
Morsels: Explicit Virtual Memory Objects
Alexander Halbuer

Leibniz Universität Hannover

Germany

halbuer@sra.uni-hannover.de

Christian Dietrich

Hamburg University of Technology

Germany

christian.dietrich@tuhh.de

Florian Rommel

Leibniz Universität Hannover

Germany

rommel@sra.uni-hannover.de

Daniel Lohmann

Leibniz Universität Hannover

Germany

lohmann@sra.uni-hannover.de

Abstract
The tremendous growth of RAM capacity – now exceed-

ing multiple terabytes – necessitates a reevaluation of tra-

ditional memory-management methods, which were devel-

oped when resources were scarce. Current virtual-memory

subsystems handle address-space regions as sets of individ-

ual 4-KiB pages with demand paging and copy-on-write, re-

sulting in significant management overhead. Although huge

pages reduce the number of managed entities, they induce

internal fragmentation and have a coarse copy granularity.

To address these problems, we introduce Morsels, a novel

virtual-memory–management paradigm that is purely based

on hardware data structures and enables the efficient sharing

of virtual-memory objects between processes and devices

while being well suited for non-volatile memory. Our bench-

marks show that Morsels reduce the mapping time for a

6.82-GiB machine-learning model by up to 99.8 percent com-

pared to conventional memory mapping in Linux.

1 Introduction
Memory management in operating systems has historically

been shaped by the fundamental assumptions that both phys-

ical main memory (RAM) and – to a lesser degree – virtual
memory (VM) [6] are scarce resources, which should be pro-

vided in an architecture-independent way [23].

Demand paging and copy-on-write (COW) [22] are funda-
mental OS techniques to cope with the limited physical mem-

ory: All physical memory is allocated, swapped, shared, or

transferred [28] between address spaces on the granularity of

individual page frames, typically sized at 4 KiB and mounted

one-by-one to the respective page tables. This allows for

lazy and memory-efficient implementations of fork() and

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

DIMES ’23, October 23, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0300-3/23/10.

https://doi.org/10.1145/3609308.3625267

mmap(), but comes at the price of significant bookkeeping

overhead and contention [20, 32] inside the kernel andmakes

transferring and sharing large in-memory objects across de-

vices and processes expensive. As mitigation, huge pages

merge a complete page-table subtree into a large contiguous

memory unit (on AMD64: 2MiB/1GiB), thereby reducing

the overhead for large objects. However, although Linux and

BSD support huge pages [17, 15], they have been poorly

adopted as an explicit measure for data sharing and transfer,

as their (now too coarse) granularity can lead to memory

bloat caused by internal fragmentation and high latencies of

COW faults [15, 19].

Given the ongoing trend towards in-memory databases [8,

24] and large AI models (e.g., up to 56GiB for Meta’s current

LLaMA2 models), applications require efficient means to

provision and share large in-memory objects not necessarily

backed by files. Also, non-CPU processing elements, like

GPUs and other accelerators, are more and more becoming

an integrated part of the system, which will even gain cache-

coherent memory access (i.e., with CXL [4] and Gen-Z [9]) in

the near future. Combined with system disaggregation [25],

this will push the (local) CPU from its exclusive place at the

top of the memory hierarchy. Therefore, the OS must also ex-

pose its interfaces [30] to these external devices. For memory,

the page-transfer–oriented I/O model [20] is already being

replaced by shared virtual memory (SVM) [31], where mem-

ory ranges are continuously shared with I/O devices through

the IO-MMU. All this calls for more explicit management of

in-memory objects, which should become first-class entities

– similar to files but independent from the file abstraction.

About This Paper
We propose Morsels, a newmemory abstraction based on the

memory-managing unit (MMU) data structures in addition to

the existing abstractions in OS kernels. The design follows

an exokernel-like philosophy [7] by sacrificing hardware

independence in favor of performance and reduced manage-

ment overhead. Our prototypical implementation focuses on

the AMD64 architecture, but the Morsel concept is gener-

ally applicable to all architectures with multi-level paging

support. We claim the following contributions:

https://doi.org/10.1145/3609308.3625267


DIMES ’23, October 23, 2023, Koblenz, Germany Alexander Halbuer, Christian Dietrich, Florian Rommel, and Daniel Lohmann

1

Base Pages

2

Huge Pages

3

Morsel

Virtual
Address
Space

Figure 1.Conceptual design of a Morsel – take a subtree of the page

table hierarchy as an indivisible, self-contained memory object.

• We explore the weakness of classic file-backed mappings

for applications with large memory footprints.

• We propose Morsels as a new memory abstraction and

provide a Linux implementation to make them available

to a wide range of applications and use cases.

• We demonstrate the benefits of Morsels over the existing

shared-memory primitives with two case studies.

2 Concept
With Morsels, we lift the management of memory from indi-

vidual pages to larger, indivisible memory objects in order to

overcome the shortcomings of page-by-page management.

Our design aims to achieve the following objectives:

1. Scalable memory-object management for huge memory

capacities and a high degree of parallelism.

2. Support different types of memory in a heterogeneous

system (e.g., volatile, persistent, high bandwidth).

