
The New Costs of Physical Memory Fragmentation

Alexander Halbuer∗
Leibniz Universität Hannover

Illia Ostapyshyn
Leibniz Universität Hannover

Lukas Steiner
Rheinland-Pfälzische Technische
Universität Kaiserslautern-Landau

Lars Wrenger
Leibniz Universität Hannover

Matthias Jung
Universität Würzburg
and Fraunhofer IESE

Christian Dietrich
Technische Universität Braunschweig

Daniel Lohmann
Leibniz Universität Hannover

Abstract

External fragmentation is becoming a serious problem again
after paging temporarily solved it with its one-size-fits-all
4 KiB approach. The increasing adoption of mixed base, huge,
and giant page sizes, DRAM energy-saving techniques, and
memory disaggregation, necessitates amemorymanagement
system capable of handling larger entities in the range of
multiple megabytes up to several gigabytes.
A case study in Linux reveals that the operating system

reasonably minimizes fragmentation up to huge page size,
but falls short when it comes to larger granularities. There-
fore, it requires much effort to entirely free a memory block
for powering down or returning it to the memory provider;
in some cases, this may be entirely impossible due to immov-
able kernel memory.
Additionally, our analysis highlights that the page cache

is responsible for a large share of memory usage, as it keeps
all cached pages until memory pressure rises. This behav-
ior originates from the outdated assumption that utilizing
memory comes at no cost and, therefore, requires further
investigation.

CCS Concepts: • Hardware→ Power estimation and opti-
mization; Memory and dense storage; • Software and its

engineering→ Memory management.

Keywords: Operating Systems, Memory Management, Frag-
mentation, Physical Memory, Linux, Energy Savings, DRAM,
Distributed Memory
ACM Reference Format:

Alexander Halbuer, Illia Ostapyshyn, Lukas Steiner, Lars Wrenger,
Matthias Jung, Christian Dietrich, and Daniel Lohmann. 2024. The
New Costs of Physical Memory Fragmentation. In 2nd Workshop on
Disruptive Memory Systems (DIMES ’24), November 3, 2024, Austin,

∗Corresponding author (halbuer@sra.uni-hannover.de)

DIMES ’24, November 3, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 2nd Workshop on Disruptive Memory Systems (DIMES ’24), November 3,
2024, Austin, TX, USA, https://doi.org/10.1145/3698783.3699378.

TX, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3698783.3699378

1 Introduction

Since its introduction in ATLAS [10, 18], page-based memory
management has become the de facto standard for access,
sharing, and virtualization of main memory. Even access
to block-oriented storage (i.e., disk files) is implemented by
the kernel via means of memory objects [29] and the unified
page cache [5]. The 4 KiB page frame has become the de facto
entity for everything: user memory, kernel memory, page
cache, and IO buffers. The OS relies on it for virtualization
techniques, such as demand paging and COW [30], to hand
out memory as late as possible. Also, the uniform size allows
the page cache to expand into all gaps, aggressively utilizing
the remaining memory to speed up file accesses.

The underlying assumptions here are that “All page frames
are equal” and “Only used memory is good memory” (because
unused memory is basically a stranded asset [21]). These
assumptionswere fundamental to the elegance of the original
Mach memory model [29], whose ideas and concepts can still
be found in the memory subsystems of all modern operating
systems. However, on the hardware side, some things have
changed over the last 35 years:
Fragmentation is back While the immunity to exter-
nal fragmentation of the physical memory was one of the
original motivations for paging [3], its extension to simulta-
neously support multiple frame sizes to mitigate page-table
overhead and TLB pressure brought back the problem. The
OS now has to deal not only with 4 KiB base, but also with,
for example, 2MiB huge and 1GiB giant pages and has to
ensure that frames of all sizes are available.1 To further mit-
igate virtual-memory overhead in big-memory workloads
Basu et al. propose direct segments [2], one arbitrary large
page per address space, which would make external fragmen-
tation even worse. Moreover, given that some frames have to
be considered as non-movable or restricted regarding DMA
accessibility, framentation seems to be a notoriously hard

1Without loss of generality, we stick to the x86-64 page sizes within this
paper. Even if some architectures use different or support multiple base,
huge, and giant page sizes, the general fragmentation problem remains.

https://orcid.org/0009-0000-2873-8419
https://orcid.org/0009-0007-3057-1356
https://orcid.org/0000-0003-2677-6475
https://orcid.org/0009-0006-9583-6207
https://orcid.org/0000-0003-0036-2143
https://orcid.org/0000-0001-9258-0513
https://orcid.org/0000-0001-8224-4161
https://doi.org/10.1145/3698783.3699378
https://doi.org/10.1145/3698783.3699378
https://doi.org/10.1145/3698783.3699378


