
TOSTING: Investigating Total Store Ordering
on ARM

Lars Wrenger, Dominik Töllner, and Daniel Lohmann

Systems Research and Architecture Group, Leibniz Universität Hannover, Germany
{wrenger,toellner,lohmann}@sra.uni-hannover.de

Abstract. The Apple M1 ARM processors incorporate two memory
consistency models: the conventional ARM weak memory ordering and
the total store ordering (TSO) model from the x86 architecture employed
by Apple’s x86 emulator, Rosetta 2. The presence of both memory ordering
models on the same hardware enables us to thoroughly benchmark and
compare their performance characteristics and worst-case workloads.
In this paper, we assess the performance implications of TSO on the
Apple M1 processor architecture. Based on various workloads, our findings
indicate that TSO is, on average, 8.94 percent slower than ARM’s weaker
memory ordering. Through synthetic benchmarks, we further explore the
workloads that experience the most significant performance degradation
due to TSO.

Keywords: TSO · Memory Ordering · Apple M1

1 Introduction

On traditional uniprocessor systems, the effects of memory accesses are observable
in the same order as they were specified in the instruction stream (program order).
This is still the case for multitasking on a single core. Challenges arise when the
memory is shared between multiple participants who access it concurrently, such
as other cores, processors, or accelerators. Providing a consistent global order in
which memory accesses are visible to all observers can be particularly difficult for
multiscalar processors with instruction reordering and local caches that buffer
accesses.

Memory consistency models (MCMs) in shared-memory systems formalize
how writes to shared memory can be observed by different participants within a
shareability domain. These hardware-defined guarantees provide rules that lead to
predictable results of shared memory operations [20,17,23]. These models differ in
how strict guarantees they provide. Both x86 and ARM define a MCM that allows
(limited) reordering of instructions [5,1,6]. x86 guarantees a globally consistent
order for stores (TSO). ARM, in contrast, allows stores to different memory
locations to be observed differently from the program order. While complicating
the programming model, ARM’s weaker memory ordering allows processors to
reorder instructions more freely and potentially reduce synchronization overheads



2 L. Wrenger et al.

between caches. Seeing this tradeoff between higher performance and simpler
programming models, we ask how extensive the performance benefits really are.

Apple’s M1 processors implement the ARMv8.3-A instruction set architec-
ture (ISA), which specifies a weak memory ordering model. With these SoC
processors, Apple transitions from Intel-based technology to ARM. Together
with introducing an entirely new ISA, these Apple Silicon SoCs also significantly
change the memory model the hardware now operates on [2]. To provide backward
compatibility with their former x86-based devices, Apple developed a translation
layer called Rosetta 2. This translation engine can emulate applications built for
x86_64 on Apple Silicon SoCs [9]. Unfortunately, a direct translation on a per-
instruction basis alone is insufficient since x86 follows a stricter memory ordering.
Every memory access could potentially rely on total store ordering (TSO). To
produce the same behavior as under x86, each access would have to be explicitly
synchronized. Instead of paying the accompanying performance costs, Apple built
TSO directly into their processors. Thus, the M1 SoC has both the ARM and
the x86 memory ordering models implemented in hardware, making it the ideal
target for comparing these MCMs.

1.1 About this paper

While benchmarks for comparisons between the M1 and other processor families
exist [25,14], no research has yet evaluated the performance impact of TSO on
M1 SoCs. Additionally, to the best of our knowledge, existing research sparsely
conducts evaluations on the M1 Ultra, which combines two M1 Max dies connected
by UltraFusion, Apple’s custom packaging architecture [4].

In this paper, we evaluate the performance impact of enabling TSO on
Apple’s M1 Ultra by running synthetic TSO-oriented benchmarks as well as the
CPU benchmarks of SPEC, a non-profit corporation to establish standardized
benchmarks [12]. With our evaluation, we claim the following contributions:

(1) Apple’s M1 Ultra benchmark data for the SPEC CPU benchmark suite.
(2) Quantification of TSO described by the benchmark suite and tailor-made

synthetic test cases.

2 Memory Consistency Models

The memory consistency model (MCM) defines the correct behavior of shared
memory for concurrent access. It is a contract between the developer, the compiler,
and the parallel system, providing rules that, if followed, lead to predictable
results of shared memory operations. Parallel systems, like x86 or ARM, usually
have a relatively lax consistency model for their normal loads and stores and
specific instructions to enforce stricter guarantees. With them, they can simulate
a stricter MCM if needed.



TOSTING 3

2.1 Programming Model

For hardware independence, most programming languages provide an atom-
ics abstraction, such as std::atomic in C++ or std::sync::atomic in Rust
[8,10]. These abstractions define their own MCMs and a set of operations (e.g.,
atomic_fetch_add) that ensure consistency independently from the hardware
MCM. The compiler inserts the required instructions and fences to enforce the
guarantees where necessary. Usually, atomics provide the three memory ordering
models listed below in increasing strictness:

relaxed Only loads/stores to the same location are ordered consistently. No
guarantees are provided for different memory locations.

acquire-release The acquire-release relation synchronizes accesses to different
memory locations for pairs of releasing stores and acquiring loads. All other
stores (to different memory) before a releasing store are guaranteed to be
visible after an acquiring load of the same memory on another processor.

sequential-consistent All sequential-consistent operations are guaranteed to
be visible to all processors in the same order.

