
Thread-Level Attack-Surface Reduction
Florian Rommel

rommel@sra.uni-hannover.de
Leibniz Universität Hannover

Germany

Christian Dietrich
christian.dietrich@tuhh.de

Hamburg University of Technology
Germany

Andreas Ziegler
ziegler@cs.fau.de

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Germany

Illia Ostapyshyn
ostapyshyn@sra.uni-hannover.de
Leibniz Universität Hannover

Germany

Daniel Lohmann
lohmann@sra.uni-hannover.de
Leibniz Universität Hannover

Germany

Abstract

Existing debloating techniques designed to prevent bu�er-
over�ow exploits through return-oriented programming do
not di�erentiate roles within a process or binary, allowing all
threads access to the full program functionality. For example,
a worker thread that handles client connections (highest
attack exposure) still has access to all the code that the man-
agement thread needs (highest potential fallout).
We introduce thread-level attack-surface reduction

(TLASR), a dynamic, context-aware approach that eliminates
unused code on a thread level. For this, we (permanently
or temporarily) eliminate parts of the text segment (both in
shared libraries and the main binary) and use the mmview

Linux extension to support multiple text-segment views in a
single process. We reduce the executable code visible from a
single thread in MariaDB, Memcached, OpenSSH, and Bash
by 84 to 98.4 percent. As a result, the number of ROP gadgets
decreases signi�cantly (78–97%), with TLASR rendering an
auto-ROP utility ine�ective in all investigated benchmarks
and eliminating all CVE-related functions ever reported for
glibc in 97 percent of the cases.

CCS Concepts: • Security and privacy → Software secu-

rity engineering.

Keywords: debloating, binary tailoring, return-oriented pro-
gramming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.

LCTES ’23, June 18, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0174-0/23/06.
https://doi.org/10.1145/3589610.3596281

ACM Reference Format:

Florian Rommel, Christian Dietrich, Andreas Ziegler, Illia
Ostapyshyn, and Daniel Lohmann. 2023. Thread-Level Attack-
Surface Reduction. In Proceedings of the 24th ACM SIGPLAN/SIGBED

International Conference on Languages, Compilers, and Tools for Em-

bedded Systems (LCTES ’23), June 18, 2023, Orlando, FL, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3589610.
3596281

1 Introduction

Automatic elimination of unneeded program text (“debloat-
ing”) has become a broadly explored technique for attack-
surface reduction [22], with a strong focus on super�uous
code imported from shared libraries [5, 16, 25, 28, 39]: Quach
and colleagues found that only �ve percent of libc is ac-
tually used on average by the programs from the Ubuntu
Desktop environment [28]. Ziegler and associates could elim-
inate 70 percent of all library functions on the (already size-
optimized) embedded OpenWRT distribution [39]. The un-
used portion is bloat that can negatively impact software
defenses by unnecessarily in�ating their overheads or in-
creasing the attack surface at run time [5].1

Text elimination is essentially a subsetting problem: The
goal is to �nd a minimal (but sound) subset of functions that
are required at run time and remove everything else. The
de�nition of “minimally required” depends on the sharing
context, which in the case of shared libraries, typically is a
single program [28] or a set of programs [5, 39]. Within the
given context, most approaches basically mimic the dead-
code elimination of a static linker: They perform a reachabil-
ity analysis, starting with the program-speci�c library entry
points and cut o� everything else. This can be done stati-
cally from the library binaries [5, 39], at load time [28], or
even dynamically by restricting and expanding the set at run
time only to include the library functions that are currently
reachable from an entry function on the call stack [25]. In
all cases, however, the sharing context is, at least, the whole

1Note that the term “attack surface” here actually means “exploit surface”,
as it refers to the gadgets and tools exploitable by an attacker after an initial
breach into the system (e.g., by a bu�er overrun) has been found, that is, in
the second stage. We stick with this notion for the sake of convention.

64

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0007-5413-7714
https://orcid.org/0000-0001-9258-0513
https://orcid.org/0000-0002-3269-3281
https://orcid.org/0009-0007-3057-1356
https://orcid.org/0000-0001-8224-4161
https://doi.org/10.1145/3589610.3596281
https://doi.org/10.1145/3589610.3596281
https://doi.org/10.1145/3589610.3596281
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589610.3596281&domain=pdf&date_stamp=2023-06-13


LCTES ’23, June 18, 2023, Orlando, FL, USA Florian Rommel, Christian Dietrich, Andreas Ziegler, Illia Ostapyshyn, and Daniel Lohmann

L
R
U

m
ain

tainer thread: 1
5
9

w
o
rk
e
r
th
re
a
d
:
2
6
4m

a
in

th
re
a
d
:
1
4
7

Memcached process:

5562 (2063 KiB)

32
(14.1 KiB)

112
(44 KiB)

12
(2.3 KiB)

1
(1.6 KiB)

18
(7.1 KiB)

26
(15.3 KiB)

108
(34.9 KiB)

notify_worker()

Figure 1. Intersection of
available and required func-
tions for thread roles in
Memcached when serving
Memtier 1.3.0.

re
ad-

only: 2272

w
rite

-o
n
ly
:
2
3
4
7in

s
e
rt
:
1
9
3
5

MariaDB process:

55614 (17318 KiB)

575
(315.5 KiB)

176
(91.2 KiB)

70
(32.8 KiB)

4
(1.1 KiB)

310
(123.1 KiB)

478
(282.2 KiB)

1383
(580.2 KiB)

Figure 2. Intersection of
available and required func-
tions for three MariaDB
workers serving di�erent
OLTP benchmarks.

process: In a multithreaded server application, each thread
has access to all functions accessed by any other thread.
About this Paper In this paper, we argue for shifting the
sharing context from the whole program/process to the sin-
gle thread: Today’s server software employs a multitude of
threads that ful�ll di�erent “roles” at run time, for which
they only need access to a fraction of the available text.
Fig. 1 shows this on the example of Memcached, where we
have, among others, the roles main thread, LRU maintainer

thread, and worker thread. Out of the 5 562 functions loaded
into the process, a main/LRU /worker thread, however, only
needs 147/159/264 functions, (that is, only 3–5 percent). With
thread-level sharing, all other functions could be eliminated
for these threads. So even if an attacker succeeds in hijacking
a worker, she �nds only a drastically reduced function set
and, for instance, still cannot control other threads by in-
voking notify_worker (e.g., using return- or jump-oriented
programming (ROP/JOP) [11, 31, 35]), as this function is only
available in the main thread’s context.
Our Contribution We pioneer the idea of thread-speci�c
text subsetting for attack-surface reduction, which signi�-
cantly reduces the attacker-accessible code in multithreaded
applications. In this realm, we present thread-level attack-
surface reduction (TLASR), a new approach for dynamic text
elimination that is based on two pillars: (1) The concept
of context-based text elimination (CTE), a new library and
toolset that provides easy-to-apply means for function-level
text elimination – either permanently (i.e., kill functions so
that they could never be called) or temporarily (i.e., wipe
functions until they get called by a legitimate caller). (2) The
application of memory views (mmviews, originally developed
to speed up live patching [32]) for attack-surface reduction.

Like other debloating approaches (e.g., [25, 28]), we elimi-
nate individual functions that are not required in the current
context. Unlike with existing approaches, such contexts (a)
also exclude functions from the application binary itself and
(b) can be applied in a thread-speci�c way, resulting in ex-
tremely high reduction results.

sub rsp,0x8

mov edx,0x30

mov edi,0x1

xor eax,eax

lea rsi,[rip+0xca3]

call 1090

···

int3

int3

int3

···

Validation

- call site

- call graph

restore

on call:

im
p
la
n
t

int3

int3

int3

···

mov rax,restore

call rax

.word <fn index>

int3

int3

int3

···

wipe

kill

sub rsp,0x8

mov edx,0x30

mov edi,0x1

xor eax,eax

lea rsi,[rip+0xca3]

call 1090

···

lea eax,[rsi+rsi*8]

add eax,edi

ret

nop

fn2:

fn1:

Figure 3. Killing, wiping, and restoring with libCTE.

2 TLASR Approach and Attacker Model

We assume that the target application is a TLASR-enabled
multithreaded server process, provided as native machine
code in ELF format (i.e., not interpreted or JIT’ed) that runs
on a system with uncompromised hardware. Furthermore,
we expect the standard WˆX (write xor execute) model for
code pages. For simplicity, we currently exclude loading
additional code after the user-de�nable point of initialization
(i.e., dlopen), but this is not a fundamental requirement. Note
that throughout this paper, user refers to the developer/dev-
ops maintainer of the application, who applies TLASR.
The attacker sits on the client side and is connected to

some thread of the server. We assume that the attacker is
in possession of the binary code of all loaded objects in the
targeted process and can exploit some existing vulnerabil-
ity (e.g., a bu�er over�ow) that allows the manipulation of
thread-local data (especially the stack) in this thread. Our
goal is not to prevent this initial attack but to reduce its
fallout by providing constructive means for hindering its
further exploitation in the second stage by common exploit
techniques, such as ROP/JOP [11, 31, 35].