DIMES ’24, November 3, 2024, Austin, TX, USA Halbuer, Ostapyshyn, Steiner, Wrenger, Jung, Dietrich, and Lohmann

problem, as a large body of research around pooling and
placement strategies [6, 7, 9, 28] and (pro)active compaction
and reservation [19, 20, 26] shows.
The bottom line is that all page frames are not equal.
Using memory comes at a cost Utilizing free memory
no longer comes for free: The page cache is (as we show in
this paper) a major contributor to fragmentation, leading
to secondary costs regarding huge-page reclamation. Also,
due to the much improved access times and bandwidth of
modern SSDs, the benefit of caching is declining.
Besides contributing to physical-memory fragmentation,

aggressively using all memory also results in missed op-
portunities: DRAM already accounts for over 30 percent of
a racks power consumption [24], and the average utiliza-
tion in cloud environments is around 75 percent [33], so it
might be worthwhile to consider powering off the unused
memory. While current memory controllers provide only
limited possibilities in this respect, we expect this to become
more prevalent in the future. This is certainly true with the
emerging CXL [4] technology, which allows building dis-
aggregated memory pools [21], making physical memory
a redistributable commodity within a rack. For the cloud,
this creates the opportunity for much more flexible pricing
models, giving guest machines an incentive to return mem-
ory to the host [11, 12]. However, all this will be possible
only at much higher granularities than individual 4 KiB base
frames. And only a few occupied page frames may hinder the
shutdown of a DRAM bank or reassigning a memory area to
another server. For example, with CXL.mem the minimum
meaningful granularity is 64MiB as protections can not be
applied on a finer level, and due to the limited number of
shared memory regions per client the block size may be even
larger in practice [31]. The bottom line is that it actually can
(even economically) pay off to not use memory.

In this paper, we analyze and discuss the issue of physical
memory fragmentation in Linux, without questioning the
established paging memory-virtualization technique itself.
Instead, we approach the problem from a software perspec-
tive. We look at the causes and costs of fragmentation as well
as possible mitigations and benefits of reduced fragmenta-
tion. The underlying research is still at an early stage, so we
do not claim soundness nor completeness of our first results
and ideas, but instead want to foster the discussion.

2 Case Study: Fragmentation Patterns

To understand the current state of Linux, we conduct a case
study analyzing the physical-memory fragmentation and oc-
cupation. Our study aims to answer the following questions:
(1) How does Linux manage the physical memory space?
(2) How is physical memory fragmented at different granu-
larities? (3) How much can we improve fragmentation with
(limited) active memory compaction?

Test Setup We use a QEMU virtual machine (VM)
equipped with 16GiB of memory and 12 CPU cores run-
ning Debian 12 with Linux kernel version 6.1. This setup
allows us to pause execution, enabling accurate sampling of
memory usage. Also, the measurements do not interfere with
the benchmark execution because they run on the hypervisor
side and do not utilize memory inside the VM.
The additional abstraction layer may affect the timing

behavior compared to running directly on physical hard-
ware but does not alter the memory usage and allocation
as they depend on the application demands and the OS’s
allocation strategy, not the underlying machine. Notably,
in large cloud environments where savings and optimiza-
tions have the greatest impact, applications often run within
virtual machines. Due to nested paging, fragmentation can
be handled independently at both the VM and host levels.
Although more sophisticated techniques would be possible,
where memory management decisions within the VM could
directly benefit host-level fragmentation, these would come
at the expense of increased complexity.

While we assert that memory usage in virtual and physi-
cal machines should be comparable, this assumption needs
further investigation to confirm its validity.
Benchmark Scenario Simulating fragmentation is chal-
lenging, especially for long-running systems, as there is no
single representative workload [22]. Consequently, we do not
claim that our results, derived from a single application, are
universally applicable to other applications, and additional
research is necessary to get a holistic view.
We have chosen the build process of the Clang compiler

from the LLVM project as a suitable starting point for our
analysis. This workload involves frequent (de-)allocations
of anonymous application memory, as well as intense file
system usage resulting in high page cache activity.
To ensure reproducibility, we start the build on a freshly

booted system. After the build completes, we remove all
intermediate build files with make clean. Finally, we drop2
the page cache and other reclaimable kernel objects, such as
file-system metadata, to return to a clean system state [32].
Methodology During this scenario, we take snapshots of
the physical-memory state at five points in time:
(A) Right after boot of the virtual machine,
(B) during the build process, at about minute 5 of 30,
(C) when the build has finished,
(D) after running make clean,
(E) and after dropping the caches.
Using the kernel’s page frame descriptors (struct page), we
categorize all page frames into one of four classes:
• free (not allocated),
• immovable (kernel memory),
• movable (conventional application memory), and

2echo 3 > /proc/sys/vm/drop_caches



The New Costs of Physical Memory Fragmentation DIMES ’24, November 3, 2024, Austin, TX, USA

Snapshot free immovable movable droppable

(A)

After

boot

4 072 099 110 019 10 463 1 723
(97.09%) (2.62%) (0.25%) (0.04%)

(B)

Building

Clang

2 360 497 128 879 1 425 173 279 755
(56.28%) (3.07%) (33.98%) (6.67%)

(C)

Finished

build

2 454 473 171 111 10 516 1 558 204
(58.52%) (4.08%) (0.25%) (37.15%)

(D)

After

clean

3 914 103 132 176 10 516 137 509
(93.32%) (3.15%) (0.25%) (3.28%)

(E)

Dropped

caches

4 070 843 111 571 10 516 1 374
(97.06%) (2.66%) (0.25%) (0.03%)

Table 1. Number of page frames per type at each sample
point (4 194 304 page frames in total).