2.2 Total Store Ordering on x86

1: X ← 1
2: Y ← 2

(a) CPU0: Store instructions

X Y
0 0
1 0
1 2

(b) CPU1: Visibility with
TSO or acquire-release

X Y
0 0
1 0
0 2
1 2

(c) CPU1: Visibility with
weak/relaxed ordering

Fig. 1: Observable effect of stores to different memory locations.
Given that X = 0,Y = 0, each row in Fig. 1c and Fig. 1b represents an observable
intermediary state for CPU1, when CPU0 executes the two stores from Fig. 1a.

The x86 architecture guarantees that stores are visible in a consistent order,
meaning that each processor observes stores from other processors in the same
order [5]. Additionally, every processor also performs stores in program order.
Therefore the case that Y is updated before X is impossible, as shown in Fig. 1b.
This ordering is transitive. Other processors observe stores that are causally
related in an order consistent with the causality relation. This total store ordering
(TSO) already fulfills the acquire-release relation for regular loads and stores;
thus, no stricter instructions are needed and emitted by the compiler if using the
corresponding atomic abstractions.

On the downside, the compiled code loses the information of which instructions
are expected to be acquire-release and which could also be relaxed. This missing
information makes it challenging to emulate x86 on systems with weaker memory



4 L. Wrenger et al.

ordering efficiently, as the optimal placement of fences is an undecidable problem
[15]. To provide correctness, x86 emulators (e.g., QEMU) basically insert a fence
after every memory instruction.

2.3 Weak Ordering on ARM

The ARM architecture, on the other hand, has a weak memory ordering model.
In the ARMv8 ISA, the concurrency has been revised: In contrast to ARMv7,
the architecture now has a multicopy-atomic model (MCA), guaranteeing that
modifications to a cache line are linearizable [6]. While this MCM is stricter than
the non-MCA ARMv7 model, implementors did not exploit the latter [31]. This
multicopy-atomicity guarantees a consistent order of updates to the same location.
However, in contrast to x86, stores to different locations are not required to be
visible consistently, meaning that every state in Fig. 1c can still be observed by
other processors (CPU1). Stronger ordering guarantees can only be enforced with
explicit fences or memory barriers (DMB, DSB) or load, store, compare-and-swap,
fetch-add and similar instructions with acquire-release semantic (LDAR, STLR,
LDADDAL, CASAL from ARM A64 [1]). Despite being named load-acquire (LDAR) and
store-release (STLR), these instructions actually fulfill the sequential-consistent
memory ordering if combined. Consequently, they are relatively slow, as discussed
in Sec. 4.2. Thus, ARMv8.3 introduced LDAPR, which allows reordering before STLR

to different locations [1]. Despite making acquire-release atomics more efficient,
LDAPR is still not used by most compilers for load-acquire (instead LDAR is emitted).
Recently, clang added support for LDAPR in C/C++ atomics in version 16 (March
2023), GCC in version 13 (April 2023), and for Rust, this is still only available
on the nightly channel.

In general, ARMs laxer memory model gives cores more freedom to reorder
instructions, potentially increasing the overall multicore performance for regular
(relaxed) instructions. The downside of this is the more complex programming
model. Developers have to explicitly synchronize memory accesses if their data
structures might rely on the order of writes. However, this might not be a
problem, as more and more programming languages have sufficient cross-platform
abstractions for atomics.

3 The Apple M1 Architecture

Apple has disclosed only limited information regarding their custom M1
chips [4,28]. Details on core counts, cache and memory sizes, theoretical mem-
ory bandwidth, and some performance characteristics have been made public.
However, there is no official information about the processor’s cache coherence,
load and store buffers, micro-operations, instruction schedulers, and execution
units. Insights into the microarchitecture stem primarily from reverse engineering
projects [24,7].

The M1 Ultra system on a chip (SoC) consists of two M1 Max chiplets
connected through an UltraFusion interconnect, having a reported bandwidth



TOSTING 5

M1 Max Chiplet: SLC (48 MiB?)

E-Cluster: L2 (4096 KiB)

L1d (64 KiB) L1d (64 KiB)

Core L#0

L1i (128 KiB)L1i (128 KiB)

Core L#1

P-Cluster: L2 (12 MiB)

L1d (128 KiB) L1d (128 KiB)

Core L#2

L1i (192 KiB)L1i (192 KiB)

Core L#3

L1d (128 KiB) L1d (128 KiB)

Core L#4

L1i (192 KiB)L1i (192 KiB)

Core L#5

P-Cluster: L2 (12 MiB)

L1d (128 KiB) L1d (128 KiB)

Core L#6

L1i (192 KiB)L1i (192 KiB)

Core L#7

L1d (128 KiB) L1d (128 KiB)

Core L#8

L1i (192 KiB)L1i (192 KiB)

Core L#9

M1 Max Chiplet: SLC (48 MiB?)

