Should I Bother? Fast Patch Filtering for Statically-Configured
Software Variants

Tobias Landsberg
landsberg@sra.uni-hannover.de
Leibniz Universitat Hannover
Hannover, Germany

ABSTRACT

In the face of critical security vulnerabilities, patch and update
management are a crucial and challenging part of the software life
cycle. In software product families, patching becomes even more
challenging as we have to support different variants, which are
not equally affected by critical patches. While the naive “better-
patched-than-sorry” approach will apply all necessary updates, it
provokes avoidable costs for developers and customers.

In this paper we introduce SiB (Should I Bother?), a heuristic
patch-filtering method for statically-configurable software that effi-
ciently identifies irrelevant patches for specific variants. To solve
the variability-aware patch-filtering problem, SiB compares mod-
ified line ranges from patches with those source-code ranges in-
cluded in variants currently deployed. We apply our prototype
for CPP-managed variability to four open-source projects (Linux,
OpenSSL, SQLite, Bochs), demonstrating that SiB is both effective
and efficient in reducing the number of to-be-considered patches for
unaffected software variants. It correctly classifies up to 68 percent
of variants as unaffected, with a recall of 100 percent, thus reducing
deployments significantly, without missing any relevant patches.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools;
Software configuration management and version control sys-
tems.

KEYWORDS
Software Product Lines, Software Evolution, Patch Filtering

ACM Reference Format:

Tobias Landsberg, Christian Dietrich, and Daniel Lohmann. 2024. Should I
Bother? Fast Patch Filtering for Statically-Configured Software Variants. In
28th ACM International Systems and Software Product Line Conference (SPLC
"24), September 02—06, 2024, Dommeldange, Luxembourg. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3646548.3672585

1 INTRODUCTION

Every few years a catastrophic security vulnerability is discovered
in a widely-deployed software component, posing significant risks
and costs [4, 12, 15, 49]. For instance, in 2014 the Heartbleed vul-
nerability [26] impacted an estimated 24-55 percent of popular

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

SPLC °24, September 02-06, 2024, Dommeldange, Luxembourg
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0593-9/24/09
https://doi.org/10.1145/3646548.3672585

Christian Dietrich
dietrich@ibr.cs.tu-bs.de
Technische Universitat Braunschweig
Braunschweig, Germany

Daniel Lohmann
lohmann@sra.uni-hannover.de
Leibniz Universitit Hannover
Hannover, Germany

- a/ssl/dl_both.c
+++ b/ssl/d1 both.c
@@ -1459,26 +1459,36 @@
#ifndef OPENSSL_NO_HEARTBEATS
int tlsl process_heartbeat(SSL *s) {
[...]
/* Read type and payload length first =/
hbtype = #p++;
n2s(p, payload);
pL = p;
if (s->msg_callback) [...]
/* Read type and payload length first =/
if (1 + 2 + 16 > s->s3->rrec.length
return 0; /* silently discard */
hbtype = #p++;
n2s(p, payload);
if (1 + 2 + payload + 16 > s->s3->rrec.length)
return 0; /* silently discard */
pL = p;

+ o+ + o+ 4+ o+ o+ +

[...]
#endif

Listing 1: Patch for Heartbleed vulnerability [26]. The patch
was only necessary for deployments that had the OpenSSL
heartbeat extension enabled.

HTTPS sites [12], causing widespread concern and necessitating
rapid patch deployment. The response was swift, with all Alexa
top 500 sites applying the security patch within 48 hours. However,
patch application came at a cost, as exemplified by the estimated
monthly $400 000 cost alone for certificate revocation incurred by
CloudFlare’s primary CA partner [32]. Given that Heartbleed origi-
nated from a bug in an optional software feature that is enabled via
a C preprocessor (CPP) configuration switch (see Lst. 1), it is worth
questioning whether the costly and hurried patch application was
necessary for all OpenSSL deployments.

Like OpenSSL, most system software is configured at compile
time to tailor it with respect to a broad range of supported hard-
ware architectures and application domains. The Linux kernel, as
a prime example of a highly configurable system, provides more
than 17 000 configurable features [22], which are used to drastically
reduce its size and attack surface by tailoring it, for example, for
specific cloud VM settings [16] or embedded appliances [37]. In
the embedded domain, it is common that a single vendor provides
and maintains dozens or hundreds of customer-specific statically
configured product variants, which are often [6, 33] managed as
software product lines (SPLs) [8] built on top of OSS components,
like Linux, OpenSSL, and SQLite. Whenever a new (critical) patch
arrives for one of these components, there is a high probability that
the patch targets a feature that is not included in your own, your
customers’ or at least some of your customers’ variants [28, 29].
This raises the question: Should I bother?

https://orcid.org/0000-0002-9792-7667
https://orcid.org/0000-0001-9258-0513
https://orcid.org/0000-0001-8224-4161
https://doi.org/10.1145/3646548.3672585
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3646548.3672585