3. Store densely packed, serialized data as well as scattered,

pointer-based data structures.

4. Efficiently share large memory objects between processes

and devices.

5. Avoid memory bloat by fine-grained and adaptive memory

provisioning.

In a nutshell, a Morsel is a subtree of the page-table hierar-

chy that includes all related management, page-table, and

user data, making it fully self-contained. Fig. 1 visualizes

our concept using a simplified page-table hierarchy (4 levels,

2 entries/level), showing the same 3-page VM layout with

different primitives: (1) With a standard VM area composed

of base pages, three individual pages need to be managed

(e.g., individually accounted for and mapped by the pager).

(2) With huge pages, we only have to keep track of two enti-

ties but lose one base page worth of memory due to internal

fragmentation. (3) The Morsel is managed and shared as a

single indivisible unit, while we keep fine-grained control

over memory provisioning as we can populate the Morsel

sparsely with base pages. In comparison to standard map-

pings, Morsels require no additional metadata, such as per

page-frame reference counters or reverse-mapping informa-

tion. For Morsels, the information stored in the page tables

is sufficient.

2.1 Near-Hardware Design
We restrict Morsels to architecture-specific virtual-object

sizes and enforce a natural alignment to achieve a low-

overhead design. The smallest possible Morsel is a base page,

while the largest is a subtree of the root page table. To re-

fer to specific Morsel sizes, we define the order 𝑁 as the

number of page-table levels covered by a Morsel so that a

base-page Morsel has order 𝑁 = 0. With base-page size 𝑆𝑏𝑎𝑠𝑒
and the number of entries per page table 𝑐 , the VM extent of

an order-𝑁 Morsel is 𝑆𝑏𝑎𝑠𝑒 · 𝑐𝑁 .
For the AMD64 architecture with 4KiB base-page size

(𝑆𝑏𝑎𝑠𝑒 = 4 KiB), 5-level paging (𝑁 ∈ {0,…, 4}), and 512 en-

tries per page table (𝑐 = 512), Morsels can be of VM sizes

4 KiB, 2MiB, 1 GiB, 512GiB, and 256 TiB. As Morsels can be

sparsely populated, their virtual size must not be confused

with the actual memory usage. For high-order Morsels, it

will often even exceed the system’s physical memory. The

significant discrepancy between the supported virtual sizes

likely results in internal fragmentation of the virtual address
space. However, this is not a significant concern since the

virtual address space is rarely scarce in most applications.

2.2 Usage and Interface
On the application side, we represent Morsels by file de-
scriptors (FDs) to take advantage of the existing descriptor

primitives (i.e., inter-process descriptor passing). However,

Morsels are not connected to regular files. They live exclu-

sively in the main memory. Transparent persistence, like in

file-backed mappings, is only possible by placing the Morsel,

its user and meta data, in non-volatile memory (NVM).
We plan to provide a small library that hides interaction

with the Morsel kernel module from the user and provides

name resolution. The following code snippet shows the in-

tended usage from a developer’s point of view:

int fd = create_morsel("my_morsel", 2); // Create new morsel (N = 2)

int fd = select_morsel("my_morsel"); // or select an existing one.

void* addr = mmap(NULL, 1<<30, PROT_READ | PROT_WRITE,

MAP_SHARED | MAP_NORESERVE, fd, 0);

To get a Morsel FD, either a new Morsel can be created, or

an existing one can be selected via its identifier in the Morsel

namespace. The retrieved FD is then used to map the Morsel

into the address space.

2.3 Efficient Memory Mapping
Due to being self-contained, mapping and unmapping a

Morsel is very efficient: As Morsels bring their own page ta-

bles, the kernel only has to change a single page-table entry

in the process’ address space to map a Morsel. As a result,

the page tables of a Morsel can be referenced from different

address spaces. In comparison: Working with a memory-

mapped file entails not only the allocation of page tables but

also the need to populate themwith each accessed page, even

if the file is already loaded and mapped in another address



Morsels: Explicit Virtual Memory Objects DIMES ’23, October 23, 2023, Koblenz, Germany

space. This typically happens lazily through the page-fault

mechanism, leading to many expensive faults and contention

within the VM subsystem and the page cache.

Please note, although we share the page tables for all

mappings of a Morsel, we can nevertheless use different

access protections per mapping, as we can specify the desired

permissions in the mounting page-table entry that points to

the Morsel.

2.4 Creation and Identification
As Morsels can be sparsely populated, the construction rou-

tine only creates a minimal page-table subtree covering only

the uppermost element, reducing memory consumption and

system-call latency. The lower-level page tables, as well as

the data pages, are installed either on demand by the fault

handler or by an explicit system call that will allow for batch

allocation. A special case is order 𝑁 = 0, which requires no

page table; here, we allocate the user page upon creation.

To address a Morsel, we only have to reference its upper-

most element, which is either a page table or a single user

page. As both are 4-KiB page frames, a Morsel is identified

by a page-aligned physical address. For security and conve-

nience, our Morsel subsystem will not directly expose this

address to the user-space applications.

2.5 Scalability
The primary design goals of Morsels are memory efficiency

and scalable manipulations (design goal 1). The management

of Morsels using MMU data structures comes with minimal

overhead, which is required anyway for memory mapping.