• droppable (page cache memory).
Although dirty droppable frames have to be written out
to disk before eviction, we do not further distinguish be-
tween dirty and clean pages as Linux’ automatic write-back
mechanism keeps the ratio of dirty frames low.

2.1 Physical-Memory Occupation

Tab. 1 shows the amount of different frame types for each
snapshot: Initially (A), nearly all memory is free on the
freshly booted system. This amount decreases during the
build process (B) where about one third of all memory is
application memory (movable). After the build (C), the num-
ber of free frames stays slightly above the previous level.
Most memory is used by the page cache (droppable) as
it keeps recently accessed file data in memory even if the
corresponding process has already exited. In contrast, the
number of movable frames nearly matches its initial value.
Removing the intermediate build files (D) releases most page
cache entries. The clean operation also releases 38 935 immov-
able page frames, which likely have been used for managing
the deleted files and their page cache entries. Dropping the
caches (E) almost brings the physical memory back to the ini-
tial state; at least from this summary perspective. However,
there are still some droppable frames left because they are
either dirty and, therefore, have not been dropped [32], or
they have been requested between the drop and the snapshot.
Allocation Patterns While the summary of (A) and (E)
are quite close, both actually differ significantly in their
physical-memory states. To approach this difference, we
first look at the distribution of frame types at the height of
the build process at (B). As we can see in Fig. 1, the used
memory is not as compact as it could be. The areas with used
memory contain many holes in the size of a single or up to
a few frames, as well as 2MiB naturally aligned clusters of
immovable memory. The latter are due to the Linux page
frame allocator’s policy of favoring 2MiB areas (pageblocks)
containing pages of the same type when allocating. On the

Figure 1. Visualization of the physical memory usage during
the build process (B): The range 1536-2048 is an 1GiB wide
memory hole on the evaluation system. The zoom magnifies
one cutout to show the distribution on page-frame level.

other hand, movable and droppable frames are completely
mixed.

2.2 Memory Fragmentation

With the premise that DRAM can be turned off at many
different granularities (Sec. 3.2), we quantify the memory
fragmentation of our physical-memory states using various
block sizes: Starting with the smallest possible block size
of 4 KiB, which is a single page frame, we double the block
size repeatedly. This process continues up to a size of 8 GiB,
which is half of the available memory. If a (naturally-aligned)
block only contains free memory, the whole block accounts
as usable (for the current block size), otherwise it counts as
unusable. In Fig. 2, the red baseline shows the free blocks
for different sizes at all five sample points. By comparing
the 4KiB data point with the following decline, we get an
impression of the memory state: the later the curve declines,
the lesser is the fragmentation.
Active Memory Compaction Next, we want to quantify
how much better the fragmentation could get if we would
perform active memory compaction. As compaction is costly,
an OS only performs it incrementally and with a limited
budget of dropped and moved frames. For example, Linux
triggers such a compaction only under memory pressure,
assuming that “all pages are equal”. To capture this, we de-
fine a cost function as the number of touched page frames:
#DROPs+2×#MOVEs. Because moving a page is more costly
and touches two page frames (source and destination), we
make it twice as costly as dropping a frame from the page
cache.
On each recorded state and targeted at a specific block

size, we virtually perform compaction: From the block with
the least costs to free, we drop all frames or move them to
the block with the highest costs that still can accommodate
it. We repeat this iteratively until the budget runs out. This
algorithm is optimal and results in the highest reduction in
fragmentation for a given budget and block size.



DIMES ’24, November 3, 2024, Austin, TX, USA Halbuer, Ostapyshyn, Steiner, Wrenger, Jung, Dietrich, and Lohmann

Figure 2. Potential memory savings in a compilation scenario for different block sizes with the number of touched page frames
(drop: 1x, move: 2x) as cost function for active compaction. The black line marks the achievable maximum, the dotted blue line
the theoretical optimum (if we could move immovable frames).

In Fig. 2, we look at the fragmentation after compacting
with three different budgets:With an unlimited budget (black
solid), we can drop or move all movable and droppable
frames resulting in the upper limit that active compaction
can reach in Linux. The dashed lines show the fragmentation
if we compact with a budget of touching up to 2, respectively,
10 percent of all physical memory.We consider this a realistic
budget for limited active defragmentation that would not
disrupt user applications. The blue dotted line shows the
theoretical optimum if we were able to move immovable
frames.

Initially (A), the baseline and the achievable maximum are
nearly overlapping for all block sizes, indicating that active
compaction is not required as there is no fragmentation.
During the build process (B), the theoretical optimum

decreases as there is non-droppable application memory
(Tab. 1). For medium block sizes (2MiB – 16MiB) the baseline
of free blocks falls to 32 percent and the achievable average
improvement is quite lowwith 3.7 (12.7) percent of additional
free blocks for 2 (10) percent of all frames touched. This is
to be expected as anonymous memory requires expensive
migration.

