wiebe, and
G. Snyder, Method and apparatus for architecture in-
dependent executable files, 1997. [Online]. Available:
https://patents.google.com/patent/US5604905/en.

[55] S. K. Cha, B. Pak, D. Brumley, and R. J. Lipton,
“Platform-independent programs,” in Proceedings of
the 17th ACM Conference on Computer and Com-
munications Security, ser. CCS ’10, Chicago, Illi-
nois, USA: Association for Computing Machinery,
2010, 547–558, ISBN: 9781450302456. DOI: 10.1145/
1866307.1866369.

[56] B. et al., Pe format - win32 apps, en-us. [Online].
Available: https : / / learn . microsoft . com / en - us /
windows / win32 / debug / pe - format (visited on
01/11/2023).

https://doi.org/10.1145/362896.362923
https://doi.org/10.1145/362896.362923
https://doi.org/10.3233/978-1-60750-049-0-165
https://doi.org/10.3233/978-1-60750-049-0-165
https://lwn.net/Articles/691932/
https://developer.apple.com/library/archive/documentation/mac/runtimehtml/RTArch-87.html
https://developer.apple.com/library/archive/documentation/mac/runtimehtml/RTArch-87.html
https://developer.apple.com/library/archive/documentation/mac/runtimehtml/RTArch-87.html
https://icculus.org/fatelf/
https://www.heco.wxwilki.com/commscpm.html
https://www.heco.wxwilki.com/commscpm.html
https://patents.google.com/patent/US5432937A/en
https://patents.google.com/patent/US5604905/en
https://doi.org/10.1145/1866307.1866369
https://doi.org/10.1145/1866307.1866369
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format

A Artifact Appendix

Abstract

This artifact includes all tools and a documentation to run the evaluation for
multivariant ELFs, a binary-level, language-agnostic approach to semi-dynamic
variability. It details how to run and modify four case studies using the provided
artifact package, which includes benchmark scripts, a virtual disk file and the
MMView kernel and its initrd. Users run the virtual machine via QEMU and
execute scripts, which allow to generate and display benchmark data for each
case-study. The four case studies are: (a) MariaDB ASan, (b) SQLite assertions,
(c) Heterogeneous-ISA thread-pool, and (d) memcached profiling to prove the
wide applicability of MELFs. Each case study includes instructions on running,
exporting results, and modifying the benchmark. Next to the case-studies, users
can also modify the provided MELF linker, the crucial component in creating
MELFs, to examine the generation and placement of variant generation.

Scope

Users investigating the MELF benchmarks are able to verify that the only de-
pendencies and changes to-be-made to make use of MELFs in applications are:
(1) Express the existence of multiple application variants inside an application-
specific linker script file (2) Extend existing application code to declare and
load variants. (3) Use the llvm-based MELF linker to link application modules
(object files) to the final MELF executable.

For each individual case-study, users can reconstruct the claimed benefits of
MELFs described within the paper, which is mainly performance isolation and
increased binary size depending on the workload. All evaluators, however, need
to keep in mind that running those benchmarks in a virtualized environment
will not provide the same results we were able to get for our paper. Your final
result highly depends on the hardware your host machines use. But the main
concept of performance isolation shall be visible in each benchmark executed.

Contents

This archive provides the user with every evaluation resource needed to run our
evaluation setup. Namely, this archive consists of:

• run.sh. A script that starts a virtual machine via QEMU.

• hda.qcow2. The virtual disk file of the virtual machine which includes the
whole artifact evaluation, based on debian 11.7.

• linux-mmview-vmlinuz-5.15. A Linux kernel fork of version 5.15 which
includes the operating system abstractions for MMViews.

• initrd-linux-mmview-vmlinuz-5.15. The corresponding initrd of the MMView
kernel fork.

• README.txt. A documentation file giving a detailed explanation of every
benchmark setup and how to build, modify and draw benchmark data.

To start artifact evaluation, the user has to have QEMU installed onto their
execution environment and to start run.sh. After the VM booted, the user can
get access to the system by logging in either as the user ”user” or as ”root”. The
user has a Makefile inside his home directory which contains a target for each
benchmark to generate the data and export that data into different formats.

Hosting

The artifact evaluation archive is hosted on the domain of our institution and can
be downloaded from there: https://sra.uni-hannover.de/Publications/

2023/melf-usenix-atc23/

Requirements

Most of our artifacts do not require specialized hardware. For the heterogeneous-
ISA artifact, we execute code making use of AVX512 instructions. In order to
run this artifact your host machine has to support AVX512, but most of modern
hardware does that by default. Otherwise, the list of requirements is:

• Modern CPU with at least 16 cores. If you have less you have to adjust
the run.sh script and the benchmarks inside the VM.

• At least 8GB RAM, the more the better.

For software requirements, you need to have installed:

• KVM module installed and loaded on your host machine.

• QEMU virtualization software stack.

Users can deviate from the given requirements, but doing so requires manual
modification of run.sh and the benchmark inside the virtual machine.

https://sra.uni-hannover.de/Publications/2023/melf-usenix-atc23/
https://sra.uni-hannover.de/Publications/2023/melf-usenix-atc23/

