
Morsels: Explicit Virtual Memory Objects
DIMES ’23

Alexander Halbuer Christian Dietrich Florian Rommel Daniel Lohmann

Leibniz Universität Hannover
halbuer@sra.uni-hannover.de

October 23, 2023



New Challenges for Virtual-Memory Management

Memory Subsystem

MemoryCPU

What are efficient OS abstractions for large memory objects?

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 2 – 8



New Challenges for Virtual-Memory Management

Memory Subsystem

MemoryCPU

Designed for
single CPU

Volatile
state

Designed for
MiB – GiB

What are efficient OS abstractions for large memory objects?

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 2 – 8



New Challenges for Virtual-Memory Management

Memory Subsystem

Many processing
elements

CPU

CPU

CPU

Memory

Designed for
single CPU

Volatile
state

Designed for
MiB – GiB

What are efficient OS abstractions for large memory objects?

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 2 – 8



New Challenges for Virtual-Memory Management

Memory Subsystem

Many processing
elements

CPU

CPU

CPU

Accelerator

RDMA

Memory

Designed for
single CPU

Volatile
state

Designed for
MiB – GiB

What are efficient OS abstractions for large memory objects?

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 2 – 8



New Challenges for Virtual-Memory Management

Memory Subsystem

Many processing
elements

CPU

CPU

CPU

Accelerator

RDMA

Memory

Designed for
single CPU

Volatile
state

Designed for
MiB – GiB

What are efficient OS abstractions for large memory objects?

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 2 – 8



New Challenges for Virtual-Memory Management

Memory Subsystem

DRAM

Large and diverse
memory

DRAM

DRAM

Many processing
elements

CPU

CPU

CPU

Accelerator

RDMA
Designed for
single CPU

Volatile
state

Designed for
MiB – GiB

What are efficient OS abstractions for large memory objects?

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 2 – 8



New Challenges for Virtual-Memory Management

Memory Subsystem

DRAM

Large and diverse
memory

DRAM

DRAM

Many processing
elements

CPU

CPU

CPU

Accelerator

RDMA
Designed for
single CPU

Volatile
state

Designed for
MiB – GiB

What are efficient OS abstractions for large memory objects?

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 2 – 8



New Challenges for Virtual-Memory Management

Memory Subsystem

DRAM

Large and diverse
memory

DRAM

DRAM

HBM

Persistent

Many processing
elements

CPU

CPU

CPU

Accelerator

RDMA
Designed for
single CPU

Volatile
state

Designed for
MiB – GiB

What are efficient OS abstractions for large memory objects?

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 2 – 8



New Challenges for Virtual-Memory Management

Memory Subsystem

DRAM

Large and diverse
memory

DRAM

DRAM

HBM

Persistent

Many processing
elements

CPU

CPU

CPU

Accelerator

RDMA
Designed for
single CPU

Volatile
state

Designed for
MiB – GiB

What are efficient OS abstractions for large memory objects?

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 2 – 8



New Challenges for Virtual-Memory Management

Memory Subsystem

DRAM

Large and diverse
memory

DRAM

DRAM

HBM

Persistent

Many processing
elements

CPU

CPU

CPU

Accelerator

RDMA
Designed for
single CPU

Volatile
state

Designed for
MiB – GiB

What are efficient OS abstractions for large memory objects?

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 2 – 8



New Challenges for Virtual-Memory Management

Memory Subsystem

DRAM

Large and diverse
memory

DRAM

DRAM

HBM

Persistent

Many processing
elements

CPU

CPU

CPU

Accelerator

RDMA
Designed for
single CPU

Volatile
state

Designed for
MiB – GiB

What are efficient OS abstractions for large memory objects?