Unlike conventional mappings, where the enclosing address

space owns the page tables, the Morsel owns its page tables.

In the best case, a fully populated surface requires about one

page table per 512 user pages (
1

512
≈ 0.20%; assuming 4-KiB

base pages and neglecting higher page-table layers). The

page-table overhead is independent of the mapping count as

the page tables are shared, and no additional costs arise.

For most architectures (including AMD64), page-table en-

tries are word-sized, allowing for atomic manipulation. Com-

bined with our metadata-less design, different threads can

modify Morsels in parallel without requiring locks.

2.6 Fixed Mapping Addresses
Morsels are well suited for packed or serialized, file-like data,

as well as for pointer-based, scattered data structures such

as graphs (design goal 3). For the latter, the mapping address

matters in order to maintain the validity of the contained

pointers since they are absolute addresses. Therefore, we

provide a mechanism to bind a Morsel to a specific virtual

address on creation.

We are aware of the potential for address conflicts for

bound Morsels caused by the limited usable virtual address

spaces in current VM hardware (AMD64: 4/5-level paging

=̂ 256 Tib / 128 PiB). We believe that such conflicts are effec-

tively avoidable through careful system-wide management

of virtual addresses. However, the discussion of such man-

agement strategies is beyond the scope of this paper.

2.7 Persistence
Morsels support all types of memory accessible via the mem-

ory bus and, accordingly, mappable by the MMU (design

goal 2). With conventional DRAM, the lifetime of Morsels is

naturally limited to the system’s uptime. However, Morsels

are predestined for usage with NVM: Since a Morsel is self-

contained and includes all its necessary structural informa-

tion, we do not have to rebuild it after a power loss.

A major challenge with persistent memory is maintaining

a consistent state in the event of unexpected power losses

and other outages. With atomic instructions for page-table

modification and NVM with a persist granularity of at least

64 bit [21], Morsels themselves are already outage-tolerant

and a suitable building block for persistent objects. In this

regard, Linux lacks a persistent page allocator, which is an-

other fundamental prerequisite for outage-tolerant persis-

tency. Therefore, we plan to use an allocator implementation

that provides the required guarantees (e.g., [32, 18]).

2.8 Sharing with Devices
The Morsel design also targets the direct sharing of memory

objects with devices that are capable of direct memory ac-
cess (DMA) via the IO-MMU, which provides virtualization

and isolation features, similar to what the MMU does for

the CPU (design goal 4). AMD’s IO-MMU implementation

uses MMU-compatible data structures, allowing for direct

page-table sharing between the MMU and the IO-MMU. This

compatibility makes it possible to efficiently share memory

between the processor and devices, like network interfaces,

NVMe SSDs, and accelerators. For example, large neural

network models could be loaded from a storage device and

passed to an accelerator without CPU interaction. RDMA-

compatible network interfaces add even more possibilities

by sharing Morsels with attached systems.

To also support IO-MMUs with a page-table layout that is

incompatible with the MMU, we could use proxy page tables,

which we keep synchronized with the original MMU tables.

While this adds some overhead to the page-table manipula-

tion routines and the overall memory usage, it enables the

same fast mapping and unmapping as directly sharing the

Morsel’s page tables. For persistent Morsels, the proxy page

tables are stored in volatile memory and are rebuilt from the

persistent MMU page tables on startup.

2.9 Huge Pages
Regarding memory management overheads, Morsels and

huge pages target similar shortcomings. However, huge

pages increase the page size by merging a complete page ta-

ble, which requires a huge page to be backed with physically



DIMES ’23, October 23, 2023, Koblenz, Germany Alexander Halbuer, Christian Dietrich, Florian Rommel, and Daniel Lohmann

contiguous memory and leads to internal fragmentation. In

contrast, Morsels internally can stick to smaller frame sizes

to allow fine-grained control (design goal 5). Another differ-

ence is the sparse population of Morsels, whereas huge pages

cannot contain holes. While huge pages are architecturally

supported only by the lower levels of the page table hierar-

chy – typically 2MiB, sometimes 1GiB – Morsels support

even larger virtual sizes.

Current huge-page implementations in Linux have been

poorly adopted because they either need explicit support

by applications (hugetlbfs) or provide unpredictable latency
spikes (transparent huge pages) [19]. Adding huge-page sup-

port to Morsels will allow us to provide object-specific trans-

parent huge pages, which enables the benefits of huge pages

for specific objects (e.g., large machine-learning models)

without the drawback of high CPU utilization caused by

scanning and migrating the entire address space.

3 Case Studies
In the following, we will present two case studies that high-

light the potential of Morsels to share and transmit large

amounts of volatile memory between processes.

Benchmark System. We execute all benchmarks on a

machine with two Intel Xeon Gold 6252 CPUs (2.10 Ghz,

2×24 cores, 96 HW threads) and 384GiB of DRAM. We use

a Linux 6.1.0 kernel with our Morsel extensions and Debian

11 (bullseye). Memory was always abundant.