SPLC °24, September 02-06, 2024, Dommeldange, Luxembourg

Source-Code Repository

Compilation

Shipped Variants

Tobias Landsberg, Christian Dietrich, and Daniel Lohmann

Unified Patch

L #FCONFA 2T cang U fooo ¢ (@) ©}] | [Check Step - a/foo.c
2 a="foo(); ® -DCONF_A=1 bar.o + {X), W} | || (frequent): st [0/ e, €
3 #elif CONF_B | ;wiicg Zi?a:tged ikl - oo
= ; | ines again #if CONF_A
4 a=bar(); it il
s a=ax*2; 3 Line-Range DB -5 = Gaol)e
6 #endif clang 2 fo0.0 {®, ©}] +a = baz();
7 returna; |© -DCONF_B=1 bar.o + {®), @} | : #else
a g:,l Line-Range DB 3 Analyze Patch Affected
S| | (foo.c, m) — {1-3, 7} 3 v Variants
Deploy Step (rare event): For E|l| (fooc, @) = {1, 37} |« File: fooc
e'ach !/ariant,. we record the covered 2 (bar.c, @) — {34-46} | ' « Lines: {2}
lines in the line-range DB. (baz.h, @) — {43-50} || «

Figure 1: Overview of the SiB approach. In the line-range database (LRDB), we record, with a C-preprocessor plugin, the
source-code lines that are compiled for each shipped variant. When a new patch comes in, we extract the modified source lines

and consult the LRDB for the affected variants.

In this paper we introduce SiB (Should I Bother?), a heuris-
tic patch-filtering method for statically-configured software that
safely identifies irrelevant patches for specific variants. We focus
on annotation-based [44] variability (i.e., conditional compilations),
as it is one of the most common approaches for configurable soft-
ware [6]. In contrast to variability-aware functional-equivalence
checking [47], we also do not require a formal feature model (often
not available for most OSS components) by restricting our analy-
sis to the relevant variant set. Furthermore, we also support C++
projects. In particular, we claim the following contributions:

e We define the variability-aware patch-filtering problem for
statically-configured programs.

e We propose SiB, a fast and safe patch-filtering method based on
covered line ranges for static annotation-based variability and
provide a prototype for CPP-managed variability.

e We evaluate our approach with four statically-configurable open
source projects (Linux, OpenSSL, SQLite, Bochs) and demon-
strate that SiB is scalable, effective, and efficient by reducing
deployments by up to 68 percent (Linux).

The rest of this paper is structured as follows: In Sec. 2 we describe
our system model and define the variability-aware patch-filtering
problem, for which we propose SiB in Sec. 3. We evaluate our
approach in Sec. 4 on four open-source projects and discuss our
results in Sec. 5. In Sec. 6 we discuss related work and conclude this
paper in Sec. 7.

2 PROBLEM DESCRIPTION

In the following, we introduce our system model and the concept of
variability-aware patch-filtering for statically-configured software.

2.1 System Model

Statically-configured software refers to projects where feature se-
lection takes place during compile time. In this setting, a single
source repository is used to generate multiple software variants by
selectively enabling or disabling features during the compilation
process. A set of selected features is called a configuration. Although
this kind of static variability results in a potentially exponential

number of variants, we restrict our interest to scenarios with a
known set of variants, for example, comprising those variants that
actually have been shipped to customers. Hence, we refer to these
variants of interest as the shipped variants.

Our focus is on static annotation-based variability (i.e., condi-
tional compilation): Depending on the configuration, we select a
subset of all files and within those configuration-dependent files,
we pass only the parts relevant to the chosen features into the
compilation process to produce a configuration-specific software
artifact. Annotation-based variability mechanisms for conditional
compilation are available in various build systems and languages,
with the C preprocessor (CPP) being the defacto standard.

In C/C++ the CPP establishes a static variability model based on
CPP macros: For each feature, there is a CPP macro that influences
the preprocessor directives (#ifdefs), which determine whether code
blocks are included or excluded from the compilation process. Con-
sequently, a set of defined CPP macros corresponds to a configu-
ration. For instance, in Fig. 1, the macro CONF_A decides whether
block A or block B is included in the compilation.

In addition to the CPP, other programming languages support
similar variability mechanisms: For example, in Rust the #[cfg]
function annotation controls the inclusion or exclusion of functions
based on a compile-time predicate. This enables conditional compi-
lation analogous to CPP variability but only at function granularity.

Our approach also encompasses changes to the source-code
repository: The repository records all changes to the software and
can produce a patch as a textual difference between two repository
states (i.e., in the unified diff format). Therefore, patches can repre-
sent not only individual changes but also the difference between
two repository states, for example, the last shipped and the current
state. Hence, we cover non-linear development histories and are
compatible with distributed version control systems (i.e., git).