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 2 – 8



Motivation

Goal: Efficient handling of virtual memory

Conventional file mapping (pre-faulted)
High setup costs

Create new page tables

Populate with pages from page cache

Our solution: Morsels

Mapping ∼7 GiB of data into
an application’s address space

OS Page Cache
 + Shared File Mapping

Morsel Cache
0

50

100

150

200

250 232

0.371

M
ap

pi
ng

 T
im

e 
[m

s]

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 3 – 8



Motivation

Goal: Efficient handling of virtual memory

Conventional file mapping (pre-faulted)
High setup costs

Create new page tables

Populate with pages from page cache

Our solution: Morsels

Mapping ∼7 GiB of data into
an application’s address space

OS Page Cache
 + Shared File Mapping

Morsel Cache
0

50

100

150

200

250 232

0.371

M
ap

pi
ng

 T
im

e 
[m

s]
halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 3 – 8



Motivation

Goal: Efficient handling of virtual memory

Conventional file mapping (pre-faulted)
High setup costs

Create new page tables

Populate with pages from page cache

Our solution: Morsels

Mapping ∼7 GiB of data into
an application’s address space

OS Page Cache
 + Shared File Mapping

Morsel Cache
0

50

100

150

200

250 232

0.371

M
ap

pi
ng

 T
im

e 
[m

s]
halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 3 – 8



Motivation

Goal: Efficient handling of virtual memory

Conventional file mapping (pre-faulted)
High setup costs

Create new page tables

Populate with pages from page cache

Our solution: Morsels

Mapping ∼7 GiB of data into
an application’s address space

OS Page Cache
 + Shared File Mapping

Morsel Cache
0

50

100

150

200

250 232

0.371

M
ap

pi
ng

 T
im

e 
[m

s]

x1000

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 3 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Base Pages Huge Pages Morsel