3.1 Case Study: User-Space Read-Only File Cache
In our first scenario, we use Morsels to implement a read-

only cache for large files in user space that allows reusing

loaded data by different processes. We compare it to the

operating system’s page cache. As a use case, we consider

llama.cpp [10, 29], a program that performs inference with

a large language model (LLM) and requires large amounts of

parameters to be accessible in the address space. We aim to

speed up the loading process as it reduces the startup latency

of the LLM process, benefiting its initial response time.

We introduce the Morsel cache, a daemon that provides

processes with cached Morsels filled with file contents. A

client connects to the daemon via a Unix domain socket and

transmits the name of the requested file. If the file is not al-

ready loaded, the daemon creates a new Morsel, fills it with

file contents, and returns the Morsel’s FD. Otherwise, the

daemon directly replies with the FD of the already loaded

Morsel. The client can then mount the Morsel into its ad-

dress space via mmap(), making the data accessible without

additional page faults.

Our competitor is a conventional file mapping. Since it is

populated from the page cache, the data pages are shared

between all other mappings of the file. To also avoid the costs

of lazy population, we pre-fault all pages of the mapping.

OS Page Cache
 + Shared File Mapping

Morsel Cache
0

100

200

300

Ru
n 

Ti
m

e 
[m

s] 232

293
265

0.371

288
261

a MMap Model a Initialize Model a Inference (per Token)

Figure 2. LLAMA.cpp: Model load and inference times with warm
cache. Model: SelFee (13B parameters, q4_0, 6.82GiB)

Within our LLM scenario, we either request the parameter

file via the Morsel cache or via the conventional file mapping,

the latter being the current loading strategy of llama.cpp.

To focus on system overheads and to prevent domination

by I/O wait times, we consider the case where the data is

already present in main memory, either in a page cache or

loaded in a Morsel.

We use the SelFee [33, 14] LLM with the prompt “Explain

Virtual Memory!”, perform CPU inference, and request 100

output tokens. Averaged over 50 runs, we report the time

required for mapping the parameter file, the time for the rest

of the model initialization, and the average time required for

each output token.

As anticipated, the Morsel cache does not affect the rest

of the model initialization or the actual inference (see Fig. 2).

However, it does significantly decrease the time required for

model mapping by three orders of magnitude, from 232ms

to 371 µs (-99.8%). This results in a 45 percent reduction in

the overall initialization phase of llama.cpp.

A look at the required work for installing the shared

memory mapping reveals the large difference between both

caching methods: As Linux does not share page tables, it has

to allocate and populate a new page-table subtree for each

LLM process. This further results in a 0.2 percent memory

overhead per inference process. Additionally, Linux must

update the reference counters and the reverse mapping for

every data page, as the Linux page cache is organized around

4-KiB frames.

In contrast, our Morsel cache only needs to transmit and

install one page-table entry (PTE) into a freshly allocated

virtual-memory area (VMA). Moreover, for 6.82GiB of model

data, we require 15.65MiB for the page tables, which are

shared between all LLM processes and the Morsel cache.

3.2 Case Study: Processing Pipeline
Our second scenario is a four-step processing pipeline that

prepares data packets to be sent via a network connection.

The pipeline architecture increases throughput by utilizing

multiple CPU cores, reduces complexity as every step has a



Morsels: Explicit Virtual Memory Objects DIMES ’23, October 23, 2023, Koblenz, Germany

Buffer
Provider

Data
Source Checksum Sender

(1) (2) (3) (4)

Figure 3. Second case study: 4-step processing pipeline. Multiple

processes are connected through Unix domain sockets to transfer

buffers as FDs between address spaces.

limited scope, and improves security due to isolation. The

steps are connected without queues to prevent buffer bloat.

Fig. 3 shows the architecture: (1) The first step provides

memory buffers from a lazily-filled cache of shared-memory

objects. (2) The second step inserts random data with a ran-

dom length of up to 256MiB. (3) The third step calculates a

CRC-32 checksum of the data. (4) The fourth step is intended

to send the packet via a network connection. In this evalua-

tion, it just overwrites the packet and returns the buffer.

For the benchmark, we measure the round-trip time

(1→2→3→4→1) and the accumulated user-space time of

each packet. We compare the conventional shared-memory

mechanism via anonymous files (memfd) with Morsels. The

buffer provider yields buffers of the configured type as FDs,

which are passed between the steps via Unix domain sockets.

Fig. 4 compares the round-trip times of 1 000 packets per

type. The locally-weighted regression shows the trend of the

total round-trip time and the actual processing time (user-

space time). The difference comes from kernel processing

and waiting for the next step. As we can see, the round-trip

time is not a linear function of the packet size. There is a

high variation, especially for small packets, due to larger

preceding packets blocking the pipeline and causing process-

ing delays. The user-space time is independent of previous

packets, as it does not include the waiting time. Outliers

may result from buffer initialization because newly created

buffers are not initially backed with physical memory.

By comparing both subplots, we can see that Morsels are

generally faster than memfd. The average round-trip time

reduces from 174ms to 107ms (-38.7%). With memfd, every
first access to a page triggers the page-fault handler that

queries the page cache and populates the corresponding

page-table entry, adding a noticeable delay. Morsels, on the

other hand, are mapped as indivisible units, which avoids

fault-driven population of individual pages.