After the build process (C) the system is in idle state, but
the baseline is similar to the previous snapshot. On the other
hand, the theoretical optimum returns to above 90 percent
for low and medium block sizes. Also, the achievable gain
increases to 6.8 percent (23.1%) of additional free blocks for
medium block sizes, because most memory is now used by
droppable page cache frames.
Executing clean (D) significantly improves the baseline

for small block sizes but barely affects medium and high
block sizes. The maximum and theoretical optimum lines
are marginally higher, but now the 10-percent line matches
the achievable maximum and even the 2-percent line is very
close. As deleting the intermediate files also removes the

related page cache entries the physical memory now is only
sparsely used. Due to the scattered distribution of non-free
page frames only low effort is required to reclaim the sparsely
filled blocks.
The final cache drop (E) nearly empties the page cache

completely and thereby drastically improves the baseline for
medium page sizes. Even less effort is required to reclaim
the remaining blocks so that also the 2-percent line matches
the achievable maximum. Important to note is, that even
if the quantitative view (Tab. 1) indicates (A) and (E) being
mostly equal, the physical-memory state does not return to
its initial unfragmented state.
Immovable Kernel Memory In Linux, compaction has
to leave immovable memory in place, also limiting the maxi-
mal effectiveness of the approach. Therefore, we finally look
at the theoretical optimum (Fig. 2, dotted line) if all mem-
ory pages were movable and we compact with an unlimited
budget, resulting in a maximal compact physical-memory
occupation. From the gap to the maximal achievable num-
ber of free blocks (solid black), we can see that even a low
number of immovable pages (see Tab. 1) has a significant
effect on fragmentation for large block sizes.

2.3 Discussion

The cases study confirms our claims that a modern operating
system, like Linux, is based on the design principle that free
memory is wasted memory. The cached file data remains in
main memory after the build process, until it is explicitly
dropped or forced out by new allocations causing memory
pressure. As one would expect, the share of free blocks re-
duces with an increasing block size because a single page
frame is enough to render a block unusable.

With limited effort (2% or 10% of all page frames touched)
it is possible to reduce fragmentation considerably. The ac-
tual improvement depends on the system state and the block



The New Costs of Physical Memory Fragmentation DIMES ’24, November 3, 2024, Austin, TX, USA

Power Saving Mode Granularity Power Saving [mW/GiB] Add. Latency Data Retention

1. Full Power Off Channel (64GiB) 82.8 (100%) > 25ms no
2. Self-Refresh [14] Channel (64GiB) 0.53 (0.6%) 640 ns yes
3. MPSM Deep Power Down [14] Channel (64GiB) 22.95 (27.7%) 640 ns no
4. MPSM Power Down [14] Rank (16GiB) 15.79 (19.1%) 21.5 ns no
5. Power Down [14] Rank (16GiB) 14.6 (17.6%) 7.5 ns yes
6. Partial Array Self-Refresh (PASR) [13] 1/8 Rank (2GiB) 0.53 - 22.95 (0.6% - 27.7%) 640 ns no
7. Partial Array Refresh Control (PARC) [13] 1/8 Rank (2GiB) 0 - 9.19 (0% - 11.1%) 14 ns no
8. Row-Granular Refresh [25] Row (8 KiB) 0 - 9.19 (0% - 11.1%) 0 no

Table 2. Potential power savings estimated with the equations of DRAMPower [17].

size, where larger blocks are harder to reclaim. Generally,
active defragmentation techniques should be the last option
as they induce overhead and can degrade application perfor-
mance [23]. Passive allocation and page cache policies could
be more effective and could further reduce the residual work
for active techniques.

3 Costs of Fragmentation

Fragmentation incurs primarily indirect costs, from execu-
tion time to energy consumption. In this section, we provide
a brief overview of the implications of fragmentation in three
areas that are already problematic, or we expect to become
challenging in the future.

3.1 Availability of Huge Pages

The observation that the TLB reach can be significantly ex-
tended through the use of huge pages [8] led to the introduc-
tion of Transparent Huge Pages (THP) in Linux 2.6.38 [15].
This optimization eagerly maps huge pages instead of base
pages and periodically promotes pages with a background
task. However, the effectiveness and performance gains of
THP highly depend on the availability of huge pages, directly
reflecting physical memory fragmentation [28]. Notably, the
costs associated with active memory compaction may signifi-
cantly outweigh any potential performance benefits [23, 27].

3.2 Energy Consumption

DRAM power consumption could be reduced if the memory
is not fully occupied or not accessed for an extended period of
time. Current DRAM standards offer several energy saving
modes, that either turn off refresh for unused regions or
disable unnecessary logic during idle intervals.

To estimate potential savings, we consider a specific DDR5
configuration, where we apply different existing or conceptu-
ally adapted (from another DRAM technology) power saving
modes. Foundation of our survey is the Micron MT60B4G4
2GiB DDR5 device. The complete DRAM subsystem consists
of eight memory channels, providing a total storage capacity
of 512GiB (64GiB per channel). Each channel is composed of
four 16GiB ranks, comprising eight MT60B4G4 chips each.
We assume 32 banks and 65 536 rows per bank, resulting in
a typical 8 KiB row figure.