E-Cluster: L2 (4096 KiB)

L1d (64 KiB) L1d (64 KiB)

Core L#10

L1i (128 KiB)L1i (128 KiB)

Core L#11

P-Cluster: L2 (12 MiB)

L1d (128 KiB) L1d (128 KiB)

Core L#12

L1i (192 KiB)L1i (192 KiB)

Core L#13

L1d (128 KiB) L1d (128 KiB)

Core L#14

L1i (192 KiB)L1i (192 KiB)

Core L#15

P-Cluster: L2 (12 MiB)

L1d (128 KiB) L1d (128 KiB)

Core L#16

L1i (192 KiB)L1i (192 KiB)

Core L#17

L1d (128 KiB) L1d (128 KiB)

Core L#18

L1i (192 KiB)L1i (192 KiB)

Core L#19

UltraFusion

Fig. 2: Cache-Architecture of the M1 Apple Silicon Processor
The E-Clusters each contain two efficiency cores (codename “Icestorm”), while the

P-Clusters consist of four performance cores (codename “Firestorm”). Each core has L1
data and instruction caches and shares the L2 cache with the rest of the cluster.

of 2.5TB/s [4]. A schematic representation of the chiplets and core clusters
can be found in Fig. 2. The processor architecture has 16 performance cores
grouped in four clusters and four efficiency cores in two clusters. Each processor
encompasses separate L1 instruction (L1i) and L1 data (L1d) caches, while an L2
cache is associated with each cluster. Information about a shared last-level (or
system-level) cache has not been disclosed. Experimental data indicates that the
SLC sizes are 48MB for the M1 Max and potentially 96MB for the M1 Ultra [3].
However, these values were not corroborated by our benchmarks. It is also not
known if the two SLCs are separated or combined. Regarding cache-line size,
sysctl on macOS reports a value of 128 B, while getconf and the CTR_EL0 register
on Asahi Linux return 64 B, which is also supported by our measurements.

The M1 Ultra is not a conventional ARM processor. It incorporates custom
instructions, accelerators, and media units, along with a hardware implementation
for TSO, which can be enabled by setting the first bit of the general config register
(ACTLR_EL1) [7]. After that, normal memory accesses show the same memory
ordering behavior as under x86. Unfortunately, further details of this hardware
implementation and its limitations are not publically available.

4 Evaluation

Our test system is an Apple Mac Studio with an M1 Ultra SoC, 128GiB main
memory, and 1 TiB SSD. Our software stack is based on Asahi Linux 6.1.0, a Linux
port to Apple Silicon. The TSO memory ordering was toggled system-wide for all
cores using a kernel module [13] before executing the respective benchmark. The
SPEC benchmarks were compiled with GCC 12.1, and the synthetic benchmarks
with Rust 1.69.0.



6 L. Wrenger et al.

4.1 CPU Benchmarks

To evaluate TSO impact on the M1 Ultra, we choose to run the SPEC CPU 2017

benchmark package [11]. This package consists of 4 benchmark suites with 43
individual benchmarks. SPEC generally distinguishes between rate and speed
benchmarks, which use different metrics to calculate a system’s benchmark score.
While the former measures throughput of a system, the latter measures execution
time. A higher benchmark score for speed benchmarks means less time has been
spent on the system under test (SUT) (here, the M1 Ultra). Additionally, both
integrate integer and floating point benchmarks, where especially the floating
point benchmarks make use of heavy parallelism via OpenMP.

In this evaluation, we focus on the SPECspeed 2017 Floating Point suite since
the utilization of heavy parallelism results in many hardware threads accessing
shared memory concurrently, allowing us to evaluate different memory ordering
models properly. We utilize all CPU cores within the M1 Ultra, resulting in a total
of 20 threads in execution for every benchmark issued. The benchmarks run CPU-
and memory-intensive code such as 3D simulation, modeling of physical systems
and their behavior, as well as image manipulation. We execute three iterations
of the floating point benchmark suite and select the median of those iterations
as the documentation recommends. A final score is calculated by computing
the geometric mean of all selected medians of all benchmarks. While the suite
provides two benchmark tuning modes base and peak, we only show the peak
version that uses more platform-specific optimizations in this paper. However,
the base configuration exhibits similar trends. This whole suite is executed twice,
once for enabled TSO and once for disabled TSO. The benchmark code does not
contain any atomic operations, hence neither the compiler nor the hardware are
hinted to emit/execute such instructions. Therefore, the application binary code
is exactly the same for weak ordering (WO) and TSO.