In summary, our system model targets compiled languages with
statically-configured, annotation-based software variability. We
focus on known variant sets, rely on patches to summarize sin-
gle or multiple changes, and apply our method to CPP-managed
variability in C and C++ projects.

Should I Bother? Fast Patch Filtering for Statically-Configured Software Variants

SiB SiB
Check Update
LRDB

incoming patches

<
o]
-

shipped
variants

Py P2a P2y, P3 Ps Ps
Patch Variant-Aware Assessment & Patch Testing Patch Post Deploy-
Retrieval Patch Filtering Prioritisation Deployment ment

Figure 2: Variant-aware security patch management process.
SiB extends Py by filtering variants using information gath-
ered for the most recently shipped version in Py.

2.2 Patch Management

In the literature, the process of analyzing and applying patches
for rolled-out software is often denoted as patch management [11].
Patch management plays a crucial role in the software life cycle
and is usually described as a five-stage process (Fig. 2):

o Py Patch Retrieval: A patch becomes available. Whether it is from
upstream or self-developed, is irrelevant to our approach.

e P, Assessment & Prioritization: The maintainer needs to (manu-

ally) assess the patch and prioritize its deployment in an update if

necessary. In a multi-variant scenario, even determining whether

the code changes are used in any variant is a non-trivial task.

P3 Testing: The maintainer has to test the update (e.g., in a staging

environment). This usually involves running all tests. In a multi-

variant scenario, this has to be repeated for every variant.

P4 Deployment: The update is deployed to production systems,

internal or customer-owned. This may lead to downtimes.

Ps5 Post Deployment: The patched system has to be monitored for

any unexpected service disruptions.

While every step in the process incurs its own costs that should
be minimized whenever possible, P4 and P5 represent particularly
high costs and risks. This is one of the reasons why patches are
frequently accumulated until a new release is deployed, which,
however, is often not feasible for high-priority patches (i.e., security
fixes). In multi-variant scenarios, the costs and risks are further
amplified by the number of variants.

2.3 Variability-Aware Patch Filtering

In the case of maintaining a configurable software with multiple
shipped variants, the software life cycle fans out for each patch
and variant (see Fig. 2). This multiplication of effort for the patch-
management process necessitates stopping the process as early
as possible for as many branches as possible to optimize resource
utilization and reduce the work for tools running later in the process
[34]. Therefore, SiB integrates directly after retrieving a patch by
splitting the patch assessment step Py. SiB employs automatic patch
filtering, depicted as step P2, in Fig. 2, which means traditional
assessment Py, (and following steps) must only be performed on a
reduced set of configurations, if any. For this purpose SiB utilizes
information gathered in the most recent deployment step Py.
Conceptually, Patch filtering identifies the program variants that
a patch impacts and could potentially influence their semantics. For

SPLC *24, September 02-06, 2024, Dommeldange, Luxembourg

this it is crucial to establish a clear definition of what it means for
a variant to be “impacted” by a change [5]. Since determining the
behavioral equivalence of two programs would also solve the halt-
ing problem, we must over-approximate. For compiled languages,
binary equivalence can serve as a simple but safe heuristic: If a
change does not affect a variant’s resulting binary, it can be safely
assumed that the change had no impact on that specific variant.
However, it is important to note that not every change in the binary
will result in a changed program semantic (e.g., linking order).

Nevertheless, binary equivalence presents three challenges for
system integrators: (1) it requires the build process to be bit-wise
reproducible, (2) it necessitates executing the entire build process,
(3) for each shipped variant and every incoming change. As a result,
binary equivalence can only be employed for variability-aware
patch filtering when managing a few variants. With a larger number
of variants, the approach is no longer feasible. For example, the
Linux kernel is updated up to every five minutes [45], making it
costly to build every version for even a single variant. Therefore, a
faster and less resource-intensive alternative is desirable.

3 SIB: FAST VARIABILITY-AWARE PATCH
FILTERING

We propose SiB, a fast patch filtering method for statically-
configured software (see Fig. 1). For incoming patches, SiB consults
its line-range database (LRDB) to determine the set of shipped vari-
ants that are impacted by the patch and might require further
downstream actions. SiB is an over-approximating change-impact
heuristic that relies on CPP-included source-code lines.

3.1 Line-Range DB

The SiB approach hooks into the life cycle of a statically-configured
program at two points (Fig. 1): At variant deployment time, we col-
lect information about every shipped variant, which we later use
in the patch-filtering stage. While deployment is (and should be)
a rare event, the patch-filtering process is triggered often, mak-
ing overheads at this stage more critical than during deployment.
Therefore, the choice of the knowledge base connecting both phases
is a crucial decision for any multi-variant patch-filtering method.