Many individual pages

Internal fragmentation

Sparsely populated

Fully self-contained

Mounted by single entry

First class OS objectPhysical
Address
Space

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 4 – 8



Memory Objects - Morsel Concept

Good multi-core scalability
No locking required

Persistent objects on NVM
Fully self-contained design

Crash consistent implementation

Huge-page support
Increase TLB coverage

Transparency on object granularity

Sharing with devices
Reduce management overhead for DMA

Morsel

IOMMU Accelerator

SSD

NIC

Atomic
operations

Object-specific
transparent
huge pages

Direct sharing
with devices

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 5 – 8



Memory Objects - Morsel Concept

Good multi-core scalability
No locking required

Persistent objects on NVM
Fully self-contained design

Crash consistent implementation

Huge-page support
Increase TLB coverage

Transparency on object granularity

Sharing with devices
Reduce management overhead for DMA

Morsel

IOMMU Accelerator

SSD

NIC

Atomic
operations

Object-specific
transparent
huge pages

Direct sharing
with devices

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 5 – 8



Memory Objects - Morsel Concept

Good multi-core scalability
No locking required

Persistent objects on NVM
Fully self-contained design

Crash consistent implementation

Huge-page support
Increase TLB coverage

Transparency on object granularity

Sharing with devices
Reduce management overhead for DMA

Morsel

IOMMU Accelerator

SSD

NIC

Atomic
operations

Object-specific
transparent
huge pages

Direct sharing
with devices

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 5 – 8



Memory Objects - Morsel Concept

Good multi-core scalability
No locking required

Persistent objects on NVM
Fully self-contained design

Crash consistent implementation

Huge-page support
Increase TLB coverage

Transparency on object granularity

Sharing with devices
Reduce management overhead for DMA

Morsel

IOMMU Accelerator

SSD

NIC

Atomic
operations

Object-specific
transparent
huge pages

Direct sharing
with devices

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 5 – 8



Memory Objects - Morsel Concept

Good multi-core scalability
No locking required

Persistent objects on NVM
Fully self-contained design

Crash consistent implementation

Huge-page support
Increase TLB coverage

Transparency on object granularity

Sharing with devices
Reduce management overhead for DMA

Morsel

IOMMU Accelerator

SSD

NIC

Atomic
operations

Object-specific
transparent
huge pages

Direct sharing
with devices

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 5 – 8



Case Study 1: User-Space Read-Only File Cache

Evaluation: Prototypic implementation in Linux

Task: Inference with a large language model

Conventional file mapping (pre-faulted)
Uses individual 4-KiB pages

Populated from the page cache

Time increases with mapping size

Morsel mapping
Cache provides model data as Morsel

Single indivisible unit

Mapped in constant time

Result: 45% reduced startup time

llama.cpp with SelFee model: 6.82 GiB

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 6 – 8



Case Study 1: User-Space Read-Only File Cache

Evaluation: Prototypic implementation in Linux

Task: Inference with a large language model

Conventional file mapping (pre-faulted)
Uses individual 4-KiB pages

Populated from the page cache

Time increases with mapping size

Morsel mapping
Cache provides model data as Morsel

Single indivisible unit

Mapped in constant time

Result: 45% reduced startup time

llama.cpp with SelFee model: 6.82 GiB

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 6 – 8



Case Study 1: User-Space Read-Only File Cache

Evaluation: Prototypic implementation in Linux

Task: Inference with a large language model

Conventional file mapping (pre-faulted)
Uses individual 4-KiB pages

Populated from the page cache

Time increases with mapping size

Morsel mapping
Cache provides model data as Morsel

Single indivisible unit

Mapped in constant time

Result: 45% reduced startup time

llama.cpp with SelFee model: 6.82 GiB

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 6 – 8



Case Study 1: User-Space Read-Only File Cache

Evaluation: Prototypic implementation in Linux

Task: Inference with a large language model

Conventional file mapping (pre-faulted)
Uses individual 4-KiB pages

Populated from the page cache

Time increases with mapping size

Morsel mapping
Cache provides model data as Morsel

Single indivisible unit

Mapped in constant time

Result: 45% reduced startup time

llama.cpp with SelFee model: 6.82 GiB

OS Page Cache
 + Shared File Mapping

Morsel Cache
0

100

200

300

Ru
n 

Ti
m

e 
[m

s] 232

293
265

0.371

288
261

a MMap Model a Initialize Model a Inference (per Token)

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 6 – 8



Case Study 1: User-Space Read-Only File Cache

Evaluation: Prototypic implementation in Linux

Task: Inference with a large language model

Conventional file mapping (pre-faulted)
Uses individual 4-KiB pages

Populated from the page cache

Time increases with mapping size

Morsel mapping
Cache provides model data as Morsel

Single indivisible unit

Mapped in constant time

Result: 45% reduced startup time

llama.cpp with SelFee model: 6.82 GiB

OS Page Cache
 + Shared File Mapping

Morsel Cache
0

100

200

300

Ru
n 

Ti
m

e 
[m

s] 232

293
265

0.371

288
261

a MMap Model a Initialize Model a Inference (per Token)

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 6 – 8



Case Study 1: User-Space Read-Only File Cache

Evaluation: Prototypic implementation in Linux

Task: Inference with a large language model

Conventional file mapping (pre-faulted)
Uses individual 4-KiB pages

Populated from the page cache

Time increases with mapping size

Morsel mapping
Cache provides model data as Morsel

Single indivisible unit

Mapped in constant time

Result: 45% reduced startup time

llama.cpp with SelFee model: 6.82 GiB

OS Page Cache
 + Shared File Mapping

Morsel Cache
0

100

200

300

Ru
n 

Ti
m

e 
[m

s] 232

293
265

0.371

288
261

a MMap Model a Initialize Model a Inference (per Token)

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 6 – 8



Case Study 1: User-Space Read-Only File Cache

Evaluation: Prototypic implementation in Linux

Task: Inference with a large language model

Conventional file mapping (pre-faulted)
Uses individual 4-KiB pages

Populated from the page cache

Time increases with mapping size

Morsel mapping
Cache provides model data as Morsel

Single indivisible unit

Mapped in constant time

Result: 45% reduced startup time

llama.cpp with SelFee model: 6.82 GiB

OS Page Cache
 + Shared File Mapping

Morsel Cache
0

100

200

300

Ru
n 

Ti
m

e 
[m

s] 232

293
265

0.371

288
261

a MMap Model a Initialize Model a Inference (per Token)

x1000

Unaffected

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 6 – 8



Case Study 1: User-Space Read-Only File Cache

Evaluation: Prototypic implementation in Linux

Task: Inference with a large language model

Conventional file mapping (pre-faulted)
Uses individual 4-KiB pages

Populated from the page cache

Time increases with mapping size

Morsel mapping
Cache provides model data as Morsel

Single indivisible unit

Mapped in constant time

Result: 45% reduced startup time

llama.cpp with SelFee model: 6.82 GiB

OS Page Cache
 + Shared File Mapping

Morsel Cache
0

100

200

300

Ru
n 

Ti
m

e 
[m

s] 232

293
265

0.371

288
261

a MMap Model a Initialize Model a Inference (per Token)