2.1 (Thread-Speci�c) Text Contexts

The fundamental di�erence between TLASR and other text
elimination approaches is the support of multiple contexts

for the available text elements at run time. Technically, a
context is realized and represented by an in-process address-
space object (mmview) that shares everything but the text
segment with other mmviews [32]. In TLASR, an mmview can
implement an arbitrary context, for instance, a context that
covers only functions needed within a speci�c part of the
program’s call graph, which, for instance, would mimic the
dynamic get-what-you-want approach of BlankIt [24, 25],
but without being restricted to library entry points. Within
a context’s mmview, TLASR disables/enables code on func-
tion granularity, either temporarily (wipe, as in BlankIt), or
forever, (kill), which e�ectively mimics static debloating and
is comparable to the idea of piece-wise loading [28], again
without being restricted to library code.

TLASR contexts provide an easy and natural way to isolate
the code required by groups of threads or even individual
threads from each other. This can drastically reduce the at-
tack surface in multithreaded server applications. We have al-
ready seen this on the example of thread roles in Memcached
in Fig. 1: In a role-speci�c context for the most attack-prone

65



Thread-Level A�ack-Surface Reduction LCTES ’23, June 18, 2023, Orlando, FL, USA

worker threads, 95 percent of the available functions were
not loaded. However, depending on the architecture of the
server application, even more �ne-grained contexts, such as
per-client, per-connection, or per-transaction should be con-
sidered: Fig. 2 depicts the function-set intersections of three
worker threads inMariaDB serving di�erent clients: All three
thread instances share the same role, for which they need a
total of 2 996 functions out of the 55 614 functions available
in a MariaDB process (5 percent) in their role-speci�c set.
However, actually all three threads share only 1 383 func-
tions (2 percent). Restricted to a connection-speci�c function
set, between 70 and 575 functions are exclusive for every sin-
gle thread. For instance, all write functionality is wiped from
the worker thread serving the (typically lesser-privileged)
read-only client. Such dynamic disabling/enabling of func-
tions facilitates very tight contexts but also requires some
extra e�ort to validate legit unwipe attempts at run time.

2.2 The Role of the Binary

Existing approaches [5, 16, 25, 28, 39] target shared libraries
only and mostly ignore the attack surface from the applica-
tion binary – which is also not included in the baseline of
their reported reduction rate. The focus on shared libraries is
commonly justi�ed by considering them as the major source
of bloat. While this is true for smaller applications (UNIX core

utils are a common evaluation target), we consider this as-
sumption questionable for larger multithreaded applications:
For instance, from the 55 614 loaded functions in a MariaDB
process, 33 413 (60 percent!) actually stem from the mysqld
binary – and only 2 613 of them (8%) are needed to serve an
oltp_read_write client. Hence, for larger applications, the
binary can even be the most signi�cant source of bloat.
In contrast to the existing approaches, TLASR is able to

eliminate functions from the application’s binary. Hence, all
reported numbers in this paper relate to the functions loaded
into the process/thread, independently from their origin.

2.3 TLASR Application and Limitations

TLASR is provided as a user library (libCTE) plus an analysis
tool (CTEmeta) to extract caller–callee relations from pro-
gram binaries. Unlike other debloating approaches, TLASR
currently requires active integration into the source code
and, thus, a recompilation of the application (with the stan-
dard compiler). The code modi�cations are straightforward
and minimal. While an automated application of TLASR to
existing binaries would be possible (we shall discuss this
brie�y in Sec. 5), we decided against it at this stage, as the
most useful utilization of additional text contexts – a main
feature of TLASR – requires some knowledge about the ap-
plication anyway. In this sense, TLASR could also be seen
as a code-only, easy-to-apply, and �ne-grained alternative
to approaches for explicit compartmentalization, such as
Wedge [10], lightweight execution contexts [21], or manual
splitting of the application logic into multiple processes [30].

The multi-context facility in TLASR requires kernel sup-
port for sub-process memory isolation. Our current imple-
mentation of contexts is based on our published [2] imple-
mentation of address space (AS) views, originally suggested as
AS generations for wait-free binary patching inmultithreaded
applications [32]. TLASR’s mmviews are just AS views that
share everything, but the text segment. We are well aware
that the dependence on a modi�ed kernel would prevent
the application of TLASR’s multi-context feature in most
production settings. We see TLASR as a research vehicle for
understanding and improving hardening of multithreaded
applications, which have been underrepresented in existing
debloating attempts. Given the rising relevance of threads
and thread roles in server software, we are also optimistic
that, in the longer term, concepts for sub-process memory
isolation and virtualization will become available in com-
modity kernels. The integration of memory protection keys

in Linux can be seen as a step in this direction.
Despite the bene�ts of multiple contexts, libCTE and

CTEmeta could nevertheless be applied productively without
the kernel extension. In this case, only a single context (pro-
vided by the process’s standard address space) is available,
from which developers could wipe unneeded functionality.
This is comparable to other dynamic approaches [25] but still
has the advantage of also targeting the application’s binary.
We shall present examples for this in Sec. 4.

3 Implementation

We implemented CTE as libCTE, a run-time library, and
CTEmeta, a supplementary binary analysis tool. libCTE
allows for the elimination and restoration of code at
the function-level granularity within a running process.
CTEmeta performs ahead-of-time analysis of ELFs to provide
static information on a per-binary/library level, which is then
utilized by libCTE. CTE does not have speci�c requirements
for binaries and libraries, except for position-independent
code and the presence of all function symbols in the ELF �le
(or dedicated symbol �les, e.g., Debian’s dbgsym packages).
We do not rely on source code or debugging information.
Our focus is on x86-64, but the approach can be generalized.
LibCTE allows for �ne-grained control of the used elim-

ination strategy. The user can eliminate functions within
a context speci�ed by a wiping rule set, which determines
for each function in the process (binary+libraries) whether
it should be loaded, permanently removed (killed), or tem-
porarily removed and restored on demand (wiped). LibCTE
provides functions to create such rule sets and to manipulate
them according to the CTEmeta-supplied static call-graph in-
formation. For example, the user can mark all functions that
are reachable from a thread’s entry point as to be wiped and
mark the unreachable ones as to be killed. We also provide
manipulators to set the policy of address-taken functions
(which are potential targets of function pointers).

66



LCTES ’23, June 18, 2023, Orlando, FL, USA Florian Rommel, Christian Dietrich, Andreas Ziegler, Illia Ostapyshyn, and Daniel Lohmann

3.1 Function Elimination and Restoration

On initialization (usually performed during the program
startup), libCTE scans the program binary and all loaded
libraries for function symbols with libelf. For each function,
libCTE creates a record that stores a copy of the body in a
non-executable, non-writable memory region. We exclude
PLT entries, un-typed assembler code, and non-instruction
data embedded in the text segment, but these make up only
a small fraction of the executable bytes (2% in MariaDB).

When calling the elimination function,CTE overwrites the
to-be-removed function bodies (according to the user-de�ned
policy) with debug trap instructions (x86: int3), ensuring a
recognizable error condition upon illegal access (see Fig. 3).
For the functions marked as to be wiped (not killed), libCTE
installs a short trampoline (x86: 16 bytes) at the function
entry consisting of a call instruction to a restore handler
followed by the index of the function record.

When the regular control �ow calls a wiped function, the
trampoline calls the restore handler, which saves the current
context, validates the call, and copies the saved function
body back to the original location.We can locate the function
record in constant time via the index in the trampoline.

3.2 Multiple Text Segments per Process

As already touched (Sec. 2.1), to provide per-thread mem-
ory views (mmviews), we use a Linux kernel extension, that
we originally developed for dynamic software updates [32].
Since it is the technical substrate of our CTE approach, we
want to describe it brie�y and explain the libCTE integration.

With mmviews, each process can have multiple address
spaces that are structurally equivalent (have the same list of
mappings) but have private user data in explicitly-marked
mappings. Technically, this is achieved by having a separate
page-table tree per mmview, which is (lazily) synchronized
with the process’s other mmviews; mapping operations are ex-
ecuted on all views simultaneously. Threads switch between
the mmviews of a process via a system call (mmview_migrate),
which boils down to exchanging the CPU’s page directory.