In SiB we use covered source-code line numbers for this purpose
and employ the line-range database (LRDB) to collect information
about the shipped variants. In our example in Fig. 1, the LRDB
knows that variant 1 used the source lines 1-2 and 6 of foo. c, while
variant 2 included the range 43-50 of the header file baz.h. Using
line ranges for the LRDB has multiple benefits: (1) Numerical ranges
can be stored compactly, manipulated quickly, and specialized data
structures (e.g., interval trees) exist to speed up LRDB queries in
the patch-filtering stage. (2) Line numbers are a language-agnostic
method to address parts of the source code, allowing us to sup-
port different annotation-based static-variability mechanisms (e.g.,
#ifdef and Rust’s #[cfg]). (3) The unified patch format also relies
on line numbers to anchor textual changes to the source code.

In our implementation we use a textual on-disk format to store
the LRDB and construct an in-memory representation for the ap-
proval phase. For line-range overlap detection, we use the Rust
lapper module, which implements the BITS [18] algorithm.

SPLC °24, September 02-06, 2024, Dommeldange, Luxembourg

3.2 CPP Line Ranges

For C/C++ programs, the CPP is the standard tool that implements
conditional compilation. For each compilation unit, the CPP re-
ceives the token stream from the lexer and interprets three kinds
of directives: (1) macro definitions and expansions, (2) inclusion
of other files, and (3) conditional in/exclusion of CPP blocks. As
deselected CPP blocks have no impact on the compilation process,
we can exclude their line ranges for the currently compiled variant.

To extract the relevant line ranges for a specific variant, we
hook into the compilation process, which is always required for
the deployment stage. For this purpose we built a Clang compiler
plugin that uses the PPCallbacks interface to record the file ranges
that the preprocessor feeds to the C parser. The plugin consists of
250 lines of code that mainly set up the integration with the Clang
compiler. Thereby, we do not only cover the main source file but
also all lines and conditional blocks that get included. After all files
are compiled, we consolidate and merge the line ranges per source
file, particularly for header files, into (filename — line-range) pairs.

Special attention is required for the lines containing CPP direc-
tives: For the used ranges, we always have to include the lines that
mark the beginning (e.g., #1ifdef) and the end (e.g., #endif) of a con-
ditional block. Further, as CPP allows building #if-#elif-#else
chains, we have to include the lines of all evaluated CPP directives
in the set of important lines. After all, only the negative evaluation
of the condition in line 1 (see Fig. 1) results in the inclusion of block
B into variant 2. Therefore, a change to line 1 also impacts variant 2.

Further, we must handle changes to the build system that im-
pact compiler flags influencing the compilation process. To do this,
we rely on the “compilation database” [42], which lists all com-
piler invocations during the build process. Various build systems,
e.g., CMake and Bazel, already produce this database as it facilitates
integration with different tools and IDEs. By using the compilation
database, we also cover build-system variability [10], as we know
which compilation units are included in which variant. Whenever
the database changes, we must assume changed compilation output.

Moreover, we must handle files affecting the compilation without
them being used by the compiler. These files can be divided into
two categories. (1) Files that are tracked by the version control
systems and (2) files that are not:

For (1), the most common case is assembly files, which are usu-
ally compiled by an assembler and, therefore, bypass our compiler
plugin. While we detect assembly files automatically, other files in
this category must be passed to our tool by the developer. When
the version control system signals a change in one of those files,
we have to assume a patch is relevant.

Category (2) files are typically generated during the build pro-
cess (e.g., parsers or stub/skeleton code). One way to handle these
is to pass the generator input and, if necessary, the generator it-
self to our tool as described for category (1). However, these files
could be configuration-dependent. At the developers’ discretion,
we therefore detect changes by storing the file hashes, which re-
quires the files’ existence before executing our tool. Whenever a
hash changes, we assume the patch is relevant. While the developer
may have domain-specific knowledge allowing better decisions,
this process can be partially automated by comparing files in the

Tobias Landsberg, Christian Dietrich, and Daniel Lohmann

compilation database with files processed by our compiler plugin
and files known to the version control system.

We store the line-range information in the LRDB. For each de-
ployment, we can either replace an existing shipped variant or
introduce a new one. By storing line ranges, we have a compact
and summarized over-approximation of the shipped variants that
is used to identify irrelevant patches in the next step.

3.3 Line-Range-Based Patch Filtering

With the LRDB, we can now identify patches that have undoubtedly
no influence on one or multiple shipped variants. Essentially, we
extract the line ranges that the patch modifies and search the LRDB
for variants with ranges that overlap with the patched ranges.

The unified patch format (see Fig. 1) is a line-based format con-
taining multiple hunks of textual differences between two text files.
Each hunk consists of a tuple (filename, start line, hunk length) for
both the “source” and the “destination” file. For our concerns, the
source file corresponds to a file that was (or could have been) used
for a shipped variant. In our example, the patch describes a change
to the file foo. c in line range 1-3 for both source and destination.
Further, the patch data’s first column indicates the modification:
lines starting with a minus represent a line removal, while plus
signs indicate line additions. Lines that start with a space remain
unchanged and are only included in the patch as context to allow
the patch application to modified source files.