x1000

Unaffected

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 6 – 8



Case Study 2: Processing Pipeline

Comparing Morsels with memfd

1 000 packets per type

Up to 256MiB packet size

Morsels: 39% reduced round-trip
time on average

Use-space time draws lower bound
+ Waiting time

+ Kernel processing

= Round-trip time

Conclusion: Morsels enable efficient
handling of virtual memory!

Buffer
Provider

Data
Source Checksum Sender

Unix Domain Socket: Passing File Descriptors

(1) (2) (3) (4)

memfd/Morsel Write Access Read Access Write Access

0 64 128 192 256
0

100

200

300

memfd

0 64 128 192 256

Morsel

Packet Size [MiB]

Ro
un

d-
Tr

ip
 T

im
e 

[m
s]

Locally-Weighted Reg.
Round-Trip Time

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 7 – 8



Case Study 2: Processing Pipeline

Comparing Morsels with memfd

1 000 packets per type

Up to 256MiB packet size

Morsels: 39% reduced round-trip
time on average

Use-space time draws lower bound
+ Waiting time

+ Kernel processing

= Round-trip time

Conclusion: Morsels enable efficient
handling of virtual memory!

Buffer
Provider

Data
Source Checksum Sender

Unix Domain Socket: Passing File Descriptors

(1) (2) (3) (4)

memfd/Morsel Write Access Read Access Write Access

0 64 128 192 256
0

100

200

300

memfd

0 64 128 192 256

Morsel

Packet Size [MiB]

Ro
un

d-
Tr

ip
 T

im
e 

[m
s]

Locally-Weighted Reg.
Round-Trip Time

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 7 – 8



Case Study 2: Processing Pipeline

Comparing Morsels with memfd

1 000 packets per type

Up to 256MiB packet size

Morsels: 39% reduced round-trip
time on average

Use-space time draws lower bound
+ Waiting time

+ Kernel processing

= Round-trip time

Conclusion: Morsels enable efficient
handling of virtual memory!

Buffer
Provider

Data
Source Checksum Sender

Unix Domain Socket: Passing File Descriptors

(1) (2) (3) (4)

memfd/Morsel Write Access Read Access Write Access

0 64 128 192 256
0

100

200

300

memfd

0 64 128 192 256

Morsel

Packet Size [MiB]

Ro
un

d-
Tr

ip
 T

im
e 

[m
s]

Locally-Weighted Reg.
Round-Trip Time

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 7 – 8



Case Study 2: Processing Pipeline

Comparing Morsels with memfd

1 000 packets per type

Up to 256MiB packet size

Morsels: 39% reduced round-trip
time on average

Use-space time draws lower bound
+ Waiting time

+ Kernel processing

= Round-trip time

Conclusion: Morsels enable efficient
handling of virtual memory!

Buffer
Provider

Data
Source Checksum Sender

Unix Domain Socket: Passing File Descriptors

(1) (2) (3) (4)

memfd/Morsel Write Access Read Access Write Access

0 64 128 192 256
0

100

200

300

memfd

0 64 128 192 256

Morsel

Packet Size [MiB]

Ro
un

d-
Tr

ip
 T

im
e 

[m
s]

Locally-Weighted Reg.
Round-Trip Time

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 7 – 8



Case Study 2: Processing Pipeline

Comparing Morsels with memfd

1 000 packets per type

Up to 256MiB packet size

Morsels: 39% reduced round-trip
time on average

Use-space time draws lower bound
+ Waiting time

+ Kernel processing

= Round-trip time

Conclusion: Morsels enable efficient
handling of virtual memory!