For integration with CTE, we mark the text segments
of the loaded ELFs as mmview-private, which results in kill,
wipe, and restore operations only in�uencing the currently
active mmview. The user can instantiate a new CTE context
by creating a new mmview, migrating the current thread to
it, and performing the function elimination. A thread may
live in a speci�c context for its whole lifetime or only for the
duration of a function call (component-level context).

3.3 Load-Time Validation

Unlike killed functions, which are permanently removed,
wiped functions can be restored on demand by the
trampoline-invoked restore handler. In order to harden this
process and to hinder the exploitation of CTE itself as an
attack vector, we validate the load decision before restoring.

Call-Site Inspection With call-site inspection, we ensure
that the handler was invoked from an actual call site by
inspecting the instruction that precedes the current return
location. With this, ROP chains cannot provoke a function
restore, as they do not originate from a valid call site.
For architectures with variable-length instructions (x86),

backward instruction decoding is impossible in the general
case. However, we can detect almost all invalid call sites
by matching the respective instruction patterns against the
bytes preceding the return address.
Caller–Callee Validation To further harden the load de-
cision, we additionally verify that the invocation is covered
by the regular program behavior. For this, libCTE uitilizes
the static call-graph information pre-calculated by CTEmeta.

With Zydis [8], CTEmeta disassembles the function bodies
to extract caller–callee information from direct-call sites and
collect functions that contain indirect calls. It also captures
calls to external functions through the program-linkage ta-
ble (PLT). Additionally, CTEmeta calculates address-taken
information by scanning the code for PC-relative addressing
and by parsing the relocations to capture function pointers.
CTEmeta is able to process even large applications e�ciently
(MariaDB+libraries: < 2min run time; < 100MiB RAM usage).

At initialization, libCTE combines CTEmeta’s per-ELF in-
formation into a single call graph and consolidates the PLT
entries. Currently, we require that the dynamic linker re-
solves all external symbols at load time (no deferred loading;
enforced via the LD_BIND_NOW environment variable). As a
side e�ect, dynamically-resolved functions (GNU ifuncs) do
not require special treatment. All in all, CTE is able to handle
all libraries for our benchmarks without modi�cations.
At restore time, libCTE consults the caller’s callee list to

validate direct calls. For indirect calls it uses the address-
taken information and the list of functions that contain indi-
rect calls to ensure the expected behavior.

4 Evaluation

In the evaluation, we will quantify the achieved attack-
surface reduction in single- and multithreaded programs,
as well as the induced overhead for function (un-)loading
and multiple memory views. We apply our methodol-
ogy to two single-threaded programs (Bash, OpenSSH),
perform component-speci�c code wiping, and apply the
full approach to two multithreaded server applications
(Memcached, MariaDB). To quantify the attack surface, we
use the executable bytes, the loaded-function count, and
the number of ROP gadgets. We identify gadgets with the
ROPgadget tool [34], and use its auto-ROP generator (AR) to
conduct automatic ROP chain attacks that try to execute the
execve() system call. We performed all measurements on
a quad-core Intel i5-6400@2.70GHz machine with 32GiB
RAM. It runs Gentoo with an mmview-enabled Linux 5.15
kernel.

67



Thread-Level A�ack-Surface Reduction LCTES ’23, June 18, 2023, Orlando, FL, USA

4.1 CTE: Single-Threaded Programs

First, we apply CTE to Bash 5.1 and the OpenSSH 8.8p1
daemon to reduce not only the amount of executable code
within the libraries (as done by [5, 16, 25, 28, 39]) but also
within the main binary itself. As both programs are single-
threaded, there is no requirement for thread-speci�c code
wiping. Thus, the mmview kernel extension is not necessary.

We eliminate all functions, excluding main and the func-
tions necessary for CTE’s re-loading procedure. We let CTE
install the load trampoline in all functions reachable from
main, as well as address-taken functions. The compilation
of both projects uses their default con�gurations. As bench-
marks, we run Bash’s own configure script and execute a
single public-key-authenticated login process in OpenSSH.
In Tab. 1, we quantify three di�erent attack surfaces in

terms of code size, function count, and number of gadgets:
(1) the attack surface before wiping, (2) the maximal attack
surface if all functions with a trampoline had been loaded, (3)
the actual attack surface after executing the chosen bench-
mark. We also distinguish between the main executable, the
loaded shared libraries, and the required CTE runtime. With
this separation, we not only disclose the CTE-induced attack
surface but also demonstrate that CTE is able to eliminate
functions from the executable and the CTE runtime itself. It
is worth mentioning that CTE also killed (permanently re-
moved) functions from the binaries, despite the expectation
that they would be reachable from main. Manual inspection
con�rmed that it was dead code surviving the build process.
For Bash, we reduced the code size by 84 percent

and wiped 87 percent of all functions (35% permanently).
Thereby, we reduced the number of gadgets by 85 percent.
Similarly, for OpenSSH, we reduced the code size by 84 per-
cent andwiped 90 percent of all functions (38% permanently),
and removed 78 percent of all gadgets. For both benchmarks,
CTE removed enough gadgets to let the AR fail even though
we consider the inserted trampolines as possible gadgets.

We also measured the run-time overhead: For Bash, we
initialized CTE for 16.6ms, wiped functions for 2.4ms, and
loaded them again for a total of 4.9ms (695 restores). For
OpenSSH, init/wipe/restore took 35.8ms/4ms/5.9ms (1 048
restores). Since we wipe exactly once in these scenarios,
these numbers represent the complete run-time penalties.

4.2 Function Isolation with TLASR

For single-threaded programs, CTE not only signi�cantly
reduces loaded code, but also limits the maximally loadable
functions. However, we can go further by utilizing mmviews to
contextualize the function-load decision for individual (man-
ually selected) code components, such as a single function.
We create a separate mmview for the context, eliminate all
non-necessary code, and switch the calling thread to the new
mmview during the execution of the component. As mmviews
share their data and stack segments, parameter passing (even

Table 1. Attack surface of single-threaded programs. For
each column, the triple (init/max/at exit) gives the surface
for the program before wiping, when the maximal reachable
set would have been loaded, and the actual attack surface
after the benchmark �nished. The CTE row shows the attack
surface that we introduce.

Code Size [KiB] Functions [#] Gadgets [#]

bash (Benchmark: bash ./configure)
Exec. 779/ 755/ 284 2 252/ 2 002/ 507 9 423/ 8 724/ 3 159
Libs. (7) 1 601/ 1 094/ 110 3 926/ 2 050/ 300 24 724/ 16 045/ 1 995
CTE 86/ 43/ 11 262/ 138/ 27 1 743/ 1 132/ 322

sshd (Benchmark: Pub-key login until auth. succeeds)
Exec. 700/ 605/ 206 1 293/ 1 059/ 309 2 857/ 2 515/ 909

Libs. (13) 3 537/ 2 716/ 477 11 116/ 6 624/ 893 55 801/ 41 995/11 781
CTE 86/ 43/ 11 262/ 138/ 27 1 743/ 1 132/ 322

Table 2. Function isolation metrics for three scenarios. The
number of functions includes the binary and libraries.

Empty SSL JPEG

Text Segment [KiB] 1 575 3 521 3 558

TLASR [KiB] 18 282 96

Functions [#] 3 823 11 534 10 273

TLASR [#] 43 319 235

Gadgets (AR) [#] 24 513 (�) 56 718 (�) 50 845 (�)
TLASR [#] 538 (×) 8 599 (×) 1 752 (×)

Run Time 1.48±0.73 ns 33.63±0.09 us 321.40±5.80ms
TLASR 1 045.65 ns 35.52 us 322.88ms

by reference) requires no copies but only a wrapper function.
For the function call, the wrapper migrates the calling thread
to a wiped mmview that only contains the necessary functions.
The attack surface of the “isolated” function is determined
only by itself and its callees.
To show the principal applicability of this technique, we

use three synthetic benchmarks: (1) Empty only invokes a
single, non-inlined function returning nothing; it depends
solely on the libC. This allows us to measure the base over-
head for the two mmview migrations that are required per
invocation. (2) SSL uses OpenSSL 1.1.1l (libssl, libcrypto)
to calculate the �ngerprint of a prede�ned certi�cate and
compares the result to a �xed �ngerprint (certi�cate pin-
ning); the function only returns a boolean value to its caller.
(3) JPEG loads and decodes an 9.6MiB image (3288 px ×

4384 px) with libjpeg-turbo 2.1.1-r2, converts it to grayscale,
and saves the result as a JPEG to a tempfs �le. We isolate
the image decoding procedure in a wiped mmview.
For the three benchmarks, we compare the baseline vari-

ant without code elimination to a TLASR-protected execu-
tion context that uses a pre-wiped mmview for the speci�c
scenario. We did not measure the CTE run-time overheads
here, but only accounted for the mmview costs. Tab. 2 com-
pares the attack surface of the baseline variant to the isolated
context, and shows the per-invocation run-time costs. For
Empty/SSL, we batched 1 ·106/1 ·104 invocations to minimize
the measurement’s in�uence. We repeated each (batched)
measurement 100 times.