For SiB, we use the version control system (i.e., git) to calculate
a patch for the change that does not include context lines. By doing
so, we focus on the actual changes and can accurately extract the
modified line ranges from the hunk’s metadata by examining the
source line range. As the source file corresponds to a file in a shipped
variant, we extract those as the patched ranges.

Special attention must be given to two corner cases: If the source
and destination file names in a hunk do not match or if a hunk
introduces or removes an unbalanced CPP expression, we mark the
entire source file as changed. For example, if a patch introduces a
single #else-directive after line 4 in Fig. 1, line 5 would be included
in a variant with CONF_A=0 and CONF_B=0, even though it was pre-
viously located in an excluded CPP block. To capture situations
where a local change modifies the CPP-program structure, we parse
each hunk’s patch data and count block beginnings and closings
for both source and destination separately. If one of those counters
drops below zero, we detect a hunk with an unbalanced CPP struc-
ture and mark the entire source file as changed. We can limit this
fallback to unbalanced hunks, as the introduction or removal of a
balanced CPP structure into an excluded CPP block has no impact
on subsequent CPP operations.

After extracting the modified line ranges from the patch, we can
query the LRDB. If we find a range overlap, the identified variant
could be impacted by the patch, which should then trigger further
downstream actions (e.g., redeployment). Conversely, if we do not
find an overlap, the patch cannot have any impact, as it only touched
source lines that were irrelevant for the shipped variant(s).

4 EVALUATION

In our evaluation, we demonstrate that SiB only introduces a
small processing overhead, while effectively filtering out irrelevant

Should I Bother? Fast Patch Filtering for Statically-Configured Software Variants

patches for specific variants. For this, we analyze the development
history of OSS projects that use static variability and further exam-
ine SiB’s effectiveness with real-world security fixes for OpenSSL.

4.1 Case Studies

We focus our evaluation on four open-source projects: Linux,
OpenSSL, SQLite, and Bochs. We selected these projects because of
their widespread adoption and because they cover a wide range of
software projects — an operating system, a cryptographic library,
an embeddable database engine, and an emulator. Furthermore,
they are written in the C/C++ programming language and use
CPP-managed static variability.

Set of Patches To analyze different patch types (bug fixes, se-
curity improvements, and new features), we examine 200 consecu-
tive commits from each project’s development history. Each commit
is treated as a separate patch that triggers the patch-management
process and becomes subject to patch filtering. For our analysis, we
discard defective commits (i.e., failed builds). For OpenSSL, SQLite,
and Bochs, defective commits account for 3.36, 6.91, and 0.97 per-
cent, respectively, while there are no defective commits for Linux.
Whenever we compare two commits and one of them is defective,
we exclude that comparison from our analysis.

Linux isa general-purpose operating system that is often used
in embedded systems and a widely-studied SPL [7, 41]. We use Linux
version 5.19 (and 200 preceding commits) with 15 configurations,
including defconfig, tinyconfig, and 13 other random configura-
tions. To generate the random configurations, we utilized the make
target randconfig and set KCONFIG_PROBABILITY=10 to control the
variant size. The defconfig variant includes about 10 percent of
the source code, comprising Assembly, C, and header files.

OpenSSL is a library that provides cryptographic primitives
and TLS/SSL-secured connections. We use OpenSSL version 3.0.5
(and 200 preceding commits) with the default configuration and 14
random configurations. We generated these random configurations
by passing random sets of feature flags, chosen from a pool of 95
total flags, to the configuration script. The default configuration
includes 95 percent of the code.

SQLite is a serverless and lightweight database engine that
is commonly used in embedded systems. We use SQLite version
3.37.2 (and 200 preceding commits) with the default configuration
and 14 random configurations. The configurations were generated
by passing random sets of feature flags out of a total of 12 flags
to the configuration script. Further, we had to disable SQLite’s
“Amalgamation” process, which concatenates all source files for
the compilation, as Amalgamation disconnects the line ranges of a
patch from those line ranges the compiler sees. With the default
configuration, 60 percent of the code is included.

Bochs isan x86 emulator commonly used for operating system
development. In contrast to the other projects, it is written in C++.
We use Bochs version 2.8 (and 200 preceding commits) with the
default configuration and 14 random configurations. We generated
these random configurations by passing random sets of feature
flags, chosen from a pool of 57 total flags, to the configuration
script. The default configuration includes 37 percent of the code.