The results are illustrated in Fig. 3, where the impact of different MCMs varies
across individual benchmarks. For instance, in the 649.fotonik3d_s benchmark,
WO achieves a score of 83.63, while TSO records a score of 83.27. Enabling
TSO does not affect this benchmark. In contrast, for the 644.nab_s benchmark,
WO scores 171.34, and TSO attains a significantly lower score of 137.43. In the
majority of benchmarks, the weak ordering native to the ARMv8 Apple Silicon
outperforms TSO. The geometric mean score for the TSO-disabled benchmarks
is 86.57, whereas the TSO-enabled benchmarks yield a geometric mean score of
78.83, translating to a 8.94 percent decrease in performance.

4.2 Synthetic Benchmarks

We devised two synthetic benchmarks to delve deeper into the performance
discrepancies observed in the SPECS benchmarks: (1) a store benchmark and
(2) a fetch-add benchmark. Both benchmarks employ a shared memory buffer
between two threads: a writer, responsible for updating the buffer, and a reader,
tasked with observing these updates. The benchmarks vary only in the instruction



TOSTING 7

0 100 200 300 400
Peak Score (higher is faster)

603.bwaves_s

607.cactuBSSN_s

619.lbm_s

621.wrf_s

627.cam4_s

628.pop2_s

638.imagick_s

644.nab_s

649.fotonik3d_s

654.roms_s

Geometric mean

B
en

ch
m

ar
k 

N
am

e
Ordering

WO
TSO

Fig. 3: SPECspeed 2017 Floating Point
Comparison of the parallel SPEC CPU benchmarks. Faster execution results in a

higher score.

utilized for buffer updates: The writer thread iterates through the buffer in 64-
byte (cache-line) steps, executing either stores or fetch-adds to increment the
numbers within the first 8 bytes of each element. Initially, all elements are zero,
and in the first iteration, they are all incremented to one, then in the second
iteration to two, and so forth. The store benchmark (1) uses a store operation
to write the current iteration to all elements, while the fetch-add benchmark
(2) uses this instruction to increment the previous values, resulting in the same
general behavior.

Concurrently, the reader iterates through the buffer, loading and comparing
pairs of adjacent elements. It observes and counts out-of-order updates where the
second element is smaller than the first, indicating that the update operations
were perceived in a different order from the writer’s execution. This phenomenon
only occurred under weak ordering; when TSO was enabled, no out-of-order
updates were detected. Apart from the shared buffer and a boolean utilized for
synchronizing the beginning and end of the measurement, the threads do not
access any shared data. They also do not synchronize between iterations; thus,
the reader usually finishes more iterations than the writer.

In these benchmarks, we counted the number of iterations each thread could
complete within one second. This value was then multiplied by the buffer length
to calculate the operations per second. The benchmarks were compiled with
relaxed (LDR and STR or LDADD) and acquire-release (LDAR and STLR or LDADDAL)
instructions. These exact same binaries were then executed with and without
TSO enabled. The reader and writer threads were pinned to different cores of
either the same cluster, sharing an L2 cache, a separate cluster on the same
chiplet, or different chiplets.

Regarding the store benchmark, Fig. 4 shows the number of parallel stores
(Fig. 4a) and loads (Fig. 4b) for varying buffer sizes. The horizontal lines indicate



8 L. Wrenger et al.

2
16

2
20

2
24

2
28

2
32

Buffer size in bytes

0.0

0.5

1.0

1.5

S
to

re
s 

/ s

1e9 Same Cluster

2
16

2
20

2
24

2
28

2
32

Buffer size in bytes

Different Cluster

2
16

2
20

2
24

2
28

2
32

Buffer size in bytes

Different Chiplet

WO Relaxed
WO AcqRel
TSO Relaxed
TSO AcqRel

(a) Store performance

2
16

2
20

2
24

2
28

2
32

Buffer size in bytes

0.0

0.5

1.0

1.5

Lo
ad

s 
/ s

1e9 Same Cluster

2
16

2
20

2
24

2
28

2
32

Buffer size in bytes

Different Cluster

2
16

2
20

2
24

2
28

2
32

Buffer size in bytes

Different Chiplet

WO Relaxed
WO AcqRel
TSO Relaxed
TSO AcqRel

(b) Load performance

Fig. 4: Concurrent store and load operations
The writer (top) and reader (bottom) threads were pinned to different cores of the
same cluster (left), separate clusters of the same chiplet (middle), and different chiplets
(right). The gray horizontal lines mark the cache sizes (L1 = 128KiB, L2 = 12MiB
and SLC = 96MiB).

the cache sizes (128KiB, 12MiB and 96MiB as described in Sec. 3). Our first
observation is that, for all benchmarks, enabling TSO does not impact the
performance of the acquire-release instructions. This outcome is to be expected, as
these acquire-release instructions employ an explicit and even stricter sequentially-
consistent memory ordering (Sec. 2.3), making them generally slower than weak
ordering and TSO.

Looking at the store performance of the first benchmark, we see that it is
pretty low for buffers that fit in the L1 cache, possibly due to cache invalidations
(Fig. 4a). Meanwhile, for buffers with sizes between the L1 and L2 cache, the
highest number of stores occurs on the same cluster. This performance drops
significantly on different clusters where the L2 cache is not shared. For buffers
larger than the L2 cache, the performance is similar regardless of the cores used.
The limits of the L1 and L2 cache sizes are clearly visible, while the SLC is not
so apparent. We only observe that the performance stops increasing for buffers
larger than 96 MiB (the SLC size).