68



LCTES ’23, June 18, 2023, Orlando, FL, USA Florian Rommel, Christian Dietrich, Andreas Ziegler, Illia Ostapyshyn, and Daniel Lohmann

Table 3. Loaded Attack Surface (MariaDB, Sysbench SQL).

Benchmark Code Size Functions Gadgets (AR)

MariaDB 16.91MiB 55 614 186 788 (�)

bulk_insert 7.03% 1942 (3.49%) 9.36% (×)
oltp_delete 6.81% 2027 (3.64%) 9.38% (×)
oltp_insert 6.89% 1935 (3.48%) 9.29% (×)
oltp_point_select 6.45% 1817 (3.27%) 8.70% (×)
oltp_read_only 7.61% 2272 (4.09%) 9.64% (×)
oltp_read_write 9.76% 2926 (5.26%) 11.34% (×)
oltp_update_index 7.55% 2240 (4.03%) 10.00% (×)
oltp_update_non_index 6.94% 2089 (3.76%) 9.53% (×)
oltp_write_only 7.93% 2347 (4.22%) 10.20% (×)
select_random_points 7.09% 1983 (3.57%) 9.14% (×)
select_random_ranges 7.17% 2015 (3.62%) 9.19% (×)

TLASR is able to eliminate signi�cant parts of the text
segment (92%–99%) and the loaded functions (97%–99%).
Thereby, TLASR reduced the number of gadgets between
85 percent (SSL) and 98 percent (Empty) and successfully
prohibited all AR ROP attacks.
From Empty’s and SSL’s run times, we see that switch-

ing the mmview of the calling thread costs around 560 ns
per mmview_migrate (Empty). Therefore, we expected that
TLASR’s overhead diminishes for the long-running JPEG
benchmark. However, we observed a measurable overhead
(+0.46%). An inspection of the benchmark’s behavior re-
vealed the problem: For the decompressed image data, libjpeg
allocates a 41MiB bu�er, which glibc’s malloc directly for-
wards to mmap/munmap. As this bu�er is used in both mmviews,
the overhead is caused by the page-table synchronization.

4.3 Multithreaded Applications

In the third part of our evaluation, we apply TLASR to two
multithreaded server programs (MariaDB 10.8, Memcached
1.6.12). We chose these programs because they are widely
used and have di�erent worker-thread models: MariaDB’s
SQL server uses one worker thread per client connection
by default, which executes the received SQL statements se-
quentially. Memcached, in contrast, is event-based, and each
worker thread handles multiple connections simultaneously
without blocking on IO. The two di�erent models allow us to
investigate both associated code-usage patterns: While we
expect that a MariaDB worker requires vastly di�erent func-
tion sets depending on the SQL command, each Memcached
worker should use more or less the same functions. How-
ever, forMemcached, we also considered background threads,
which di�er signi�cantly from the workers.

For MariaDB, we applied TLASR to the client-facing
worker threads with the possibility to re-wipe mmviews pe-
riodically. Thereby, we can provide a clean mmview for each
connection, each (Nth) transaction, or each SQL command.
For the measurements, we used all SQL benchmarks from
Sysbench 1.0.20 with a varying number of clients, acting on a
single database table with 10 000 rows. Per default, each trans-
action consists of 20 SQL queries, and Sysbench opens one
connection per client, each corresponding to one MariaDB
worker thread. Except for end-to-end latency measurements

Table 4. Per-library breakdown for MariaDB and the bench-
mark oltp_read_write. TLASR introduces the libcte.so

and libelf.so.1 libraries (gray rows).

ELF/Library Loaded [%]

Size [KiB] Funcs. [#] Size Funcs.

mysqld 9 021.34 33 413 14.68 7.82

libcrypto.so.1.1 1 581.96 6 227 11.08 0.19

libc.so.6 1 289.18 3 130 4.56 3.83

libstdc++.so.6 1 013.15 4 836 1.76 0.62

libzstd.so.1 974.91 726 0.22 0.83

libgcrypt.so.20 831.69 1 337 7.88 1.65

libm.so.6 608.34 898 0.11 0.67

libsystemd.so.0 548.86 1 572 1.28 0.19

libpcre2-8.so.0 428.93 258 0.14 0.78

libssl.so.1.1 306.97 1 196 2.25 0
ld-linux-x86-64.so.2 142.01 263 0.63 1.90

liblz4.so.1 107.41 148 1.05 2.03

libgpg-error.so.0 83.93 411 2.21 0.49

libcrypt.so.2 82.88 128 0.02 0
libgcc_s.so.1 69.55 204 1.68 20.10

libelf.so.1 63.31 205 1.28 0
libpthread.so.0 56.27 288 16.37 10.42

libz.so.1 52.61 133 1.38 0
libcte.so 22.32 57 44.21 47.37

libcap.so.2 13.47 62 30.86 4.84

librt.so.1 13.24 72 7.26 0
libdl.so.2 4.05 29 6.39 3.45

libaio.so.1 1.49 21 8.48 0

Total 17 318 55 614 9.76 5.26

(see Sec. 4.3.2), we execute Sysbench on the same host as the
database. The baseline is an unmodi�ed MariaDB (v10.8).
For Memcached, we applied TLASR to all threads, with

each thread living in its own mmview. The main thread listens
for connections and assigns them to multiple workers. In ad-
dition, there are threads for asynchronous LRU maintenance
and other background threads. To generate load and measure
the performance, we use Memtier Benchmark 1.3.0 with its
default settings. In this con�guration, Memtier issues access
operations to randomized keys in the database, maintain-
ing a read/write ratio of 10/1. The number of benchmark
threads matches the CPU count, with each thread creating
50 clients. Deviating from the default settings, we let the
Memtier clients reconnect to Memcached after a �xed num-
ber of 100 000 requests in order to also put some load on the
Memcached listener thread. As in the MariaDB benchmark,
we run Memtier on the same host as the server, except for
the latency measurements. For the baseline, we used the
unmodi�ed Memcached 1.6.12 server.

4.3.1 Quantitative Attack-Surface Analysis First, we
quantify the attack surface that each benchmark provokes
on the server side. For MariaDB, we instruct TLASR to wipe
the mmview of the per-connection workers once before han-
dling the connection. We execute the benchmark with a
single client for 120 seconds and dump the worker’s function-
load set and CTE’s run-time statistics when the client closes
the connection. Afterwards, we compare the attack surface
against the unmodi�ed MariaDB server.
In Tab. 3, we report the numbers for the whole MariaDB

process broken down per Sysbench benchmark, where CTE

69



Thread-Level A�ack-Surface Reduction LCTES ’23, June 18, 2023, Orlando, FL, USA

Table 5. TLASR attack surface for Memcached.

Thread Code Size Functions Gadgets (AR)

Memcached 2 063KiB 5 562 28 341 (�)

main 68KiB (3.3%) 147 (2.6%) 4.9% (×)
LRU 72KiB (3.5%) 159 (2.9%) 5.0% (×)
logger 48KiB (2.3%) 119 (2.1%) 3.4% (×)
crawler 54KiB (2.6%) 134 (2.4%) 3.9% (×)
maintenance 47KiB (2.3%) 111 (2.0%) 3.3% (×)
slabs 46KiB (2.2%) 111 (2.0%) 3.3% (×)
worker (4 threads) 115KiB (5.6%) 264 (4.7%) 7.8% (×)

removes between 90 and 94 percent of the executable bytes
from the worker’s attack surface. The number of loaded func-
tions varies between 1 817 and 2 926, indicating signi�cant
di�erences in the utilized functionality across the bench-
marks. The variation mostly stems from the application bi-
nary (1 519–2 613 funcions). In contrast, the variation in the
library-function usage (271–292 functions) is relatively small,
which underlines the importance of removing functions from
the binary. From the CTE runtime, all benchmarks load the
same 27 functions already observed in Tab. 1.