Table 2 presents the potential power savings in different
modes for an idle DRAM subsystem, with a conventionally,
cyclically refreshed system as baseline. The table also spec-
ifies the granularity of each mode, the additional latency
required to return to normal operation, and whether each
mode retains data. It should be noted that the operating cur-
rents listed in the datasheet are specified for worst-case con-
ditions (manufacturing process, temperature, and voltage).
In practice, measured currents can be significantly lower,
which may affect the results presented here. On the other
hand, our analysis does not account for secondary energy
savings that arise from reduced power supply losses and
lower cooling requirements. For more accurate estimations
of achievable savings in real-world settings, measurements
of physical hardware would be necessary.
As ranks are addressed independently, all per-device

power-saving techniques theoretically could be applied at
the rank granularity. However, some techniques (1–3) disable
on-die termination (ODT) and thereby violate impedance
matching for the whole channel, making them incompati-
ble with high data rates when applied to a single rank. For
instance, completely powering off (1) an unused memory
channel (64GiB) saves 5.3W or 82.8mW/GiB. On the finer
granularity, switching a rank (16GiB) into Power Down (5)
mode saves 233.65mW or 14.6mW/GiB. Here, the data could
be retained by periodically interrupting the power down
mode and issuing a refresh command.
In the Self-Refresh (2) mode the data is retained by an

internal refresh mechanism, but no memory accesses are
possible. PASR (6) introduces a mask register to disable data
retention for 1/8 rank segments (2 GiB) during Self-Refresh,
enabling potential energy savings of up to 22.95mW/GiB.
The LPDDR5 standard introduces PARC (7), adopting the
PASR segment mask for refresh control during normal op-
eration. With PARC, in contrast to PASR, the memory in
unmasked segments can be accessed normally.
Mathew M. et al. (8) bring the granularity to the level

of OS paging by disabling refresh and issuing activation
commands on used rows manually [25]. They optimize the
mechanism by relaxing DRAM timing requirements and
observe better energy efficiency than during conventional



DIMES ’24, November 3, 2024, Austin, TX, USA Halbuer, Ostapyshyn, Steiner, Wrenger, Jung, Dietrich, and Lohmann

1 8 32 128 512 2048

0.01

0.1

1

10

Instance Memory [GiB]

Pr
ice

 p
er

 H
ou

r [
$]

On Demand

#CPU
2

4

8

16

32

64

96

(a) Varying Instance Memory

1 2 4 8 16 32 64 128

0.01

0.1

1

10

#vCPUs

On Demand

Mem [GiB]
8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

(b) Varying CPU Count

Figure 3. Price of Amazon AWS EC2 Instances. Dots are
all instance types. The lines denote the cheapest type for a
CPU/memory combiantion.

full refresh. However, the success of this technique may vary
from device to device.
Although these values may appear minor compared to

the total power consumption of a server system, they can
accumulate to substantial savings when scaled up to an entire
rack or data center. Moreover, this analysis underlines the
importance of performing physical memory management at
much larger granularities than huge page size.

3.3 Cloud Memory Pricing

Due to economies of scale, cloud computing is probably the
area where uni- and bilateral memory reclamation has the
highest potential for economic impact. Currently, providers
offer CPU and memory only as a composite good (virtual
machine), limiting the efficiency and price transparency of
the cloud market. Still, by looking at current offerings, we
can estimate whether memory or CPU is the more scarce
resource.

We take the price matrix for all on-demand Amazons AWS
EC2 instance types (2024/08/07, all regions) without distin-
guishing between different CPU or memory types, and com-
pare the per-hour cost with the included resources (dots in
Fig. 3). For each CPU/memory combination, we select the
cheapest instance type and draw iso-resource lines (lines in
Fig. 3). Please note the double-logarithmic scale that we use
to cover a large range of the matrix.

First, we see that cloud providers do not offer the full range
of VM types. You simply cannot rent a 2 vCPU machine
with 2048 GiB of DRAM, even if this would make sense for
a low-latency caching service. Second, doubling instance
memory results in a consistent price jump (see Fig. 3a), while
doubling the CPU count of machines with large memories
has diminishing effect. Fig. 3a even reveals pricing anomalies
where increasing the CPU count results in a lower price (e.g.,
32 vs. 64 vCPUs at 1024 GiB). Memory seems to be the more
scarce resource.

We believe that cloud providers will start to offer discounts
for customers that are (1) able and (2) willing to give back
memory as soon as redistribution is technologically viable
(via CXL [4]). In this future, the system software has to (1)
better manage physical-memory fragmentation and (2) to
assure that the utility of using memory outweighs its cost.
Page cache pages need to have a per-hour price tag.

4 Towards Less Fragmentation

Based on the results from the case study, we identified the
following causes for fragmentation in Linux especially for
large block sizes.

4.1 Page-Frame Allocation

The kernel’s page-frame allocator is our first citizen, as it ulti-
mately decides which memory to hand out. While the Linux
buddy allocator is mostly successful in grouping immovable
page frames within 2MiB areas [8, 28], it has also shown an
unfortunate tendency to scatter all other allocations across
the available memory (Sec. 2.2). The latter is mostly caused
by core-local frame caches, which significantly reduce con-
tention on the allocator lock, but lead to blindness regarding
the global allocation and fragmentation state [34]. Also, the
maximum block size of the buddy allocator is 4MiB, which
is not enough for most DRAM power saving techniques
(Tab. 2).

Alternative allocator designs [34] have demonstrated
much better scalability and fragmentation avoidance. Fur-
thermore, the lock-free access to the global allocation state
makes them more accessible for active defragmentation, as
the respective algorithms can efficiently search for almost-
free blocks of higher granularities.