Buffer
Provider

Data
Source Checksum Sender

Unix Domain Socket: Passing File Descriptors

(1) (2) (3) (4)

memfd/Morsel Write Access Read Access Write Access

0 64 128 192 256
0

100

200

300

memfd

0 64 128 192 256

Morsel

Packet Size [MiB]

Ro
un

d-
Tr

ip
 T

im
e 

[m
s]

Locally-Weighted Reg.
Round-Trip Time

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 7 – 8



Case Study 2: Processing Pipeline

Comparing Morsels with memfd
1 000 packets per type

Up to 256MiB packet size

Morsels: 39% reduced round-trip
time on average

Use-space time draws lower bound
+ Waiting time

+ Kernel processing

= Round-trip time

Conclusion: Morsels enable efficient
handling of virtual memory!

Buffer
Provider

Data
Source Checksum Sender

Unix Domain Socket: Passing File Descriptors

(1) (2) (3) (4)

memfd/Morsel Write Access Read Access Write Access

0 64 128 192 256
0

100

200

300

memfd

0 64 128 192 256

Morsel

Packet Size [MiB]

Ro
un

d-
Tr

ip
 T

im
e 

[m
s]

Locally-Weighted Reg.
Round-Trip Time

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 7 – 8



Case Study 2: Processing Pipeline

Comparing Morsels with memfd
1 000 packets per type

Up to 256MiB packet size

Morsels: 39% reduced round-trip
time on average

Use-space time draws lower bound
+ Waiting time

+ Kernel processing

= Round-trip time

Conclusion: Morsels enable efficient
handling of virtual memory!

Buffer
Provider

Data
Source Checksum Sender

Unix Domain Socket: Passing File Descriptors

(1) (2) (3) (4)

memfd/Morsel Write Access Read Access Write Access

0 64 128 192 256
0

100

200

300

memfd

0 64 128 192 256

Morsel

Packet Size [MiB]

Ro
un

d-
Tr

ip
 T

im
e 

[m
s]

Locally-Weighted Reg.
Round-Trip Time

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 7 – 8



Case Study 2: Processing Pipeline

Comparing Morsels with memfd
1 000 packets per type

Up to 256MiB packet size

Morsels: 39% reduced round-trip
time on average

Use-space time draws lower bound
+ Waiting time

+ Kernel processing

= Round-trip time

Conclusion: Morsels enable efficient
handling of virtual memory!

Buffer
Provider

Data
Source Checksum Sender

Unix Domain Socket: Passing File Descriptors

(1) (2) (3) (4)

memfd/Morsel Write Access Read Access Write Access

0 64 128 192 256
0

100

200

300

memfd

0 64 128 192 256

Morsel

Packet Size [MiB]

Ro
un

d-
Tr

ip
 T

im
e 

[m
s]

Locally-Weighted Reg.
Round-Trip Time

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 7 – 8



Case Study 2: Processing Pipeline

Comparing Morsels with memfd
1 000 packets per type

Up to 256MiB packet size

Morsels: 39% reduced round-trip
time on average

Use-space time draws lower bound
+ Waiting time

+ Kernel processing

= Round-trip time

Conclusion: Morsels enable efficient
handling of virtual memory!

Buffer
Provider

Data
Source Checksum Sender

Unix Domain Socket: Passing File Descriptors

(1) (2) (3) (4)

memfd/Morsel Write Access Read Access Write Access

0 64 128 192 256
0

100

200

300

memfd

0 64 128 192 256

Morsel

Packet Size [MiB]

Ro
un

d-
Tr

ip
 T

im
e 

[m
s]

Locally-Weighted Reg.
Round-Trip Time

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 7 – 8



Case Study 2: Processing Pipeline

Comparing Morsels with memfd
1 000 packets per type

Up to 256MiB packet size

Morsels: 39% reduced round-trip
time on average

Use-space time draws lower bound
+ Waiting time

+ Kernel processing

= Round-trip time

Conclusion: Morsels enable efficient
handling of virtual memory!

Buffer
Provider

Data
Source Checksum Sender

Unix Domain Socket: Passing File Descriptors

(1) (2) (3) (4)

memfd/Morsel Write Access Read Access Write Access

0 64 128 192 256
0

100

200

300

memfd

0 64 128 192 256

Morsel

Packet Size [MiB]

Ro
un

d-
Tr

ip
 T

im
e 

[m
s]

Locally-Weighted Reg.
Round-Trip Time
User-Space Time

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 7 – 8



Case Study 2: Processing Pipeline

Comparing Morsels with memfd
1 000 packets per type

Up to 256MiB packet size

Morsels: 39% reduced round-trip
time on average

Use-space time draws lower bound
+ Waiting time

+ Kernel processing

= Round-trip time

Conclusion: Morsels enable efficient
handling of virtual memory!