Tab. 4 shows a per-library breakdown of the attack surface
for oltp_read_write, which has the largest attack surface
of the performed benchmarks (see Tab. 3). Here, TLASR
performs well for all loaded libraries and the main executable.
For 6 libraries, including CTE’s dependency libelf (needed
during the initialization), we eliminated all functions. The
reason for the remaining code is the presence of executable
data that is not captured by CTE (e.g., the program linkage
table, PLT entries).
Fig. 2 shows an exemplary breakdown of the overlap in

the attack surface between the three benchmarks: Naturally,
the two benchmarks that modify database rows have many
functions in common (478), while the read-only benchmark
has the most distinctive function set (575) not used in the
other two. We consider this a strong indicator that context-
speci�c code elimination is bene�cial in a per-connection
threading model if clients require di�erent services.
The code-size and function-count reductions lead to a

gadget reduction between 89 and 91 percent for the workers
compared to the original MariaDB (see Tab. 3). In all cases,
the workers were not vulnerable to auto-generated ROP
chains, unlike the original program.

For Memcached, Tab. 5 shows reductions broken down per
thread, and Fig. 1 gives a more detailed view of the function-
load–set overlap for three threads. Overall, TLASR is able
to reduce the code size and function count by at least 95
percent (up to 98%) within each mmview. This signi�cantly
reduces the available gadgets and also disarms the AR in all
cases. A total of 101 functions (2%) with 30KiB (1.5%) are
loaded in all mmviews. Without mmviews, each thread would
su�er from an attack surface of 6.9 percent of the code.

4.3.2 Run-Time and Memory Overheads In this sec-
tion, we measure the runtime costs of applying TLASR to
multithreaded server processes. These costs include the time

0

5

10

15

Re
qu

es
t

La
te

nc
y 

[m
s]

Baseline
Per Conn.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Client Threads[#]

0

50

No
rm

al
ize

d 
[%

]

Per Conn.

Figure 4. Sysbench latencies (oltp_read_only) for MariaDB.

0

1

2

Re
qu

es
t

La
te

nc
y 

[m
s]

Baseline
Per Thread

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Client Threads[#]

0

50

No
rm

al
ize

d 
[%

]

Per Thread

Figure 5. Memtier Benchmark latencies for Memcached.

incurred by CTE and the overhead introduced by the use of
mmviews, which are re�ected in the end-to-end request laten-
cies experienced by the clients. We also examine the impact
of di�erent (periodic) elimination strategies at varying levels
of concurrency.
First, we look at the CTE overheads regarding run-time

and memory consumption for MariaDB, our largest bench-
mark program. CTE requires on average 204ms to initialize
its data structures. The whole elimination process (~56K
functions) takes around 20ms for all functions. Restoring
functions is more expensive: While wiping a single function
takes 0.31 us on average, restoring it again takes 4.59 us. This
asymmetry is caused by the two mprotect calls to make the
text-bodies (non-)writable. We can batch those calls for wip-
ing, but for restoration, we have to do it on a per-function ba-
sis. However, for 10 of the Sysbench benchmarks, the restore
activity comes close to quiescence (95 % required functions
are loaded) in less than 25ms. Only bulk_insert did not
reach the 95 percent mark before 176ms. At this point, we
know that the main source of overhead stems from mmviews.
Apart from run time, TLASR also entails a space over-

head. On initialization, CTE reads the CTEmeta �les for all
ELFs in the process, which take up 4MiB of disk space for
MariaDB (largest benchmark). At run time, CTE requires
memory to save the decoded meta information and the non-
executable copies of the function bodies. For MariaDB, this
takes up around 23MiB of non-executable heap memory.
Furthermore, each mmview involves duplicating the page-
table tree and the text segments. The per-mmview page tables
are in the range of ~500KiB for MariaDB and ~100KiB for

70



LCTES ’23, June 18, 2023, Orlando, FL, USA Florian Rommel, Christian Dietrich, Andreas Ziegler, Illia Ostapyshyn, and Daniel Lohmann

Table 6. MariaDB request latency (oltp_read_only) with
periodic elimination. Normalized to the MariaDB original.

Threads

[× baseline] 1 2 4 8 16 32

Per Connection 0.92 1.00 1.02 1.10 1.22 1.59

Per Transaction 3.14 7.35 8.90 19.92 25.73 30.02

Per 50 Transactions 0.82 1.23 1.15 1.32 1.46 1.73

Per 100 Transactions 0.88 0.99 1.00 1.09 1.22 1.60

Per 500 Transactions 0.93 1.00 1.01 1.10 1.21 1.58

Per 1000 Transactions 0.97 0.99 1.00 1.09 1.22 1.57

Memcached [32]. Note that all user-data pages are physically
shared between mmviews.

Next, we look at the end-to-end latency that the clients ex-
perience when we employ TLASR in the server process. The
servers are benchmarked with Sysbench (for MariaDB) and
Memtier Benchmark (for Memcached) for 300 seconds from
a remote host (quad-core Intel i5-7400@3.00GHz, 32GiB
RAM) connected to the server host by a gigabit ethernet
link in a local-area network. We record the average of the
experienced latencies. For MariaDB, we chose Sysbench’s
read-only benchmark as it does not su�er from transaction
aborts with an increased client count.
Our elimination approach is the least intrusive when we

invokeCTE precisely once per thread, with mmview becoming
the primary source of overhead. Since a Sysbench client uses
the same connection for all commands, per-thread elimina-
tion is equivalent to per-connection elimination for MariaDB.
In Fig. 4, we show the request latency for an increasing

number of MariaDB clients. Here, we observe that TLASR
has no or only minor in�uence (< 5 %) on the request latency
as long as the active clients do not signi�cantly surpass the
number of CPU cores. Because MariaDB creates a worker
thread for each client, an increasing number of clients causes
frequent reschedules, which results in many mmview switches
with associated costs (TLB invalidation). We measured a
relative disadvantage of up to 59 percent for 32 active clients.

For Memcached, Fig. 5 shows the end-to-end latency when
each thread is placed in its own mmview and wiped once at
startup. Since Memcached’s thread setup is static, a growing
number of clients does not a�ect the number of threads and
mmviews. As a result, the impact of TLASR on Memcached,
using a once-per-thread wiping approach, remains minimal
as the number of clients grows.
Next, we investigate the costs for periodic mmview re-

wiping. We chose MariaDB for this analysis since the
function-load set of a database worker heavily depends on
the workload. Tab. 6 displays the resulting request latencies,
normalized to the baseline. When wiping after each trans-
action, the clients experience request latencies between 3

and 30 times as high as the baseline. This discrepancy be-
comes understandable when comparing the baseline latency
to the wipe/restore times:With one client, a transaction takes
4.8ms, but the restorations of wiped functions alone take

Table 7. MariaDB request latency (oltp_read_only) for
increasingly-sized transactions (20 × QM commands).

Query Multiplier (QM)

#Threads TLASR Mode 1 5 20 50 100

1 Baseline [ms] 5.21 20.07 68.96 159.96 306.91

Per Conn. [×] 0.92 1.02 1.03 1.01 1.12

Per Trans. [×] 3.14 1.50 1.06 1.11 1.07

4 Baseline [ms] 3.05 14.61 57.36 144.08 286.43

Per Conn. [×] 1.02 1.00 1.01 1.00 1.01

Per Trans. [×] 8.90 2.19 1.22 1.09 1.06

32 Baseline [ms] 12.01 59.15 239.28 606.05 1 218.54

Per Conn. [×] 1.59 1.59 1.54 1.55 1.52

Per Trans. [×] 30.02 6.62 1.83 1.57 1.58

around 10ms for the oltp_read_only benchmark. Thus, per-
transaction wiping is clearly too expensive in the presented
scenarios. The overhead could be mitigated by periodic wip-
ing (re-wipe only every Nth transaction, see Tab. 6) or by
increasing the amount of work performed within a single
transaction (see Tab. 7). With decreasing frequency, the costs
of the periodic strategy quickly approaches the overhead of
per-connection re-wiping: If we re-wipe the mmview every
100 transactions, periodic re-wiping is mostly on par with
the per-connection approach. In the end, it remains a trade-
o� between performance and attack-surface reduction. As
long as it is done with a low frequency (every few seconds),
periodic re-wiping should always be a viable option.

4.4 Qualitative Attack-Surface Analysis

While more reachable gadgets ease a second-stage exploit,
also vulnerable functions can be an exploit-chain component
as a return-to-libc attack. Therefore, removing functions
with a history of vulnerability is a standard indicator for
successful binary debloating [6, 19, 25–28, 36]. To this end,
we analyzed all 127 documented CVEs of the GNU C library,
which is a prime target for attackers [35, 37].