4.2 Movable Kernel Design

Additionally, reducing the number of immovable allocations
would be highly advantageous. This could be achieved by
making (most) kernel allocations movable. If the kernel
would not be designed around an identity mapping, allo-
cations could be moved and remapped, similar to user space.
However, DMA buffers are more challenging. Although they
can be remapped via the IOMMU, the handling of page faults
(needed by active compaction mechanisms) is not yet sup-
ported by all devices and TLB invalidations are even more
expensive on an IOMMU compared to the MMU [1].
Nevertheless, a kernel design in which only some DMA

buffers need to be immovable would already be a big step
forward.

4.3 Clever File Caching

The page cache is a major contributor to both, memory usage
and fragmentation. Given that unused memory is no longer
wasted and employing it for caching comes at a cost, we



The New Costs of Physical Memory Fragmentation DIMES ’24, November 3, 2024, Austin, TX, USA

should find a balance between costs and benefits of a page
to being held in the cache.
For user-memory, the idea of a cost-benefit model is not

new: Mansi et al. employ a system-specific cost model and
an application-specific benefit profile to weight up memory-
management decision, like huge page promotion, with the
goal of improving page-fault tail latency and end-to-end per-
formance [23]. They use units of time for their quantification
of costs and benefits. Energy and memory usage fees would
add other dimensions to the optimization problem, which
may be contrary to performance.

However, the page cache is fundamentally different in that
it is (a) a global resource, which means that cache entries
are currently not accountable onto individual tenants, and
(b) the actual costs and benefits are much more dynamic,
depending on the overall system state.

On the cost side, we expect having quantifiable costs per
memory block of a given size. These costs may be uniformly
distributed among the used frames within each block. The
last frame that prevents an entire block from becoming free
incurs a higher cost compared to a frame residing in an
almost-full memory block. The cost model could have multi-
ple granularity levels. For instance, these could be huge and
giant page sizes, where a free giant page is more valuable
than a free huge page, or technical levels regarding possible
energy reductions, such as rows, ranks, or even an entire CXL
memory node. Costs may also be dynamic, influenced by pa-
rameters such as memory pressure on the (guest) system, the
availability of huge/giant pages, the current electricity price
or current memory usage fees in a cloud environment. If we
could integrate all these aspects into a single cost metric, we
could begin to weigh a page’s costs against its benefits.

The primary advantage of caching a page is the time saved
on subsequent accesses. This benefit depends on two fac-
tors: access frequency and secondary storage latency. The
currently employed LRU/second chance algorithms already
weight by access frequency. Similarly, data stored on remote
servers or HDDs would benefit more from caching than data
stored on local SSDs [35]. For fast and directly accessible
storage, using the page cache may not pay off at all [16].
Quantified costs and benefits would provide for an in-

formed decision-making. Ultimately, they require, however,
additional per-frame metadata that needs to be efficiently
stored and managed. This is a topic of further research.

5 Conclusion

Current Linux memory management tends to fragmentation
when considering blocks larger than huge pages and utilizes
nearly all unused memory to cache file data. Historically,
there has been little incentive to mitigate such fragmentation
or drop cached data prematurely. However, we anticipate a
shift in this paradigm with the increasing adoption of giant

pages, new power-saving features, and flexible cloud storage
pricing models.

Hurdles towards a better fragmentation avoidance are the
allocator design, unmovable kernel memory and the page
cache. While possible solutions for the first two points exist,
the latter has – as far as we know – not been thoroughly
studied in this regard.
We propose future research looking at a cost-aware re-

design of the page cache that does not hold unconditionally
all elements forever until they are forced out bymemory pres-
sure. Quantified costs and benefits would enable informed
decision-making for both memory management and page
cache policies.

Acknowledgments

We thank our reviewers for their valuable feedback. This
work was partly supported by the German Research Foun-
dation (DFG) under grant no. 501887536.

References

[1] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. 2012. IOMMU:
Strategies for Mitigating the IOTLB Bottleneck. In Computer Architec-
ture, Ana Lucia Varbanescu, Anca Molnos, and Rob van Nieuwpoort
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 256–274.

[2] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and
Michael M. Swift. 2013. Efficient virtual memory for big memory
servers. SIGARCH Comput. Archit. News 41, 3 (jun 2013), 237–248.
https://doi.org/10.1145/2508148.2485943

[3] A. Bensoussan, C. T. Clingen, and R. C. Daley. 1969. TheMultics Virtual
Memory. In Proceedings of the 2nd ACM Symposium on Operating
Systems Principles (SOSP ’69). ACM Press, New York, NY, USA, 30–42.
https://doi.org/10.1145/961053.961069

[4] Compute Express Link Consortium, Inc. 2020. CXL Specification, Revi-
sion 2.0.

[5] Robert A. Gingell, J. Moran, and William Shannon. 1987. Virtual
Memory Architecture in SunOS. In Proceedings of Summer ’87 USENIX
Conference.

[6] Mel Gorman. 2007. The performance and behaviour of the anti-
fragmentation related patches. Linux Kernel Mailing List. https:
//lkml.org/lkml/2007/3/1/92 https://lkml.org/lkml/2007/3/1/92.

