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Motivation

Goal: Efficient handling of virtual memory

Conventional file mapping (pre-faulted)
High setup costs

Create new page tables

Populate with pages from page cache

Our solution: Morsels

Mapping ∼7 GiB of data into
an application’s address space
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Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry
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Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Good multi-core scalability
No locking required
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Crash consistent implementation
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Case Study 1: User-Space Read-Only File Cache

Evaluation: Prototypic implementation in Linux

Task: Inference with a large language model

Conventional file mapping (pre-faulted)
Uses individual 4-KiB pages

Populated from the page cache

Time increases with mapping size

Morsel mapping
Cache provides model data as Morsel

Single indivisible unit

Mapped in constant time

Result: 45% reduced startup time

llama.cpp with SelFee model: 6.82 GiB
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Case Study 2: Processing Pipeline

Comparing Morsels with memfd

1 000 packets per type

Up to 256MiB packet size

Morsels: 39% reduced round-trip
time on average

Use-space time draws lower bound
+ Waiting time

+ Kernel processing

= Round-trip time

Conclusion: Morsels enable efficient
handling of virtual memory!
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Morsels: Highly efficient handling of large memory objects

Problem: Conventional memory management
Many individual entities (pages)

Huge pages induce fragmentation

No persistent state

Solution: Morsels
Indivisible unit (page-table subtree)

Ready for persistent memory

Efficiently sharable

Results
Constant mapping time (x1000 faster for 7 GiB)

39% reduced RTT for shown pipeline
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