We manually identi�ed 114 CVEs that mentioned a func-
tion name, which translates to 130 unique names. We could
correlate all but 4 names to an ELF symbol, with the remain-
ing being two historical symbols, a symbol from the name
service cache daemon, and a variable name. On average, each
of the 109 CVEs was related to 2.36 symbols (max=19).
We compare 109 CVEs with the observed function-load

sets from the quantitative attack-surface experiments. For
each CVE–benchmark combination (109 × 22), we calculate
the fraction of historically vulnerable functions that was still
present in the benchmark. As glibc loads some secondary
libraries only on demand, the CVE-related functions were
not present in 181 cases. From the remaining 2 217 cases,
TLASR removed all CVE-related functions in 2 141 cases
(97%), and in 70 further cases at least one. Only in 6 cases
we could not eliminate any of the mentioned functions. In
four of those cases (all OpenSSH), the remaining vulnerable
function was getaddrinfo, which the OpenSSH server uses

71



Thread-Level A�ack-Surface Reduction LCTES ’23, June 18, 2023, Orlando, FL, USA

Table 8. Attack-Surface Reduction with LibraryTrader.

Code Size Functions Gadgets (AR)

MariaDB 35% 33% 29% (�→ �)
Exec. 0% 0% 0% (�→ �)
Libs. 74% 82% 48% (�→ �)

Memcached 47% 65% 43% (�→ �)
Exec. 0% 0% 0% (× → ×)
Libs. 52% 70% 46% (�→ �)

to perform reverse DNS lookups. In total, TLASR removes
most functions with a history of vulnerabilities.

4.5 Comparison with Static Code Debloating

We also compare TLASR with LibraryTrader [39], a state-
of-the-art static binary debloating technique that performs
ahead-of-time ELF rewriting and uses dynamic tracing in-
formation to re�ne the set of required functions. Due to its
static nature, LibraryTrader is unaware of threads and keeps
all main-binary functions, removing code only from the li-
braries. We make this comparison, as it also works on the
binary level, and it can handle complex libraries with hand-
written assembler parts (e.g., libcrypto). In performance
benchmarks, the shrunk binaries show (as expected) the
same characteristics as the originals.
However, if we look at the attack surface for MariaDB

and Memcached (see Tab. 8), we see that LibraryTrader is
far less e�ective: For Memcached, it can remove at most 47
percent of the code segment. For MariaDB, where the main
binary makes up more than half of the attack surface, the
focus on libraries leads to a mere code-size reduction of only
35 percent, although the approach can reduce most of the
library code (74%). In comparison, a TLASR-wiped worker
has, at most (oltp_read_write), 4 percent of its library code
loaded, and the main executable is reduced by 85 percent.

We also quanti�ed the e�ectiveness of LibraryTrader in re-
moving CVE-related functions (see Sec. 4.4) for MariaDB and
Memcached. For MariaDB, LibraryTrader could eliminate all
related functions for 38 CVEs and at least some for 24 CVEs,
while 41 CVEs were not addressed at all. For Memcached,
the result is even worse: only 20/15 CVEs were full/partially
addressed, while 63 CVEs were not addressed.

5 Discussion

Attack-Surface Reduction By (1) covering the main bi-
nary and (2) �ne-grained thread-level killing and wiping, we
are able to reduce the code size between 84 and 98.4 percent
and shrink the gadget count by 78 to 96.7 percent. In con-
trast to related work that targets only libraries (e.g., [25, 28]),
these numbers include all text segments, the non-wipeable
parts of CTE (~5 KiB), and the injected trampolines.

Nevertheless, Brown et al. [12] argue that counting bytes
and gadgets is insu�cient, and a qualitative analysis of the
attack surface is required. We meet this demand by (1) our
auto-ROPer experiments for TLASR-wiped benchmarks, and

(2) by our qualitative CVE-function analysis, where we re-
moved almost all glibc functions with a history of vulnerabil-
ities. Even if it may still be possible to construct ROP chains
and access vulnerable functions, it becomes more di�cult if
every thread has a di�erent (and possibly changing) function
and gadget set that is unknown to the attacker. We might
also mitigate blind ROP techniques [9], which use program
crashes to probe automatically restarting servers, as TLASR
can distinguish between a normal crash and a jump to an
eliminated code region. Here, TLASR can be combined with
restart delays or IP-address blocking.

With our load-time validation, we also defuse the restore
handler as an additional attack vector and avoid loosing the
CTE-achieved robustness improvements. Our two mecha-
nisms are related to context-insensitive control-�ow integrity

(CFI) techniques [4]; however, in contrast to the usual usage
pattern, we only apply them at load time and not continu-
ously. Although we currently only validate forward edges,
which has been considered easy to circumvent [38], we still
argue that this nevertheless improves on the restore-handler
attack vector: As we narrow contexts to individual threads,
we shrink the caller/callee sets (and, thereby, call gadgets
and return targets), which allows other CFI-mechanisms to
become stricter. Furthermore, CTE could use a more sophis-
ticated CFI mechanism to validate restores.
As a measure against ROP attacks, shadow stacks are a

well-established defense technique, protecting the backward
edges of the control �ow. Unfortunately, software-based
implementations come with signi�cant performance over-
heads [15] and are often susceptible to modi�cations to the
shadow stack itself [4, 13, 40, 41]. With Intel’s Control-Flow
Enforcement Technology (CET) [3, 17], the CPU manages
a shadow stack with minimal performance overhead and
branch-target instructions provide forward-edge veri�ca-
tion. However, it still allows calling most functions through
indirect branches, especially vulnerable library functions
(Sec. 4.4) or other dangerous functions (e.g., exec or system).

In contrast to CFI, TLASR thwarts ROP attacks by restor-
ing only necessary functions and entirely forbidding others.
For indirect calls, TLASR currently consolidates process-
wide address-taken information and performs call-site in-
spection, which is stricter than Intel’s Indirect Branch Track-
ing and could further be improved with better static analysis.

With Pointer Authentication Code (PAC) [7], ARM provides
a CFI technique based on cryptographic pointer authentica-
tion, which can be used to protect function returns. It has
similar shortcomings regarding indirect branches as Intel
CET. We see TLASR either as an additional safeguard that
can be applied in conjunction to CFI or as a lightweight
alternative when the fast but new [17, 29] hardware imple-
mentations are not available or supported by the OS [14].
Run-Time Impact Since mmviews are technically di�erent
address spaces, their usage increases the TLB pressure if they
are concurrently active on the same core: In most scenarios,

72



LCTES ’23, June 18, 2023, Orlando, FL, USA Florian Rommel, Christian Dietrich, Andreas Ziegler, Illia Ostapyshyn, and Daniel Lohmann

we can attribute the largest part of the run-time overhead to
mmviews (see Figures 4 & 5). This becomes especially preva-
lent when an application uses more CPU-bound threads than
cores (which should be avoided anyway). Only with peri-
odic elimination, libCTE itself induces continuous run-time
overheads (see Tab. 6). From our results, we conclude that
high-frequent periodic re-wiping (e.g., per-transaction wip-
ing) is too expensive, but practical tradeo�s exist. Costs could
be further reduced by employing a predictor, as suggested by
BlankIt [25], to avoid wiping frequently-restored functions.
Applicability In contrast to other debloating mechanisms,
the TLASR approach has two hurdles to its applicability:
Firstly, the requirement of a kernel extension (see Sec. 2.3)
and, secondly, our requirement for manual integration with
the target program. To some extent, the �rst limitation could
be eased by using multiple processes (or other protection-
domain techniques [10, 21] – which, however, also require
a kernel extension) that use shared mappings for their data.
However, this would require actively synchronizingmapping
operations to avoid divergingmemory views, whichwe avoid
with mmviews. Furthermore, splitting an existing application
into multiple processes requires signi�cant development
e�orts, whereas TLASR is very easy to apply.

However, in contrast to other debloating attempts, TLASR
has to be applied manually. We argue that this is not neces-
sarily a disadvantage, as instead of delegating debloating to
the end user, it provides developers with a means to integrate
�tted attack-surface reduction measures directly into their
application. Nevertheless, CTE could easily be extended to
support automatic application modes: A simple mode would
hook the thread creation in the C library, create an mmview

for the new thread, kill all functions that are not reachable
from the thread entry, and wipe the others.