The read performance, with TSO enabled, is faster for buffers smaller than the
L1 cache (Fig. 4b). This seems to be a pattern when comparing weak stores and
loads on small buffers: The lower the store performance is, the faster loads tend
to become. This inverse effect might be attributed to fewer cache invalidations, as
TSO writes are considerably slower. The performance counters, shown in Fig. 5,
support this observation: The number of load and store misses is higher on weak



TOSTING 9

10
7

10
8

10
9

10
10

Count

cycles

d_load_miss

d_store_miss

instructions

E
ve

nt

Ordering
WO
TSO

Fig. 5: Perf counters for the store benchmark
The benchmark was executed on the same cluster with a 216 bytes buffer. The events
were measured for both the writer and reader threads together.

ordering, where the number of writes is also significantly higher. For buffers
between the L1 and L2 cache sizes, the highest number of loads occurs on the
same cluster. The performance drop is not as significant for different clusters on
the same chiplet but is more pronounced between chiplets. Also, TSO loads are
slightly faster for L2-sized buffers on different clusters. For buffers larger than the
L2 cache, the performance is again very similar across different configurations.

2
16

2
20

2
24

2
28

2
32

Buffer size in bytes

0

2

4

6

8

Fe
tc

h-
ad

ds
 / 

s

1e8 Same Cluster

2
16

2
20

2
24

2
28

2
32

Buffer size in bytes

Different Cluster

2
16

2
20

2
24

2
28

2
32

Buffer size in bytes

Different Chiplet

WO Relaxed
WO AcqRel
TSO Relaxed
TSO AcqRel

(a) Fech-add performance

2
16

2
20

2
24

2
28

2
32

Buffer size in bytes

0.0

0.5

1.0

1.5

2.0

Lo
ad

s 
/ s

1e9 Same Cluster

2
16

2
20

2
24

2
28

2
32

Buffer size in bytes

Different Cluster

2
16

2
20

2
24

2
28

2
32

Buffer size in bytes

Different Chiplet

WO Relaxed
WO AcqRel
TSO Relaxed
TSO AcqRel

(b) Load performance

Fig. 6: Concurrent fetch-add and load operations

The second synthetic benchmark used fetch-adds (LDADD / LDADDAL) in the
writer thread to increment the buffer elements (Fig. 6). When comparing the
ldadd benchmark (Fig. 6a) with the store benchmark (Fig. 4a), we see that
fetch-adds are, at best, only half as fast as stores. Also enabling, TSO decreases



10 L. Wrenger et al.

the fetch-add performance to or even below the acquire-release instructions. This
differs from the previous benchmark, where the TSO stores were generally above
their acquire-release counterparts. Meanwhile, weakly-ordered fetch-adds are
almost twice as fast, especially for buffers between the L1 and L2 cache sizes
with the reader and writer on the same cluster. Again, the instructions are far
slower for L1-sized buffers and L2-sized buffers on different clusters. However,
this difference is even more pronounced compared to stores.

The load performance (Fig. 6b) also changed significantly from the store
benchmark. With TSO enabled, this time, the read performance is slower for
small buffers but faster for buffers between the L1 and L2 cache sizes on the
same cluster. On different clusters, TSO reads are now consistently slower than
weakly ordered ones. We again see that lower fetch-add performance generally
results in higher load performance.

In summary, our analysis of the store and ldadd benchmarks reveals several
performance nuances based on buffer sizes and the relationship between the reader
and writer threads. We see that stores and fetch-adds are generally and sometimes
drastically slower under TSO. With a few exceptions, the load performance also
seems to be faster on weak ordering.

5 Discussion

The measurable effects of different types of memory consistency models highly
depend on the access patterns of different actors of a shared memory system as
well as its cache hierarchy. Looking back at Sec. 4.1, we see that the impact of
different MCMs on the individual benchmark fluctuates. Without more detailed
information about the inner workings of the M1 architecture, its microarchi-
tecture, and cache hierarchy, we can only speculate on the reasons for these
performance variations: The primary performance advantage applications might
gain from running under weaker memory ordering models like WO is due to
greater instruction reordering capabilities. Therefore, the performance benefit
vanishes if the hardware architecture cannot sufficiently reorder the instructions
(e.g., due to data dependencies).

Furthermore, the synthetic benchmarks suggest that the performance dif-
ference highly depends on the size of the application’s working set and the
cores accessing the shared memory. The write (store, fetch-add) performance
is consistently higher on weak ordering. However, the load performance might
be faster under TSO when the corresponding write performance is very low,
and consequently, fewer cache invalidations happen. Fully understanding these
variations requires a more in-depth examination of the cache implementation.