We would expect the actual processing time (accumulated

user-space time) to be the same for both competitors, which

is not the case.We attribute the slightly longer timemeasured

in the memfd variant to a potential inaccuracy in Linux’s

time measurement with many user/kernel transitions and to

an increased occurrence of translation lookaside buffer (TLB)
and cache evictions caused by the page-fault handler.

The accumulated user-space time marks the lower bound

of the round-trip time. For memfd, a clear gap is evident,

while with Morsels, the fastest round-trip times match the

user-space time, indicating negligible overheads.

0 100 200
0

100

200

300

Ro
un

d-
Tr

ip
 T

im
e 

[m
s]

memfd

0 100 200
Packet Size [MiB]

Morsel

Locally-Weighted Reg.
Round-Trip Time
User-Space Time

Figure 4. Round-trip times of 1 000 packets through the 4-step

processing pipeline

Fig. 5 visualizes the runtime share of the pipeline for

both shared-memory implementations as a customized flame

graph [11]. The x-axis represents the relative runtime share

in relation to the total runtime of the processing pipeline

withmemfd across all involved CPU cores. The data samples

were collected using Linux’s perf utility with a sampling

frequency of 99Hz for the whole system and a subsequent

post-processing step to filter out unrelated data points.

We can clearly see all pipeline steps in the graph, except

the buffer provider (step 1), which is negligible in terms

of runtime. The memfd subplot reveals a high page-fault

activity in each step. The pattern is similar for steps 2 and 4,

but smaller for step 3, which might result from the differing

access types (write: steps 2 & 4; read: step 3). Unmapping the

buffers accounts for another notable portion of the runtime.

Morsels drastically reduce runtime costs. Since there is

no need to handle individual pages, the page-fault compo-

nents observed withmemfd are absent in the Morsel subplot.

However, the total reduction is even larger than the missing

faults. As mentioned, we attribute this to the reduced cache

load and the fewer user/kernel transitions.

4 Discussion
Our case studies show that the VM subsystem has a signifi-

cant effect on the end-to-end performance of applications. As

a new supplementarymapping type, Morsels effectively elim-

inate current bottlenecks by reevaluating mapping require-

ments and surpassing (in many cases) obsolete assumptions

like memory scarcity. The current Morsel implementation

only uses 4-KiB pages (like Linux’s page cache), but we will

extend Morsels with huge-page support in the future. This

could further improve the file-cache use case (Sec. 3.1), as

huge pages reduce the TLB pressure.

The fully self-contained design of Morsels does not rely

on the per page-frame management data that Linux uses to

store information, such as the mapping count or allocation

information. This management data adds an overhead of 64 B

per page frame (∼ 1.56%), which is 6GiB for our benchmark

system with 384GiB of main memory. Currently, we can



DIMES ’23, October 23, 2023, Koblenz, Germany Alexander Halbuer, Christian Dietrich, Florian Rommel, and Daniel Lohmann

Ca
ll 

St
ac

k

sender
asm_exc_page..

exc_p..
do_..

checksumdatasource
asm_exc_pag..

exc_p..
do_u..

memfd

0.25 0.50 0.75 1
Run-Time (Normalized to memfd) [%]

senderchecksumdatasource

Morsel

Component
Pagefault
Munmap
proc:source
proc:checksum
proc:sender

Figure 5. Normalized runtime share of the four pipeline steps, including calls to sub-functions and operating system code, both stacked on

top, visualizing the call hierarchy.

not omit this overhead for Morsel pages because it is deeply

entangled in the operating system, but with furthermeasures,

such as replacing the allocator with an implementation that

does not rely on this data, we will be able to use the available

memory more efficiently.

5 Related Work
The concept of mountable storage objects is reminiscent

of single-level–store systems. Multics [1] represents mem-

ory objects as segments, which are effectively second-level

page tables that can be directly mapped into multiple ad-

dress spaces, similar to Morsels. Also, IBM’s System/38 [13]

and AS/400 [27, pp. 171–219], which pioneered the single–

address-space concept, utilized hardware-supported seg-

ments, however, combined with inverted page tables. More

recent single–address-space systems, using modern standard

paging hardware, purely rely on software for managingmem-

ory objects [3, 5, 26, 12], whereas Morsels rely on hardware

data structures to avoid additional metadata and bookkeep-

ing overhead. The fundamental difference to all mentioned

single-level–store systems is that they provide a general

storage abstraction via demand paging and page swapping,

whereas Morsels exclusively operate on main memory under

the assumption of abundant memory resources.

Twizzler [2], an operating system explicitly tailored for

NVM, is more similar to Morsels in this respect in that it only

targets the directly accessible main memory. Although it pro-

poses a fundamentally different data-centric single–address-

space design, Twizzler utilizes conventional VM hardware

behind the scenes and treats its memory objects as indi-

visible units, similar to Morsels. However, Twizzler allows

(potentially nested) COW relationships with the associated

bookkeeping and page-fault overhead. In addition, Twizzler

is a clean-slate approach, while Morsels are integrated into

the VM model of Linux.