6 Related Work

The main advantage of TLASR over existing techniques is
the much �ner control over the function-load set, which
no longer has to be the superset required by any thread in
a multithreaded application, but can be adopted over time
and context: Nevertheless, some aspects of those techniques
could be employed in future work to improve TLASR further:
Piece-wise loading [28], for instance, uses compiler-supplied
information to eliminate unreachable functions permanently
for all threads. For this, they employ a sophisticated code-
pointer analysis, which CTE could make use of to increase
the number of killable functions. BlankIt [24, 25] pioneered
the idea of dynamic text elimination for shared libraries
(similar to TLASR’s function isolation), but currently does
not support multithreaded programs. However, CTE could
bene�t from their advanced predictor to reduce restoration
overheads. Slimium [27] targets the Chromium browser and
combines static and dynamic analyses but only eliminates un-
needed features from the application binary. In some broader

sense, site isolation [30] in browsers (one process per origin)
is related to TLASR’s mmview contexts.
Razor [26] and Chisel [19] analyze test-case traces to

remove basic blocks or even individual statements; Trim-

mer [6, 36] removes code only invoked by unused command-
line arguments and con�g �ags. Neither of them considers
multiple threads. However, we could restrict the function set
even further with their static analysis results.
Davidsson et al. [16] use build-time whole-system opti-

mization, driven by a global function dependency graph like
[28], to remove code from binary and libraries.
Shredder [23] specializes API calls and their allowed pa-

rameters to a given application, blocking the execution of
unexpected invocations. Ghavamni et al. [18] disable system
calls according to the current program phase (e.g., initializa-
tion, serving), which is also context-speci�c attack-surface
reduction, but only on the time axis.
Similar to our memory views, MultiK [20] uses special-

ized kernel binaries per application to reduce the kernel’s
attack surface. It does not support dynamic elimination and
operates on the process-level context only.

7 Conclusion

We presented TLASR (thread-level attack-surface reduction), a
new approach for dynamic text elimination that reduces the
second-stage attack surface in multithreaded server applica-
tions. TLASR, which we provide as a user-library plus kernel
extension, eliminates code permanently or temporarily on
the function granularity. Unlike existing techniques, TLASR
(1) eliminates code not only from shared libraries but also
from the application binary itself and (2) supports thread-
speci�c elimination by multiple contexts — lightweight in-
process address spaces that share all memory but the text seg-
ment. Thereby, a thread’s attack surface shrinks to those func-
tions that are actually required in its control �ow. The ROP
gadgets in MariaDB’s worker threads can be reduced by 89–
91 percent, while Memcached’s code size and function count
shrinks by 95–98 percent per thread. In all cases, TLASR-
eliminated threads were protected against auto-generated
ROP chains. In a study of all documented glibc CVEs, we
found that TLASR was able to remove all CVE-related func-
tions for 97 percent of the 109 CVEs that mention a function.

Please refer to the published artifact to verify and repeat

the experiments [33]. The CTE source code and the Linux

mmview extension are also available separately [1, 2].

Acknowledgments

We thank the anonymous reviewers for their valuable feed-
back and dedicated e�orts in helping us improve this paper.
TLASR was funded by the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation) – 468988364, 501887536.

73



Thread-Level A�ack-Surface Reduction LCTES ’23, June 18, 2023, Orlando, FL, USA

References

[1] [n. d.]. Context-Based Text Elimination. https://github.com/luhsra/cte.
[2] [n. d.]. Linux with mmview extensions. https://github.com/luhsra/

linux-mmview.
[3] 2022. Intel® 64 and IA-32 Architectures Software Developer’s Manual,

Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. https:
//cdrdv2.intel.com/v1/dl/getContent/671200

[4] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005.
Control-Flow Integrity: Principles, Implementations, and Applications.
In Proceedings of the 12th ACM Conference on Computer and Communi-

cations Security (CCS ’05). ACM Press, New York, NY, USA, 340–353.
https://doi.org/10.1145/1102120.1102165

[5] Ioannis Agadakos, Nicholas Demarinis, Di Jin, Kent Williams-
King, Jearson Alfajardo, Benjamin Shteinfeld, David Williams-King,
Vasileios P. Kemerlis, and Georgios Portokalidis. 2020. Large-Scale
Debloating of Binary Shared Libraries. Digital Threats: Research and

Practice 1, 4, Article 19 (Dec. 2020), 28 pages. https://doi.org/10.1145/
3414997

[6] Aatira Anum Ahmad, Abdul Rafae Noor, Hashim Sharif, Usama
Hameed, Shoaib Asif, Mubashir Anwar, Ashish Gehani, Junaid Haroon
Siddiqui, and Fareed M Za�ar. 2021. TRIMMER: An Automated System
for Con�guration-based Software Debloating. IEEE Transactions on

Software Engineering (2021), 1–1. https://doi.org/10.1109/TSE.2021.
3095716

[7] Arm Limited. 2022. Arm® Architecture Reference Manual for A-Pro�le

Architecture. Cambridge, England. DDI 0487H.a.
[8] Florian Bernd. [n. d.]. Zydis: Fast and lightweight x86/x86-64 disassem-

bler and code generation library. https://github.com/zyanti�c/zydis –
accessed on 2023-01-06.

[9] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan
Boneh. 2014. Hacking Blind. In Proceedings of the 2014 IEEE Symposium

on Security and Privacy (SP ’14). IEEE Computer Society, USA, 227–242.
https://doi.org/10.1109/SP.2014.22

[10] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008.
Wedge: Splitting Applications into Reduced-Privilege Compartments.
In Proceedings of the 5th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI ’08) (San Francisco, California). USENIX
Association, USA, 309–322.

[11] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011.
Jump-Oriented Programming: A New Class of Code-Reuse Attack. In
Proceedings of the 6th ACM Symposium on Information, Computer and

Communications Security (ASIACCS ’11) (Hong Kong, China) (ASIACCS
’11). Association for Computing Machinery, New York, NY, USA, 30–40.
https://doi.org/10.1145/1966913.1966919

[12] Michael D. Brown and Santosh Pande. 2019. Is Less Really More? To-
wards Better Metrics for Measuring Security Improvements Realized
through Software Debloating. In Proceedings of the 12th USENIX Con-

ference on Cyber Security Experimentation and Test (CSET ’19) (Santa
Clara, CA, USA) (CSET’19). USENIX, USA, 5.

[13] Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining
Light on Shadow Stacks. In 2019 IEEE Symposium on Security and

Privacy (SP). IEEE, San Francisco, CA, USA, 985–999. https://doi.org/
10.1109/SP.2019.00076

[14] Jonathan Corbet. 2022. Shadow stacks for user space. https://lwn.
net/Articles/885220/ https://lwn.net/Articles/885220/.

[15] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. 2015. The
Performance Cost of Shadow Stacks and Stack Canaries. In Proceedings

of the 10th ACM Symposium on Information, Computer and Communi-

cations Security (ASIACCS ’15). ACM, Singapore Republic of Singapore,
555–566. https://doi.org/10.1145/2714576.2714635

[16] Nicolai Davidsson, Andre Pawlowski, and Thorsten Holz. 2019. To-
wards Automated Application-Speci�c Software Stacks. In Computer

Security - ESORICS 2019 - 24th European Symposium on Research in

Computer Security, Luxembourg, September 23-27, 2019, Proceedings,

Part II (Lecture Notes in Computer Science, Vol. 11736), Kazue Sako,
Steve A. Schneider, and Peter Y. A. Ryan (Eds.). Springer, 88–109.
https://doi.org/10.1007/978-3-030-29962-0_5

[17] Tom Garrison. 2020. Intel CET Answers Call to Protect Against
Common Malware Threats. https://www.intel.com/content/www/
us/en/newsroom/opinion/intel-cet-answers-call-protect-common-
malware-threats.html.

[18] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis
Polychronakis. 2020. Temporal System Call Specialization for Attack
Surface Reduction. In 29th USENIX Security Symposium (USENIX Secu-

rity 20). USENIX Association, 1749–1766. https://www.usenix.org/
conference/usenixsecurity20/presentation/ghavamnia

[19] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik.
2018. E�ective Program Debloating via Reinforcement Learning. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security (Toronto, ON, Canada) (CCS ’18), David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.).
Association for Computing Machinery, New York, NY, USA, 380–394.
https://doi.org/10.1145/3243734.3243838

[20] Hsuan-Chi Kuo, Akshith Gunasekaran, Yeongjin Jang, Sibin Mohan,
Rakesh B Bobba, David Lie, and Jesse Walker. 2019. MultiK: A Frame-
work for Orchestrating Multiple Specialized Kernels. arXiv preprint
arXiv:1903.06889 (2019).