Further Adaptations We had to adjust the source code of
our projects to make their build process fully reproducible (see

SPLC *24, September 02-06, 2024, Dommeldange, Luxembourg

Table 1: BE-Based vs. SiB — Costs per Variant

[s] BE-Based SiB

Step Linux OpenSSL SQLite Bochs Linux OpenSSL SQLite Bochs

Build® (B) 23.36 1239 26.2 22.68 23.53 12.43 26.46 22.83
Store? (S) 0.35 0.12 0.04 0.05 0.99 0.23 0.09 0.1
Check (C) 0.004 0.004 0.001 0.001 0.062 0.023 0.005 0.005

¢: SiB requires these steps only for patches that trigger a deployment.

also Sec. 2.3) and compatible with binary-equivalence filtering. For
example, we had to deselect certain configuration options [43]
in Linux and disable the CPP __LINE__ macro. Please note that
these modifications were made solely for evaluation and validation
purposes (i.e., to use binary equivalence as ground truth, which
requires reproducible builds). They are not necessary when using
SiB. Furthermore, since OpenSSL, SQLite, and Bochs do not yet
employ a compilation database, we used the compiledb! tool to
extract this information.

4.2 Evaluation Scenario

To evaluate SiB, we build the selected 200 commits of our target
projects (Linux, OpenSSL, SQLite, Bochs) with 15 different configu-
rations each. For each commit we use the predecessor commit for
the shipped variants, while the current commit acts as the patch
we want to filter.

Our ground truth is binary equivalence, that is, we assume that a
patch is relevant for a specific configuration if and only if the output
binary changes. A patch not introducing a change cannot have any
effect and, therefore, can safely be classified as not relevant. To
eliminate linker-induced indeterminism, we use the linker input-file
hashes to assess binary equivalence instead of comparing the final
binaries. We refer to this approach as binary-equivalence-based (BE-
based). While this approach represents a significant improvement
over manual and no patch filtering, it is slow and scales poorly
with the number of variants. As we expect SiB to run as part of
a continuous integration process, we execute our evaluation on a
large server machine with two 26-core Intel® Xeon® Gold 5320
@ 2.20 GHz (104 hardware threads) and 256 GB of memory. We
compiled with Clang 15 on Ubuntu 23.10. The BE-based approach
resulted in over 12 000 builds and took nearly three days to complete
on our high-performance server. As we consider binary equivalence
our ground truth, the BE-based approach trivially yields perfect
accuracy.

4.3 Patch-Filtering Costs

First, we want to answer the question (RQ1), if and under which
circumstances SiB outperforms the BE-based approach? The patch-
filter costs for SiB consist of two components: (1) Deployment
overheads for extracting and processing used line ranges and (2) the
time required to filter an incoming patch. Unless stated otherwise,
all numbers are the median of all commits and variants.
Deployment Overheads When shipping a variant, we have
to build a binary, during which SiB’s compiler plugin extracts the

!https://github.com/nickdiego/compiledb

https://github.com/nickdiego/compiledb

SPLC °24, September 02-06, 2024, Dommeldange, Luxembourg

used lines for the current configuration, processes them, and stores
them in the LRDB. In comparison, the BE-based approach adds no
overhead to the build process itself but needs to calculate and store
the object-file hashes (see Tab. 1). For example, building OpenSSL
usually takes 12.39 s, which increases with SiB to 12.43 s (+0.32 %).
The build overheads for Linux, SQLite, and Bochs are 0.71, 0.99,
and 0.64 percent. For calculating and processing the object hashes,
the BE-based approach takes between 0.04 s and 0.35 s, while SiB
requires between 0.09 s to 0.99 s. While all information can be sum-
marized into a single hash when using the BE-based approach, SiB
requires data for each configuration and version, which on aver-
age sums up to 487 KiB, 164 KiB, 88 KiB, and 107 KiB for Linux,
OpenSSL, SQLite, and Bochs, respectively. For a patch that triggers
a deployment, the BE-based approach adds 1.5 percent (0.35 s) at
most, while SiB’s overhead is at most 5 percent (1.16 s) at most.
Filtering Overheads To filter an incoming patch, SiB must
only match the changed lines against its LRDB, while the BE-based
approach must (re-)build the project for every variant, collect and
store object hashes, and compare them. Therefore, SiB will usually
outperform the BE-based approach, although hash comparison (<
0.004 s) is much faster than LRDB lookups (0.062 s for Linux). As
this trade-off decides upon the patch-impact probability, we define
a cutoff probability « (€ [0, 1]) so that if the probability that a patch
impacts a variant is less than «, SiB will outperform the BE-based
approach. With the information in Tab. 1, we can set up Equation 1:

Bgg + SE + Cpg = Csip + a - (Bsig + Ssip) (1)

The fixed costs for a new patch of the BE-based approach are com-
pared to the costs of SiB depending on a. When using SiB and if
the patch impacts a variant, in addition to checking, there are also
the costs of building a new release and storing the information in
the LRDB. Solving for « leads to Equation 2:

_ Bgg +SBg + CBg — Csip
a= @
Bsip + SsiB
With our current implementation, the tipping points are at
96.4/98.7/98.8/99.1 percent for Linux/OpenSSL/SQLite/Bochs. How-
ever, if a customer faces such high a values, patch-filtering almost
has no impact on the patch-management process anyways. Please
also note that SiB could be further optimized (e.g., LRDB with
lookup indices) to bring « even closer to one.