Buffer
Provider

Data
Source Checksum Sender

Unix Domain Socket: Passing File Descriptors

(1) (2) (3) (4)

memfd/Morsel Write Access Read Access Write Access

0 64 128 192 256
0

100

200

300

memfd

0 64 128 192 256

Morsel

Packet Size [MiB]

Ro
un

d-
Tr

ip
 T

im
e 

[m
s]

Locally-Weighted Reg.
Round-Trip Time
User-Space Time

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 7 – 8



Case Study 2: Processing Pipeline

Comparing Morsels with memfd
1 000 packets per type

Up to 256MiB packet size

Morsels: 39% reduced round-trip
time on average

Use-space time draws lower bound
+ Waiting time

+ Kernel processing

= Round-trip time

Conclusion: Morsels enable efficient
handling of virtual memory!

Buffer
Provider

Data
Source Checksum Sender

Unix Domain Socket: Passing File Descriptors

(1) (2) (3) (4)

memfd/Morsel Write Access Read Access Write Access

0 64 128 192 256
0

100

200

300

memfd

0 64 128 192 256

Morsel

Packet Size [MiB]

Ro
un

d-
Tr

ip
 T

im
e 

[m
s]

Locally-Weighted Reg.
Round-Trip Time
User-Space Time

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 7 – 8



Morsels: Highly efficient handling of large memory objects

Problem: Conventional memory management
Many individual entities (pages)

Huge pages induce fragmentation

No persistent state

Solution: Morsels
Indivisible unit (page-table subtree)

Ready for persistent memory

Efficiently sharable

Results
Constant mapping time (x1000 faster for 7 GiB)

39% reduced RTT for shown pipeline

Base Pages Huge Pages Morsel

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 8 – 8



Morsels: Highly efficient handling of large memory objects

Problem: Conventional memory management
Many individual entities (pages)

Huge pages induce fragmentation

No persistent state

Solution: Morsels
Indivisible unit (page-table subtree)

Ready for persistent memory

Efficiently sharable

Results
Constant mapping time (x1000 faster for 7 GiB)

39% reduced RTT for shown pipeline

Base Pages Huge Pages Morsel

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 8 – 8



Morsels: Highly efficient handling of large memory objects

Problem: Conventional memory management
Many individual entities (pages)

Huge pages induce fragmentation

No persistent state

Solution: Morsels
Indivisible unit (page-table subtree)

Ready for persistent memory

Efficiently sharable

Results
Constant mapping time (x1000 faster for 7 GiB)

39% reduced RTT for shown pipeline

Base Pages Huge Pages Morsel

Virtual
Address
Space

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 8 – 8





Case Study 2: Processing Pipeline
Ca

ll 
St

ac
k

sender
asm_exc_page..

exc_p..
do_..

checksumdatasource
asm_exc_pag..

exc_p..
do_u..

memfd

0.25 0.50 0.75 1
Run-Time (Normalized to memfd) [%]

senderchecksumdatasource

Morsel

Component
Pagefault
Munmap
proc:source
proc:checksum
proc:sender

Write Read Write

Initial
allocation

41% reduced runtime

Conclusion: Morsels enable efficient handling of virtual memory!

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 10 – 8



Case Study 2: Processing Pipeline
Ca

ll 
St

ac
k

sender
asm_exc_page..

exc_p..
do_..

checksumdatasource
asm_exc_pag..

exc_p..
do_u..

memfd

0.25 0.50 0.75 1
Run-Time (Normalized to memfd) [%]

senderchecksumdatasource

Morsel

Component
Pagefault
Munmap
proc:source
proc:checksum
proc:sender

Write Read Write

Initial
allocation

41% reduced runtime

Conclusion: Morsels enable efficient handling of virtual memory!