[21] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. 2016. Light-Weight
Contexts: An OS Abstraction for Safety and Performance. In 12th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16). USENIX Association, Savannah, GA, 49–64. https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/litton

[22] Pratyusa K. Manadhata and Jeannette M. Wing. 2011. An Attack
Surface Metric. IEEE Transactions on Software Engineering 37, 3 (2011),
371–386. https://doi.org/10.1109/TSE.2010.60

[23] Shachee Mishra and Michalis Polychronakis. 2018. Shredder: Breaking
Exploits through API Specialization. In Proceedings of the 34th Annual

Computer Security Applications Conference, ACSAC 2018, San Juan, PR,

USA, December 03-07, 2018. Association for Computing Machinery,
New York, NY, USA, 1–16. https://doi.org/10.1145/3274694.3274703

[24] Chris Porter, Sharjeel Khan, and Santosh Pande. 2021. On-the-�y Code
Activation for Attack Surface Reduction. CoRR abs/2110.09557 (Oct.
2021). arXiv:2110.09557 https://arxiv.org/abs/2110.09557

[25] Chris Porter, GirishMururu, Prithayan Barua, and Santosh Pande. 2020.
BlankIt Library Debloating: GettingWhat YouWant Instead of Cutting
What You Don’t. In Proceedings of the 41st ACM SIGPLAN Conference

on Programming Language Design and Implementation (London, UK)
(PLDI ’20). Association for Computing Machinery, New York, NY, USA,
164–180. https://doi.org/10.1145/3385412.3386017

[26] Chenxiong Qian, Hong Hu, Mansour Alharthi, Simon Pak Ho Chung,
Taesoo Kim, and Wenke Lee. 2019. RAZOR: A Framework for Post-
deployment Software Debloating. In 28th USENIX Security Sympo-

sium (Santa Clara, CA, USA) (USENIX Security ’19), Nadia Heninger
and Patrick Traynor (Eds.). USENIX Association, Berkeley, CA, USA,
1733–1750. https://www.usenix.org/conference/usenixsecurity19/
presentation/qian

[27] Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and
Wenke Lee. 2020. Slimium: Debloating the Chromium Browser with
Feature Subsetting. In Proceedings of the 2020 ACM SIGSAC Conference

on Computer and Communications Security (Virtual Event) (CCS ’20),
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.).
Association for Computing Machinery, New York, NY, USA, 461–476.
https://doi.org/10.1145/3372297.3417866

[28] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating software
through piece-wise compilation and loading. In 27th USENIX Security

Symposium (USENIX Security ’18). 869–886.

74

https://github.com/luhsra/cte
https://github.com/luhsra/linux-mmview
https://github.com/luhsra/linux-mmview
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/3414997
https://doi.org/10.1145/3414997
https://doi.org/10.1109/TSE.2021.3095716
https://doi.org/10.1109/TSE.2021.3095716
https://github.com/zyantific/zydis
https://doi.org/10.1109/SP.2014.22
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1109/SP.2019.00076
https://doi.org/10.1109/SP.2019.00076
https://lwn.net/Articles/885220/
https://lwn.net/Articles/885220/
https://lwn.net/Articles/885220/
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.1007/978-3-030-29962-0_5
https://www.intel.com/content/www/us/en/newsroom/opinion/intel-cet-answers-call-protect-common-malware-threats.html
https://www.intel.com/content/www/us/en/newsroom/opinion/intel-cet-answers-call-protect-common-malware-threats.html
https://www.intel.com/content/www/us/en/newsroom/opinion/intel-cet-answers-call-protect-common-malware-threats.html
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://doi.org/10.1145/3243734.3243838
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1145/3274694.3274703
https://arxiv.org/abs/2110.09557
https://arxiv.org/abs/2110.09557
https://doi.org/10.1145/3385412.3386017
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://doi.org/10.1145/3372297.3417866


LCTES ’23, June 18, 2023, Orlando, FL, USA Florian Rommel, Christian Dietrich, Andreas Ziegler, Illia Ostapyshyn, and Daniel Lohmann

[29] Qualcomm Technologies, Inc. 2017. Pointer Authentication on ARMv8.3:

Design and Analysis of the New Software Security Instructions. Technical
Report. San Diego, CA, USA.

[30] Charles Reis, Alexander Moshchuk, and Nasko Oskov. 2019. Site Iso-
lation: Process Separation for Web Sites within the Browser. In 28th

USENIX Security Symposium (USENIX Security 19). USENIX Associa-
tion, Santa Clara, CA, 1661–1678. https://www.usenix.org/conference/
usenixsecurity19/presentation/reis

[31] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
2012. Return-Oriented Programming: Systems, Languages, and Appli-
cations. ACM Trans. Inf. Syst. Secur. 15, 1, Article 2 (mar 2012), 34 pages.
https://doi.org/10.1145/2133375.2133377

[32] Florian Rommel, Christian Dietrich, Daniel Friesel, Marcel Köp-
pen, Christoph Borchert, Michael Müller, Olaf Spinczyk, and Daniel
Lohmann. 2020. From Global to Local Quiescence: Wait-Free Code
Patching of Multi-Threaded Processes. In 14th Symposium on Operating

System Design and Implementation (OSDI ’20). 651–666.
[33] Florian Rommel, Christian Dietrich, Andreas Ziegler, Illia Ostapyshyn,

and Daniel Lohmann. 2023. Thread-Level Attack-Surface Reduction -
Artifact. https://doi.org/10.5281/zenodo.7939291

[34] Jonathan Salwan. [n. d.]. ROPgadget: Gadgets �nder and auto-roper.
http://shell-storm.org/project/ROPgadget/ – accessed on 2022-02-01.

[35] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the
Bone: Return-into-Libc without Function Calls (on the X86). In Pro-

ceedings of the 14th ACM Conference on Computer and Communica-

tions Security (CCS ’07) (Alexandria, Virginia, USA) (CCS ’07). As-
sociation for Computing Machinery, New York, NY, USA, 552–561.
https://doi.org/10.1145/1315245.1315313

[36] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed
Za�ar. 2018. TRIMMER: Application Specialization for Code Debloat-
ing. In Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering (Montpellier, France) (ASE 2018). As-
sociation for Computing Machinery, New York, NY, USA, 329–339.
https://doi.org/10.1145/3238147.3238160

[37] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent
Freeh, and Peng Ning. 2011. On the Expressiveness of Return-into-libc
Attacks. In Recent Advances in Intrusion Detection. Springer, Berlin,
Heidelberg, 121–141.

[38] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Li-
onel Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giu�rida.
2015. Practical Context-Sensitive CFI. In Proceedings of the 2015 ACM

SIGSAC Conference on Computer and Communications Security (Denver,
Colorado, USA) (CCS ’15). ACM, 927–940. https://doi.org/10.1145/
2810103.2813673

[39] Andreas Ziegler, Julian Geus, Bernhard Heinloth, Timo Hönig, and
Daniel Lohmann. 2019. Honey, I Shrunk the ELFs: Lightweight
Binary Tailoring of Shared Libraries. ACM Transactions on Em-

bedded Computing Systems 18, 5s, Article 102 (Oct. 2019), 23 pages.
https://doi.org/10.1145/3358222

[40] Changwei Zou, Yaoqing Gao, and Jingling Xue. 2022. Practical
Software-Based Shadow Stacks on x86-64. ACM Transactions on

Architecture and Code Optimization (TACO ’22) 19, 4, 1–26. https:
//doi.org/10.1145/3556977

[41] Changwei Zou, Xudong Wang, Yaoqing Gao, and Jingling Xue. 2022.
Buddy Stacks: Protecting Return Addresses with E�cient Thread-
Local Storage and Runtime Re-Randomization. ACM Transactions

on Software Engineering and Methodology (TOSEM ’22) 31, 2, 1–37.
https://doi.org/10.1145/3494516

Received 2023-03-16; accepted 2023-04-21

75

https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.5281/zenodo.7939291
http://shell-storm.org/project/ROPgadget/
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/3238147.3238160
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1145/3358222
https://doi.org/10.1145/3556977
https://doi.org/10.1145/3556977
https://doi.org/10.1145/3494516

	Abstract
	1 Introduction
	2 TLASR Approach and Attacker Model
	2.1 (Thread-Specific) Text Contexts
	2.2 The Role of the Binary
	2.3 TLASR Application and Limitations

	3 Implementation
	3.1 Function Elimination and Restoration
	3.2 Multiple Text Segments per Process
	3.3 Load-Time Validation

	4 Evaluation
	4.1 CTE: Single-Threaded Programs
	4.2 Function Isolation with TLASR
	4.3 Multithreaded Applications
	4.4 Qualitative Attack-Surface Analysis
	4.5 Comparison with Static Code Debloating

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