There have also been proposed extensions for existing

operating systems that have some similarities with Morsels:

Zhao et al. modify the fork system call in Linux to share

last-level page tables between parent and child process with

the goal of reducing the fork latency. However, in contrast to

Morsels, the approach does not touch the overall fault-driven

VM model of Linux [34].

Similar to Morsels, Exmap [16] addresses the demand-

paging bottleneck in Linux’s memory subsystem but still

keeps the fundamental hardware-agnostic memory manage-

ment and does not consider NVM or IO-MMUs.

6 Conclusion
In this paper, we introduced Morsels, a novel memory-

management approach that leverages VM objects as sub-

trees of hardware-defined paging data structures instead of

individual 4-KiB pages, thereby minimizing management

overhead. Morsels’ fully self-contained design makes them

suitable for NVM and enables efficient memory sharing be-

tween processes and devices.

In a scenario where a Morsel-based cache provides read-

only instances of a file, Morsels outperform the Linux page

cache by three orders of magnitude, reducing the mapping

time of a 6.82-GiB machine-learning model from 232ms to

371 µs (-99.8%). In another application, a four-step processing

pipeline, the use of Morsels instead of conventional shared

memory reduces the average round-trip time from 174ms

to 107ms (-38.7%) for large packets with up to 256MiB of

data. An in-depth analysis shows that nearly all management

overhead can be avoided.

In the future, we plan to investigate the use of huge pages

as part of Morsels that can directly benefit the shown use

cases due to increased TLB coverage, speeding up the average

memory-access latency. We will also assess the advantages

of direct sharing of Morsels with devices via the IO-MMU.

Acknowledgments
We thank our reviewers for their valuable feedback. This

work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 468988364, 501887536.



Morsels: Explicit Virtual Memory Objects DIMES ’23, October 23, 2023, Koblenz, Germany

References
[1] A. Bensoussan, C. T. Clingen, and R. C. Daley. “The

multics virtual memory”. In: Proceedings of the sec-
ond symposium on Operating systems principles. SOSP
’69. New York, NY, USA: Association for Computing

Machinery, Oct. 1969, 30–42. isbn: 978-1-4503-7456-9.

doi: 10.1145/961053.961069.

[2] Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell D.

E. Long, and Ethan L. Miller. “Twizzler: a Data-Centric

OS for Non-Volatile Memory”. In: 2020 USENIX An-
nual Technical Conference (USENIX ATC ’20). USENIX
Association, July 2020, pp. 65–80. isbn: 978-1-939133-

14-4. url: https://www.usenix.org/conference/atc20/

presentation/bittman.

[3] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley,

and Edward D. Lazowska. “Sharing and Protection in

a Single-Address-Space Operating System”. In: ACM
Trans. Comput. Syst. 12.4 (1994), 271–307. issn: 0734-
2071. doi: 10.1145/195792.195795.

[4] Compute Express Link Consortium, Inc. CXL Specifi-
cation, Revision 2.0. Oct. 2020.

[5] Alan Dearle, Rex di Bona, James Farrow, Frans

Henskens, Anders Lindström, John Rosenberg, and

Francis Vaughan. “Grasshopper: An Orthogonally Per-

sistent Operating System”. In: Comput. Syst. 7.3 (1994),
289–312. issn: 0895-6340.

[6] Izzat El Hajj et al. “SpaceJMP: Programming with Mul-

tiple Virtual Address Spaces”. In: Proceedings of the
Twenty-First International Conference on Architectural
Support for Programming Languages and Operating
Systems. ASPLOS ’16. Atlanta, Georgia, USA: Associa-
tion for Computing Machinery, 2016, 353–368. isbn:

9781450340915. doi: 10.1145/2872362.2872366.

[7] Dawson R. Engler, M. Frans Kaashoek, and James

O’Toole. “Exokernel: An Operating System Architec-

ture for Application-Level Resource Management”. In:

Proceedings of the 15th ACM Symposium on Operat-
ing Systems Principles (SOSP ’95) (Copper Mountain,

CO, USA). New York, NY, USA: ACM Press, Dec. 1995,

pp. 251–266. isbn: 0-89791-715-4. doi: 10.1145/224057.

224076.

[8] Brad Fitzpatrick. “Distributed Caching with Mem-

cached”. In: Linux Journal 2004.124 (Aug. 2004), pp. 5–.
issn: 1075-3583. url: http://dl.acm.org/citation.cfm?

id=1012889.1012894.

[9] Gen-Z Consortium. Gen-Z Core Specification, Revision
1.1. Oct. 2020.

[10] Georgi Gerganov. llama.cpp: Port of Facebook’s LLaMA
model in C/C++. June 2023. url: https://github.com/

ggerganov/llama.cpp.

[11] Brendan Gregg. “The flame graph”. In: Communica-
tions of the ACM 59.6 (2016), pp. 48–57.

[12] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo,

Stephen Russel, and Jochen Liedtke. “The Mungi

Single-Address-Space Operating System”. In: Software:
Practice and Experience 18.9 (July 1998).

[13] Merle E. Houdek, Frank G. Soltis, and Roy L. Hoffman.