Strict models like sequential consistency (SC) prohibit hardware from reorder-
ing instructions but make it easier for developers and compilers to reason about
parallel code. Or, from another perspective, the freedom of hardware reordering
instructions requires developers and compilers to thoroughly reason about the
order in which the emitted code is executed to ensure the program’s semantics
remain correct. In this setting, the novel feature of the Apple M1, where the



TOSTING 11

MCM is configurable at run time, provides interesting flexibility for software
developers and compilers.

6 Related Work

The field of memory consistency models has been under active research for a
couple of decades. With the emergence of multiprocessor systems, the sequentiality
properties of those systems needed to be properly formalized. In a seminal
paper from 1979, Lamport describes sequential consistency as the property of a
multiprocessor system to run all instructions of all processors in some sequential
order and that each processor strictly follows its program instruction order
[27]. Instruction reordering, however, can provide a considerable performance
benefit if the CPU can reschedule instructions to reach a higher cache hit rate.
Therefore, over the following years, many different other consistency models have
been established, such as WO [17], processor consistency (PC) [21], partial store
ordering (PSO), TSO, and many others. While most hardware commonly follows
a specific consistency model, there are a few systems in the wild next to the
M1 that allow toggling between different MCMs dynamically, during runtime
and in hardware. Notably, all architectures that include a SPARC v8 Reference
MMU implementation allow to switch between PSO and TSO during runtime by
toggling the PSO bit in the MMU control register of a specific processor [32]. The
key difference between SPARC systems and the M1 is that the latter can switch
to WO as an alternative MCM, which is more relaxed compared to PSO and
therefore allows further instruction reordering. With the new release of SPARC
v9, the successor to SPARC v8, a new in-hardware toggleable MCM has been
added: relaxed ordering (RO) [33]. RO under SPARC v9 is even closer to WO
on ARM compared to PSO, as it allows further instruction rescheduling. SPARC
v9 systems and ARM, however, provide different synchronization primitives
if instruction rescheduling needs to be prohibited. While the former provides
more coarse-grained, global synchronization primitives, ARM comes with smaller,
distinct shareability domains to limit the necessity of synchronization.

To investigate the performance impact of these consistency models, several
benchmarks have been conducted. Gharachorloo et al. [19] measured the effect
of different MCMs on a simulated Stanford DASH multiprocessor architecture.
Their results have shown that stricter ordering models performed significantly
worse than less strict models for architectures with blocking reads. A more recent
study by Naeem et al. [29] draws the same conclusion on network-on-chip (NOC)
based distributed shared memory multicore systems, improving their system
performance when transitioning from stricter to weaker memory consistency
models.

Moving from stricter to weaker models shifts the responsibility of sequentiality
from the hardware to the software and software toolchain. This inherently enforces
research on how to express program sequentiality as a developer and how to emit
appropriate instructions as a compiler. In the paper of Boehm et al. [16], the au-
thors describe a divergence between C/C++ being single-threaded programming



12 L. Wrenger et al.

languages while giving additional multithread support via an additional library.
Since the language itself does not provide intrinsic support for multithreaded
code, it is up to the libraries to offer synchronization primitives for concurrent
access to shared resources, such as a shared address space, that enforce a specific
order for particular instructions. Enforcing a specific order is achieved by properly
placing memory barriers, guaranteeing that certain load/store operations execute
before/after surrounding instructions. Shaked et al. [18] investigate the impact
of memory barriers on mixed-size memory accesses of different data widths.
Today’s processors commonly allow accessing memory at granularities of 1, 2, 4,
or 8 bytes. Placing barriers for mixed use of those granularities should enforce
the same ordering as for data accesses of equal width. This general assumption,
however, proves to be wrong for ARMv8 and POWER architectures, as the
authors’ evaluation clarifies. While placing a strong memory barrier between
every memory access of equal width for architectures implementing WO results
in a sequential-consistent behavior, this is not the case for mixed-size memory
accesses.

Other research regarding Apple’s M1 processors is sparse. [25] benchmarked
the M1 and M1 Ultra for high-performance scientific computing and compared
its GPU performance against two Nvidia-equipped servers, while [14] studied
their energy efficiency. ARM systems, in general, have been evaluated against
x86 systems on different, primarily HPC-based workloads [22,30,34]. Kodama
et al. [26] evaluated the performance of the ARM A64FX against a dual-socket
Xeon using the SPEC CPU and OMP benchmarks. Nevertheless, none of these
works focused specifically on memory-ordering differences.

7 Conclusion

The Apple M1 is the first processor that implements both, ARM’s weak memory
ordering and Intel’s TSO, as a software-configurable feature. This also makes it
possible for the first time to compare the performance impact of the different
memory models on real hard- and software.

In our results, we see a significant effect on the multicore performance when
comparing both models. Despite being more challenging to program for, the
weak model is generally faster: 8.94 percent on average running SPEC CPU and
more than twice as fast in some of our synthetic benchmarks. However, the lack
of knowledge about the internals of the M1 architecture makes it hard to fully
explain all effects of TSO on this SoC. Our results suggest that these are deeply
entangled with the caching hierarchy and memory access path. Nonetheless, we
think that this work is an essential step toward understanding the actual runtime
effects of the memory ordering models.