Another build-step optimization would be the usage of
CCache [35], a cache that reduces compiler invocations by associ-
ating object files with the hash over the preprocessed source code.
If applied, we see a build speedup of 24.1/2.6/5.5/5.8 percent (Lin-
ux/OpenSSL/SQLite/Bochs) for the BE-based approach. However,
even with a 50 percent build speedup, the « tipping points for SiB
only decrease to 93.2/98.5/98.3/99.0 percent.

Summarized, we can answer RQ1 and conclude that SiB is more
efficient than a binary-equivalence-based approach if the patch-
impact probability is less than 95 percent.

4.4 Patch-Filtering Accuracy

We now want to look at the accuracy of SiB and raise three research
questions: (RQ2) Is the accuracy of SiB comparable to the BE-based
approach? (RQ3) Is patch-filtering reducing shipment costs? (RQ4) Is
the patch-management process sensitive to variability? To answer

Tobias Landsberg, Christian Dietrich, and Daniel Lohmann

100- ~

o 6.3% 8.3%
12.2% 19.8%
— 75-
& FP
c
o FN
S s50- ||
2 |
2 ™
o 25-
0-
Linux OpenssL sqlite Bochs

Figure 3: Accuracy of SiB. The impact detection of SiB has
been classified as true positives (TP), true negatives (IN),
false positives (FP), and false negatives (FN) in comparison
to binary equivalence for the four target projects — Linux,
OpenSSL, SQLite, and Bochs. Notably, SiB has achieved zero
false negatives, meaning no changes have gone undetected.

these questions, we take the result of the BE-based approach as
ground truth and measure how often SiB deviates from it.

In Fig. 3 we summarize the accuracy of SiB for the projects: The
absence of false negatives, and therefore a recall of 100 percent for
all evaluated projects, implies that SiB does not filter out any patch
that binary equivalence deemed to be important, making SiB a safe
patch-filtering method.

In contrast, false positives, which means that a patch is falsely as-
sumed to affect a given variant, are less critical and only impact the
efficiency. The observed FP rates between 6.31 percent (OpenSSL)
and 19.82 percent (SQLite) stem from three causes: (1) Purely syn-
tactical changes (e.g., changing a comment) to a selected CPP block
trigger SiB but do not alter the binary. (2) When detecting changes
on the CPP level, SiB cannot ignore semantic changes in unused
type declarations. (3) SiB takes a conservative approach concern-
ing changed CPP directives (see Sec. 3.2). It would be possible to
reduce the number of false positives, for example, by discarding
comments. More advanced techniques require leaving the CPP level
and, therefore, would likely be performed for each variant inde-
pendently, contradicting SiB’s philosophy. Nevertheless, even with
the observed FP rate, the positive rate (FP+TP) remains below the
calculated tipping points a. By looking at the accuracy (TN+TP)
of SiB, which is 88/94/80/92 percent and the precision, which is
62/89/67/84 percent (Linux/OpenSSL/SQLite/Bochs), we can answer
RQ2 positively.

The BE-based approach reduces shipments by 49 to 80 percent,
while SiB achieves 41 to 68 percent (see Fig. 3), which answers RQ3:
Patch filtering is able to reduce the number of variant shipments,
significantly reducing the overall patch-management costs.

However, it still might be the case that real changes are not
variant-sensitive, meaning a patch either impacts no or all variants.
To investigate this, for each commit we count the number of variants
that it impacts. In Fig. 4a we see that in Linux, OpenSSL, and Bochs
around 30 percent of all commits impact between 1 and 14 variants
and that SiB captures these as effectively as the BE-based approach.
For SQLite, however, patch management is not very specific to
the chosen variant, as only 5 percent of patches impact only some
variants.

Should I Bother? Fast Patch Filtering for Statically-Configured Software Variants

B sE-Based | siB

Linux

ol s e 5 § - _— _ &
OpenSSL
60-
40-
zo | |
S .l B e — = 1
E= .
EGO- SQLite
§ 40-
|
0- | -— |

] 0
3 4 5 6 7 8 9 10 11 12 13 14 15
Affected Variants

(a) Histogram. The number of variants affected by which percentage
of commits for Linux, OpenSSL, SQLite, and Bochs (BE-based and
SiB).

. FP . FN .TP .TN Build Failed

Linux

OpenssL

SQLite

Variant

Commits [sorted by time]

(b) Classification Map. Each variant for every commit classified as
true positive (TP), true negative (TN), false positive (FP), false neg-
ative (FN), and build failure compared to binary equivalence for
Linux, OpenSSL, SQLite, and Bochs.