[7] Mel Gorman and Patrick Healy. 2008. Supporting superpage alloca-
tion without additional hardware support. In Proceedings of the 7th
international symposium on Memory management - ISMM ’08. ACM
Press, Tucson, AZ, USA, 41. https://doi.org/10.1145/1375634.1375641

[8] Mel Gorman and Patrick Healy. 2012. Performance characteristics
of explicit superpage support. In Computer Architecture: ISCA 2010
International Workshops A4MMC, AMAS-BT, EAMA, WEED, WIOSCA,
Saint-Malo, France, June 19-23, 2010, Revised Selected Papers 37. Springer,
293–310.

[9] Mel Gorman and Andy Whitcroft. 2006. The What, The Why and the
Where To of Anti-Fragmentation. In Proceedings of the Linux Sympo-
sium, Vol. Volume 1. Ottawa, Ontario, Canada, 370–384.

[10] Fritz Rudolf Güntsch. 1957. Logischer Entwurf eines digitalen
Rechengerätes mit mehreren asynchron laufenden Trommeln und
automatischem Schnellspeicherbetrieb.

https://doi.org/10.1145/2508148.2485943
https://doi.org/10.1145/961053.961069
https://lkml.org/lkml/2007/3/1/92
https://lkml.org/lkml/2007/3/1/92
https://lkml.org/lkml/2007/3/1/92
https://doi.org/10.1145/1375634.1375641


DIMES ’24, November 3, 2024, Austin, TX, USA Halbuer, Ostapyshyn, Steiner, Wrenger, Jung, Dietrich, and Lohmann

[11] David Hildenbrand and Martin Schulz. 2021. virtio-mem: paravir-
tualized memory hot(un)plug. In Proceedings of the 17th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (Virtual, USA) (VEE 2021). Association for Computing Ma-
chinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3453933.
3454010

[12] Jingyuan Hu, Xiaokuang Bai, Sai Sha, Yingwei Luo, Xiaolin Wang,
and Zhenlin Wang. 2018. HUB: hugepage ballooning in kernel-
based virtual machines. In Proceedings of the International Sympo-
sium on Memory Systems (Alexandria, Virginia, USA) (MEMSYS ’18).
Association for Computing Machinery, New York, NY, USA, 31–37.
https://doi.org/10.1145/3240302.3240420

[13] JEDEC 2023. Low Power Double Data Rate (LPDDR) 5/5X. JEDEC.
[14] JEDEC 2024. DDR5 SDRAM. JEDEC.
[15] Jonathan Corbet. 2011. Transparent huge pages in 2.6.38. https:

//lwn.net/Articles/423584/ Accessed: 2024-08-07.
[16] Jonathan Corbet. 2017. The future of the page cache. https://lwn.net/

Articles/712467/ Accessed: 2024-08-08.
[17] Matthias Jung, Deepak M. Mathew, Éder F. Zulian, Christian Weis,

and Norbert Wehn. 2016. A New Bank Sensitive DRAMPower Model
for Efficient Design Space Exploration. In International Workshop on
Power And Timing Modeling, Optimization and Simulation (PATMOS
2016).

[18] T. Kilburn, D.B.G. Edwards, M.J. Lanigan, and F.H. Sumner. 1962. One-
Level Storage System. IRE Transactions on Electronic Computers EC-11,
2 (April 1962), 223–235. https://doi.org/10.1109/TEC.1962.5219356

[19] Sang-Hoon Kim, Sejun Kwon, Jin-Soo Kim, and Jinkyu Jeong. 2015.
Controlling PhysicalMemory Fragmentation inMobile Systems. In Pro-
ceedings of the 2015 International Symposium on Memory Management
(ISMM ’15) (Portland, OR, USA). Association for ComputingMachinery,
New York, NY, USA, 1–14. https://doi.org/10.1145/2754169.2754179

[20] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,
and Emmett Witchel. 2016. Coordinated and Efficient Huge Page
Management with Ingens. In 12th Symposium on Operating Systems
Design and Implementation (OSDI ’16) (Savannah, GA, USA). USENIX
Association, USA, 705–721.

[21] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bian-
chini. 2023. Pond: CXL-Based Memory Pooling Systems for Cloud
Platforms. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS ’23), Volume 2 (Vancouver, BC, Canada). As-
sociation for Computing Machinery, New York, NY, USA, 574–587.
https://doi.org/10.1145/3575693.3578835

[22] Mark Mansi and Michael M. Swift. 2024. Characterizing Physical
Memory Fragmentation. arXiv:2401.03523 [cs.OS] https://arxiv.org/
abs/2401.03523

[23] Mark Mansi, Bijan Tabatabai, and Michael M. Swift. 2022. CBMM:
Financial Advice for Kernel MemoryManagers. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22). USENIX Association, Carlsbad,
CA, 593–608. https://www.usenix.org/conference/atc22/presentation/
mansi

[24] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent
Page Placement for CXL-Enabled Tiered-Memory. In Proceedings of
the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’23), Volume 3
(Vancouver, BC, Canada). Association for Computing Machinery, New
York, NY, USA, 742–755. https://doi.org/10.1145/3582016.3582063

[25] Deepak Mathew M., Matthias Jung, Christian Weis, and Norbert Wehn.
2017. Using Runtime Reverse Engineering to Optimize DRAMRefresh.