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 10 – 8



Case Study 2: Processing Pipeline
Ca

ll 
St

ac
k

sender
asm_exc_page..

exc_p..
do_..

checksumdatasource
asm_exc_pag..

exc_p..
do_u..

memfd

0.25 0.50 0.75 1
Run-Time (Normalized to memfd) [%]

senderchecksumdatasource

Morsel

Component
Pagefault
Munmap
proc:source
proc:checksum
proc:sender

Write Read Write

Initial
allocation

41% reduced runtime

Conclusion: Morsels enable efficient handling of virtual memory!

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 10 – 8



Case Study 2: Processing Pipeline
Ca

ll 
St

ac
k

sender
asm_exc_page..

exc_p..
do_..

checksumdatasource
asm_exc_pag..

exc_p..
do_u..

memfd

0.25 0.50 0.75 1
Run-Time (Normalized to memfd) [%]

senderchecksumdatasource

Morsel

Component
Pagefault
Munmap
proc:source
proc:checksum
proc:sender

Write Read Write

Initial
allocation

41% reduced runtime

Conclusion: Morsels enable efficient handling of virtual memory!

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 10 – 8



Case Study 2: Processing Pipeline
Ca

ll 
St

ac
k

sender
asm_exc_page..

exc_p..
do_..

checksumdatasource
asm_exc_pag..

exc_p..
do_u..

memfd

0.25 0.50 0.75 1
Run-Time (Normalized to memfd) [%]

senderchecksumdatasource

Morsel

Component
Pagefault
Munmap
proc:source
proc:checksum
proc:sender

Write Read Write

Initial
allocation

41% reduced runtime

Conclusion: Morsels enable efficient handling of virtual memory!

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 10 – 8



Case Study 2: Processing Pipeline
Ca

ll 
St

ac
k

sender
asm_exc_page..

exc_p..
do_..

checksumdatasource
asm_exc_pag..

exc_p..
do_u..

memfd

0.25 0.50 0.75 1
Run-Time (Normalized to memfd) [%]

senderchecksumdatasource

Morsel

Component
Pagefault
Munmap
proc:source
proc:checksum
proc:sender

Write Read Write

Initial
allocation

41% reduced runtime

Conclusion: Morsels enable efficient handling of virtual memory!

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 10 – 8



Case Study 2: Processing Pipeline
Ca

ll 
St

ac
k

sender
asm_exc_page..

exc_p..
do_..

checksumdatasource
asm_exc_pag..

exc_p..
do_u..

memfd

0.25 0.50 0.75 1
Run-Time (Normalized to memfd) [%]

senderchecksumdatasource

Morsel

Component
Pagefault
Munmap
proc:source
proc:checksum
proc:sender

Write Read Write

Initial
allocation

41% reduced runtime

Conclusion: Morsels enable efficient handling of virtual memory!

halbuer@sra.uni-hannover.de Morsels: Explicit Virtual Memory Objects 10 – 8


	New Challenges for Virtual-Memory Management
	New Challenges for Virtual-Memory Management
	New Challenges for Virtual-Memory Management
	New Challenges for Virtual-Memory Management
	New Challenges for Virtual-Memory Management
	New Challenges for Virtual-Memory Management
	New Challenges for Virtual-Memory Management
	New Challenges for Virtual-Memory Management
	New Challenges for Virtual-Memory Management
	New Challenges for Virtual-Memory Management
	New Challenges for Virtual-Memory Management
	Motivation
	Motivation
	Motivation
	Motivation
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Memory Objects - Morsel Concept
	Case Study 1: User-Space Read-Only File Cache
	Case Study 1: User-Space Read-Only File Cache
	Case Study 1: User-Space Read-Only File Cache
	Case Study 1: User-Space Read-Only File Cache
	Case Study 1: User-Space Read-Only File Cache
	Case Study 1: User-Space Read-Only File Cache
	Case Study 1: User-Space Read-Only File Cache
	Case Study 1: User-Space Read-Only File Cache
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Morsels: Highly efficient handling of large memory objects
	Morsels: Highly efficient handling of large memory objects
	Morsels: Highly efficient handling of large memory objects
	
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline
	Case Study 2: Processing Pipeline