TOSTING 13

References

1. ARM Cortex-A Series – Programmer’s Guide for ARMv8-A. Arm Limited (mar
2015)

2. Apple announces Mac transition to Apple silicon (2020), https://nr.apple.com/
d2O2Y718J3 – accessed 2023-03-22

3. Apple’s m1 pro, m1 max socs investigated: New performance and
efficiency heights (2021), https://www.anandtech.com/show/17024/
apple-m1-max-performance-review – accessed 2023-03-23

4. Apple M1 Ultra (2022), https://www.apple.com/newsroom/2022/03/
apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
– accessed 2023-03-22

5. Intel 64 and IA-32 Architectures Software Developer’s Manual - Combined Volumes:
1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. Intel (2022), https://www.intel.com/
content/www/us/en/developer/articles/technical/intel-sdm.html – accessed 2023-
05-30

6. Learn the architecture – Memory Systems, Ordering, and Barriers. Arm Limited
(jun 2022), https://developer.arm.com/documentation/102336/0100 – accessed
2023-05-30

7. Asahi linux wiki (2023), https://github.com/AsahiLinux/docs/wiki – accessed
2023-03-23

8. C++ atomic operations library (2023), https://en.cppreference.com/w/cpp/atomic
– accessed 2023-03-26

9. Rosetta Translation Environment (2023), https://developer.apple.com/
documentation/apple-silicon/about-the-rosetta-translation-environment –
accessed 2023-03-22

10. Rust standard library – module std::sync::atomic (2023), https://doc.rust-lang.org/
std/sync/atomic/index.html – accessed 2023-03-26

11. SPEC CPU benchmark package (2023), https://www.spec.org/cpu2017/ – accessed
2023-03-27

12. The Standard Performance Evaluation Corporation (2023), https://www.spec.org/
– accessed 2023-03-22

13. Tsoenabler for linux (2023), https://github.com/cyyself/m1tso-linux – accessed
2023-03-26

14. Ali, Z., Tanveer, T., Aziz, S., Usman, M., Azam, A.: Reassessing the performance
of arm vs x86 with recent technological shift of apple. In: 2022 International
Conference on IT and Industrial Technologies (ICIT). pp. 01–06 (2022). https:
//doi.org/10.1109/ICIT56493.2022.9988933

15. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s decidable about
weak memory models? In: Seidl, H. (ed.) ESOP. pp. 26–46. Lecture Notes in
Computer Science, Springer-Verlag (2021)

16. Boehm, H.J., Adve, S.V.: Foundations of the c++ concurrency memory model. In:
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation. p. 68–78. PLDI ’08, Association for Computing Ma-
chinery, New York, NY, USA (2008). https://doi.org/10.1145/1375581.1375591,
https://doi.org/10.1145/1375581.1375591

17. Dubois, M., Scheurich, C., Briggs, F.: Memory access buffering in multiprocessors. In:
Proceedings of the 13th Annual International Symposium on Computer Architecture.
p. 434–442. ISCA ’86, IEEE Computer Society Press, Washington, DC, USA (1986)

https://nr.apple.com/d2O2Y718J3
https://nr.apple.com/d2O2Y718J3
https://www.anandtech.com/show/17024/apple-m1-max-performance-review
https://www.anandtech.com/show/17024/apple-m1-max-performance-review
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://developer.arm.com/documentation/102336/0100
https://github.com/AsahiLinux/docs/wiki
https://en.cppreference.com/w/cpp/atomic
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://doc.rust-lang.org/std/sync/atomic/index.html
https://doc.rust-lang.org/std/sync/atomic/index.html
https://www.spec.org/cpu2017/
https://www.spec.org/
https://github.com/cyyself/m1tso-linux
https://doi.org/10.1109/ICIT56493.2022.9988933
https://doi.org/10.1109/ICIT56493.2022.9988933
https://doi.org/10.1109/ICIT56493.2022.9988933
https://doi.org/10.1109/ICIT56493.2022.9988933
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/1375581.1375591


14 L. Wrenger et al.

18. Flur, S., Sarkar, S., Pulte, C., Nienhuis, K., Maranget, L., Gray, K.E., Sezgin, A.,
Batty, M., Sewell, P.: Mixed-size concurrency: Arm, power, c/c++11, and sc. In:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. p. 429–442. POPL ’17, Association for Computing Machinery, New
York, NY, USA (2017). https://doi.org/10.1145/3009837.3009839, https://doi.org/
10.1145/3009837.3009839

19. Gharachorloo, K., Gupta, A., Hennessy, J.: Performance evaluation of memory
consistency models for shared-memory multiprocessors. In: Proceedings of the
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. p. 245–257. ASPLOS IV, Association for Computing
Machinery, New York, NY, USA (1991). https://doi.org/10.1145/106972.106997,
https://doi.org/10.1145/106972.106997

20. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:
Memory consistency and event ordering in scalable shared-memory multiprocessors.
SIGARCH Comput. Archit. News 18(2SI), 15–26 (may 1990). https://doi.org/10.
1145/325096.325102, https://doi.org/10.1145/325096.325102

21. Goodman, J.R.: Cache consistency and sequential consistency (1991), http://digital.
library.wisc.edu/1793/59442 – accessed 2023-03-28

22. Gupta, N., Ashiwal, R., Brank, B., Peddoju, S.K., Pleiter, D.: Performance eval-
uation of parallex execution model on arm-based platforms. In: 2020 IEEE In-
ternational Conference on Cluster Computing (CLUSTER). pp. 567–575 (2020).
https://doi.org/10.1109/CLUSTER49012.2020.00080

23. Higham, L., Kawash, J., Verwaal, N.: Defining and comparing memory consistency
models (1997)

24. Johnson, D.: Apple M1 Microarchitecture Research (2023), https://dougallj.github.
io/applecpu/firestorm.html – accessed 2023-03-23

25. Kenyon, C., Capano, C.: Apple silicon performance in scientific computing. In: 2022
IEEE High Performance Extreme Computing Conference (HPEC). pp. 1–10 (2022).
https://doi.org/10.1109/HPEC55821.2022.9926315

26. Kodama, Y., Kondo, M., Sato, M.: Evaluation of spec cpu and spec omp on the
a64fx. In: 2021 IEEE International Conference on Cluster Computing (CLUSTER).
pp. 553–561 (2021). https://doi.org/10.1109/Cluster48925.2021.00088

27. Lamport: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Transactions on Computers C-28(9), 690–691 (1979).
https://doi.org/10.1109/TC.1979.1675439

28. Mattioli, M.: Meet the fam1ly. IEEE Micro 42(3), 78–84 (2022). https://doi.org/
10.1109/MM.2022.3169245

29. Naeem, A., Chen, X., Lu, Z., Jantsch, A.: Realization and performance comparison of
sequential and weak memory consistency models in network-on-chip based multi-core
systems. In: 16th Asia and South Pacific Design Automation Conference (ASP-DAC
2011). pp. 154–159 (2011). https://doi.org/10.1109/ASPDAC.2011.5722176

30. Ouro, P., Lopez-Novoa, U., Guest, M.F.: On the performance of a highly-scalable
computational fluid dynamics code on amd, arm and intel processor-based hpc
systems. Computer Physics Communications 269, 108105 (2021). https://doi.org/
https://doi.org/10.1016/j.cpc.2021.108105, https://www.sciencedirect.com/science/
article/pii/S0010465521002174

31. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying
arm concurrency: Multicopy-atomic axiomatic and operational models for armv8.
Proc. ACM Program. Lang. 2(POPL) (dec 2017). https://doi.org/10.1145/3158107,
https://doi.org/10.1145/3158107

https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1145/106972.106997
https://doi.org/10.1145/106972.106997
https://doi.org/10.1145/106972.106997
https://doi.org/10.1145/325096.325102
https://doi.org/10.1145/325096.325102
https://doi.org/10.1145/325096.325102
https://doi.org/10.1145/325096.325102
https://doi.org/10.1145/325096.325102
http://digital.library.wisc.edu/1793/59442
http://digital.library.wisc.edu/1793/59442
https://doi.org/10.1109/CLUSTER49012.2020.00080
https://doi.org/10.1109/CLUSTER49012.2020.00080
https://dougallj.github.io/applecpu/firestorm.html
https://dougallj.github.io/applecpu/firestorm.html
https://doi.org/10.1109/HPEC55821.2022.9926315
https://doi.org/10.1109/HPEC55821.2022.9926315
https://doi.org/10.1109/Cluster48925.2021.00088
https://doi.org/10.1109/Cluster48925.2021.00088
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/MM.2022.3169245
https://doi.org/10.1109/MM.2022.3169245
https://doi.org/10.1109/MM.2022.3169245
https://doi.org/10.1109/MM.2022.3169245
https://doi.org/10.1109/ASPDAC.2011.5722176
https://doi.org/10.1109/ASPDAC.2011.5722176
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108105
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108105
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108105
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108105
https://www.sciencedirect.com/science/article/pii/S0010465521002174
https://www.sciencedirect.com/science/article/pii/S0010465521002174
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107


TOSTING 15

32. SPARC International, Inc., C.: The SPARC Architecture Manual: Version 8.
Prentice-Hall, Inc., USA (1992)

33. SPARC International, Inc., C.: The SPARC Architecture Manual (Version 9).
Prentice-Hall, Inc., USA (1994)

34. Xia, J., Cheng, C., Zhou, X., Hu, Y., Chun, P.: Kunpeng 920: The first 7-nm
chiplet-based 64-core arm soc for cloud services. IEEE Micro 41(5), 67–75 (2021).
https://doi.org/10.1109/MM.2021.3085578

https://doi.org/10.1109/MM.2021.3085578
https://doi.org/10.1109/MM.2021.3085578

	TOSTING: Investigating Total Store Orderingon ARM