[26] Juan Navarro, Sitaram Iyer, and Alan Cox. 2002. Practical, Trans-
parent Operating System Support for Superpages. In 5th Symposium
on Operating Systems Design and Implementation (OSDI ’02). USENIX
Association, Boston, MA.

[27] Ashish Panwar, Naman Patel, and K. Gopinath. 2016. A Case for
Protecting Huge Pages from the Kernel. In Proceedings of the 7th ACM
SIGOPS Asia-Pacific Workshop on Systems (Hong Kong, Hong Kong)
(APSys ’16). Association for Computing Machinery, New York, NY,
USA, Article 15, 8 pages. https://doi.org/10.1145/2967360.2967371

[28] Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge
Pages Actually Useful. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (Williamsburg, VA, USA) (ASPLOS ’18). Association
for Computing Machinery, New York, NY, USA, 679–692. https://doi.
org/10.1145/3173162.3173203

[29] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert
Baron, David Black, William Bolosky, and Jonathan Chew. 1987.
Machine-Independent Virtual Memory Management for Paged Unipro-
cessor and Multiprocessor Architectures. In Proceedings of the Second
International Conference on Architectual Support for Programming Lan-
guages and Operating Systems (ASPLOS ’87) (Palo Alto, California, USA)
(ASPLOS ’87). IEEE Computer Society Press, Washington, DC, USA,
31–39. https://doi.org/10.1145/36206.36181

[30] Richard F. Rashid and George G. Robertson. 1981. Accent: A Commu-
nication Oriented Network Operating System Kernel. In Proceedings
of the 8th ACM Symposium on Operating Systems Principles (SOSP
’81). ACM Press, New York, NY, USA, 64–75. https://doi.org/10.1145/
800216.806593

[31] Samuel W. Stark, A. Theodore Markettos, and Simon W. Moore. 2023.
How Flexible is CXL’s Memory Protection? Replacing a sledgehammer
with a scalpel. Queue 21, 3 (July 2023), 54–64. https://doi.org/10.1145/
3606014

[32] The kernel development community. 2008. Documentation for
/proc/sys/vm/ - The Linux Kernel documentation. https://www.kernel.
org/doc/html/latest/admin-guide/sysctl/vm.html Accessed: 2024-08-
06.

[33] Yaohui Wang, Ben Luo, and Yibin Shen. 2023. Efficient Memory Over-
commitment for I/O Passthrough Enabled VMs via Fine-grained Page
Meta-data Management. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23). USENIX Association, Boston, MA, 769–783. https:
//www.usenix.org/conference/atc23/presentation/wang-yaohui

[34] Lars Wrenger, Florian Rommel, Alexander Halbuer, Christian Dietrich,
and Daniel Lohmann. 2023. LLFree: Scalable and Optionally-Persistent
Page-Frame Allocation. In 2023 USENIX Annual Technical Conference
(USENIX ’23). USENIX Association, Boston, MA, 897–914. https://
www.usenix.org/conference/atc23/presentation/wrenger

[35] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu
Awasthi, Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. 2015.
Performance analysis of NVMe SSDs and their implication on real
world databases. In Proceedings of the 8th ACM International Systems
and Storage Conference (Haifa, Israel) (SYSTOR ’15). Association for
Computing Machinery, New York, NY, USA, Article 6, 11 pages. https:
//doi.org/10.1145/2757667.2757684

https://doi.org/10.1145/3453933.3454010
https://doi.org/10.1145/3453933.3454010
https://doi.org/10.1145/3240302.3240420
https://lwn.net/Articles/423584/
https://lwn.net/Articles/423584/
https://lwn.net/Articles/712467/
https://lwn.net/Articles/712467/
https://doi.org/10.1109/TEC.1962.5219356
https://doi.org/10.1145/2754169.2754179
https://doi.org/10.1145/3575693.3578835
https://arxiv.org/abs/2401.03523
https://arxiv.org/abs/2401.03523
https://arxiv.org/abs/2401.03523
https://www.usenix.org/conference/atc22/presentation/mansi
https://www.usenix.org/conference/atc22/presentation/mansi
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1145/2967360.2967371
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/36206.36181
https://doi.org/10.1145/800216.806593
https://doi.org/10.1145/800216.806593
https://doi.org/10.1145/3606014
https://doi.org/10.1145/3606014
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/vm.html
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/vm.html
https://www.usenix.org/conference/atc23/presentation/wang-yaohui
https://www.usenix.org/conference/atc23/presentation/wang-yaohui
https://www.usenix.org/conference/atc23/presentation/wrenger
https://www.usenix.org/conference/atc23/presentation/wrenger
https://doi.org/10.1145/2757667.2757684
https://doi.org/10.1145/2757667.2757684

	Abstract
	1 Introduction
	2 Case Study: Fragmentation Patterns
	2.1 Physical-Memory Occupation
	2.2 Memory Fragmentation
	2.3 Discussion

	3 Costs of Fragmentation
	3.1 Availability of Huge Pages
	3.2 Energy Consumption
	3.3 Cloud Memory Pricing

	4 Towards Less Fragmentation
	4.1 Page-Frame Allocation
	4.2 Movable Kernel Design
	4.3 Clever File Caching

	5 Conclusion
	Acknowledgments
	References