“IBM System/38 Support for Capability-Based Address-

ing”. In: Proceedings of the 8th Annual Symposium on
Computer Architecture (ISCA). ISCA ’81. Minneapolis,

Minnesota, USA: IEEE Computer Society Press, 1981,

341–348.

[14] Tom Jobbins. Selfee-13B-GGML-DOI (Revision 4dd57ef).
2023. doi: 10.57967/hf/0822. url: https://huggingface.

co/TheBloke/Selfee-13B-GGML-DOI.

[15] Youngjin Kwon, Hangchen Yu, Simon Peter, Christo-

pher J. Rossbach, and Emmett Witchel. “Coordinated

and Efficient Huge PageManagement with Ingens”. In:

12th Symposium on Operating Systems Design and Im-
plementation (OSDI ’16). Savannah, GA, USA: USENIX
Association, 2016, 705–721. isbn: 9781931971331.

[16] Viktor Leis, Adnan Alhomssi, Tobias Ziegler, Yannick

Loeck, and Christian Dietrich. “Virtual-Memory As-

sisted Buffer Management”. In: Proceedings of the ACM
SIGMOD/PODS International Conference on Manage-
ment of Data (SIGMOD’23). Seattle, WA, USA: ACM,

June 2023. doi: 10.1145/3588687.

[17] Juan Navarro, Sitaram Iyer, and Alan Cox. “Practi-

cal, Transparent Operating System Support for Su-

perpages”. In: 5th Symposium on Operating Systems
Design and Implementation (OSDI ’02). Boston, MA:

USENIX Association, Dec. 2002.

[18] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolf-

gang Lehner, Thomas Willhalm, and Grégoire Gomes.

“Memory Management Techniques for Large-Scale

Persistent-Main-Memory Systems”. In: Proc. VLDB
Endow. 10.11 (2017), pp. 1166–1177. doi: 10 .14778/

3137628.3137629. url: http://www.vldb.org/pvldb/

vol10/p1166-oukid.pdf.

[19] Ashish Panwar, Aravinda Prasad, and K. Gopinath.

“Making Huge Pages Actually Useful”. In: Proceedings
of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems. ASPLOS ’18. Williamsburg, VA, USA:

Association for Computing Machinery, 2018, 679–692.

isbn: 9781450349116. doi: 10.1145/3173162.3173203.

url: https://doi.org/10.1145/3173162.3173203.

[20] Omer Peleg, Adam Morrison, Benjamin Serebrin, and

Dan Tsafrir. “Utilizing the IOMMU Scalably”. In: 2015
USENIX Annual Technical Conference (USENIX ATC
’15). Santa Clara, CA: USENIX Association, July 2015,

pp. 549–562. isbn: 978-1-931971-225. url: https : / /

www . usenix . org / conference / atc15 / technical -

session/presentation/peleg.

https://doi.org/10.1145/961053.961069
https://www.usenix.org/conference/atc20/presentation/bittman
https://www.usenix.org/conference/atc20/presentation/bittman
https://doi.org/10.1145/195792.195795
https://doi.org/10.1145/2872362.2872366
https://doi.org/10.1145/224057.224076
https://doi.org/10.1145/224057.224076
http://dl.acm.org/citation.cfm?id=1012889.1012894
http://dl.acm.org/citation.cfm?id=1012889.1012894
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://doi.org/10.57967/hf/0822
https://huggingface.co/TheBloke/Selfee-13B-GGML-DOI
https://huggingface.co/TheBloke/Selfee-13B-GGML-DOI
https://doi.org/10.1145/3588687
https://doi.org/10.14778/3137628.3137629
https://doi.org/10.14778/3137628.3137629
http://www.vldb.org/pvldb/vol10/p1166-oukid.pdf
http://www.vldb.org/pvldb/vol10/p1166-oukid.pdf
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3173162.3173203
https://www.usenix.org/conference/atc15/technical-session/presentation/peleg
https://www.usenix.org/conference/atc15/technical-session/presentation/peleg
https://www.usenix.org/conference/atc15/technical-session/presentation/peleg


DIMES ’23, October 23, 2023, Koblenz, Germany Alexander Halbuer, Christian Dietrich, Florian Rommel, and Daniel Lohmann

[21] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch.

“Memory Persistency”. In: Proceeding of the 41st An-
nual International Symposium on Computer Architec-
ture (ISCA ’14). Minneapolis, Minnesota, USA: IEEE

Press, 2014, 265–276. isbn: 9781479943944.

[22] Richard F. Rashid and George G. Robertson. “Accent: A

Communication Oriented Network Operating System

Kernel”. In: Proceedings of the 8th ACM Symposium on
Operating Systems Principles (SOSP ’81). New York, NY,

USA: ACM Press, 1981, pp. 64–75. isbn: 0-89791-062-1.

doi: 10.1145/800216.806593.

[23] Richard Rashid, Avadis Tevanian, Michael Young,

David Golub, Robert Baron, David Black, William

Bolosky, and Jonathan Chew. “Machine-Independent

Virtual Memory Management for Paged Uniproces-

sor and Multiprocessor Architectures”. In: Proceedings
of the Second International Conference on Architectual
Support for Programming Languages and Operating
Systems (ASPLOS ’87). ASPLOS ’87. Palo Alto, Califor-

nia, USA: IEEE Computer Society Press, 1987, 31–39.

isbn: 0818608056. doi: 10.1145/36206.36181.

[24] Redislab. Redis. http : / / redis . io, visited 2019-07-21.

2019. (Visited on 07/21/2019).

[25] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying

Zhang. “LegoOS: A Disseminated, Distributed OS for

Hardware Resource Disaggregation”. In: 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18). Carlsbad, CA: USENIX Associ-

ation, Oct. 2018, pp. 69–87. isbn: 978-1-939133-08-3.

url: https : / /www.usenix .org/conference/osdi18/

presentation/shan.

[26] Jonathan S. Shapiro and Jonathan Adams. “Design

Evolution of the EROS Single-Level Store”. In: Proceed-
ings of the General Track of the Annual Conference on
USENIX Annual Technical Conference. ATEC ’02. USA:

USENIX Association, 2002, 59–72. isbn: 1880446006.

[27] Frank G. Soltis. Inside the AS/400. Loveland, Colorado:
29th Street Press, 1996. isbn: 1-882419-13-8.

[28] H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. “Pin-

down cache: a virtual memorymanagement technique

for zero-copy communication”. In: Proceedings of the
First Parallel Processing Symposium and Symposium
on Parallel and Distributed Processing (IPPS ’98). 1998,
pp. 308–314. doi: 10.1109/IPPS.1998.669932.

[29] Hugo Touvron et al. LLaMA: Open and Efficient Foun-
dation Language Models. 2023. arXiv: 2302 . 13971
[cs.CL].

[30] Ján Veselý, Arkaprava Basu, Abhishek Bhattacharjee,

Gabriel H. Loh, Mark Oskin, and Steven K. Reinhardt.

“Generic System Calls for GPUs”. In: 2018 ACM/IEEE
45th Annual International Symposium on Computer
Architecture (ISCA). 2018, pp. 843–856. doi: 10.1109/
ISCA.2018.00075.

[31] Pirmin Vogel. “Shared Virtual Memory for Heteroge-

neous Embedded Systems on Chip”. en. PhD thesis.

Zurich: ETH Zurich, 2018. isbn: 978-3-86628-623-8.

doi: 10.3929/ethz-b-000292606.

[32] Lars Wrenger, Florian Rommel, Alexander Halbuer,

Christian Dietrich, and Daniel Lohmann. “LLFree:

Scalable and Optionally-Persistent Page-Frame Allo-

cation”. In: 2023 USENIX Annual Technical Conference
(USENIX ’23). Boston, MA: USENIX Association, July

2023, pp. 897–914. isbn: 978-1-939133-35-9. url: https:

//www.usenix.org/conference/atc23/presentation/

wrenger.

[33] Seonghyeon Ye, Yongrae Jo, Doyoung Kim, Sungdong

Kim, Hyeonbin Hwang, and Minjoon Seo. SelFee: Iter-
ative Self-Revising LLM Empowered by Self-Feedback
Generation. Blog post. 2023. url: https://kaistai.github.
io/SelFee/.

[34] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca.

“On-Demand-Fork: A Microsecond Fork for Memory-

Intensive and Latency-Sensitive Applications”. In: Pro-
ceedings of the Sixteenth European Conference on Com-
puter Systems. EuroSys ’21. Online Event, United King-
dom: Association for Computing Machinery, 2021,

540–555. isbn: 978-1-4503-8334-9. doi: 10 . 1145 /

3447786.3456258. url: https://doi.org/10.1145/3447786.

3456258.

https://doi.org/10.1145/800216.806593
https://doi.org/10.1145/36206.36181
http://redis.io
https://www.usenix.org/conference/osdi18/presentation/shan
https://www.usenix.org/conference/osdi18/presentation/shan
https://doi.org/10.1109/IPPS.1998.669932
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1109/ISCA.2018.00075
https://doi.org/10.1109/ISCA.2018.00075
https://doi.org/10.3929/ethz-b-000292606
https://www.usenix.org/conference/atc23/presentation/wrenger
https://www.usenix.org/conference/atc23/presentation/wrenger
https://www.usenix.org/conference/atc23/presentation/wrenger
https://kaistai.github.io/SelFee/
https://kaistai.github.io/SelFee/
https://doi.org/10.1145/3447786.3456258
https://doi.org/10.1145/3447786.3456258
https://doi.org/10.1145/3447786.3456258
https://doi.org/10.1145/3447786.3456258

	Abstract
	1 Introduction
	2 Concept
	2.1 Near-Hardware Design
	2.2 Usage and Interface
	2.3 Efficient Memory Mapping
	2.4 Creation and Identification
	2.5 Scalability
	2.6 Fixed Mapping Addresses
	2.7 Persistence
	2.8 Sharing with Devices
	2.9 Huge Pages

	3 Case Studies
	3.1 Case Study: User-Space Read-Only File Cache
	3.2 Case Study: Processing Pipeline

	4 Discussion
	5 Related Work
	6 Conclusion