Figure 4: Affected Variants

In Fig. 4b, a classification map for our projects, this property of
SQLite is reflected by the uniform horizontal bars. A less regular
map (only TPs) signifies a high sensitivity of a project’s patch-
management process with regard to variability. As expected, Linux,

SPLC *24, September 02-06, 2024, Dommeldange, Luxembourg

|i BE-Based [l BE-Based+Ccache [sis [si+BE-Based

0- II

Linux OpenssL sqlite Bochs

Patch-Filtering Time [s]
= N
o o
; ;
0.0616
0.0231
6.97
0.00534
14.6
0.00527
11.3

Figure 5: Patch-Filter Overhead. The mean time required to
filter a new patch for Linux, OpenSSL, SQLite, and Bochs with
15 variants.

a commonly used example for SPLs with a large feature model (>
17 000 features [22]), shows an irregular classification map.

With these insights we can answer RQ4: For projects developed
as SPL, the patch-management process is sensitive to variability.
Therefore, a variability-aware patch-filtering approach is required.

Hybrid Patch Filtering As both the BE-based approach and
SiB have their benefits (accuracy and efficiency, respectively), the
question arises as to how a hybrid patch-filtering method performs:
For each incoming patch, we first run SiB to narrow down the
number of variants, harvesting SiB’s efficiency, before then build-
ing only the remaining variants and applying BE-based approach,
utilizing the accuracy of binary equivalence. In Fig. 5 we compare
the patch-filtering costs for the BE-based approach (with and with-
out CCache), SiB, and the hybrid approach. In total, the hybrid
approach results in a filtering-time reduction of 74 percent (Linux),
42 percent (OpenSSL), 44 percent (SQLite), and 50 percent (Bochs)
compared to the BE-based approach.

Also, the additional costs for hybrid patch filtering are not lost if
we can reuse the resulting binary in the process further downstream.
However, please note that the actual benefit of patch filtering is
not to avoid or reduce build costs but to prune branches of the
patch-management process (i.e., assessment, prioritization, testing,
deployment), which are considerably more costly and often involve
manual intervention at some point.

4.5 High-Priority Patches

We have already demonstrated the effectiveness of SiB in filtering
patches, which could be especially rewarding where the timely
application of patches is crucial and waiting for an opportune
moment is not feasible. As discussed in Sec. 1, the application of
high-priority patches (like Heartbleed) is commonly assumed to be
non-negotiable, which raises the question (RQ5) of whether these
patches are also configuration-related.

To investigate this, we looked at the Heartbleed patch and
also searched in our evaluated commit range and found three
further CVE-related OpenSSL patches: The first, CVE-2022-2097,
only affected 32-bit systems. The second, CVE-2022-2068, affected
a shell script and, thus, was irrelevant to our evaluation. The third,
CVE-2022-29242, was a security vulnerability in the GOST engine.

SPLC °24, September 02-06, 2024, Dommeldange, Luxembourg

Table 2: LRDB Coverage (default configuration)

Linux OpenSSL SQLite
Files Lines Files Lines Files Lines
» Total 55795 30649128 1792 632017 394 389918
£ Code - 74.79% - 77.08% - 6931%
2 Comments - 12.58 % - 11.80 % - 23.72%
& Blank - 12.63% - 11L12% - 697%
#included 6031 3206310 1753 599016 126 235213
& CPP-covered 6031 948% 1753 95.5% 126 62.1%
AST-covered 5752 721% 1720 80.3% 92 45.0%
~ #included - - 263 39093 149 20904
% CPP-covered = - 263 86.1% 149 82.5%
AST-covered - - 125 6.1% 51 5.1%
1 #define FOO(X) ((X) + 1)
2 #define BAR(Z) CONSTANT
3 #define CONSTANT 23
4 struct foo { int x; };
5 struct bar { struct foo f; };
6 struct baz { struct foo f; };
7 int main() {
8 struct baz obj; AST ref
9 obj.f.x = FOO(CONSTANT); CPP expansion
10 } top-level definition

Listing 2: AST-Level Line Coverage

For all these CVE commits, along with the Heartbleed patch, SiB
accurately narrowed down the set of affected variants to config-
urations that were genuinely impacted by the changes; all other
configurations were marked as unaffected. Since we use random
configurations, except for the default configuration, no statement
about the actual number of variants affected in the real world can
be made. Still, we conclude that even the expensive high-priority
patches can be filtered out using SiB (RQ5).

4.6 AST-Level LRDB Information

So far we have shown that SiB is capable of filtering out irrelevant
patches. Central to our method is the LRDB, which we populate
with line ranges that the C preprocessor (CPP) feeds to the C parser.
While we have already quantified (in Sec. 4.3) that gathering infor-
mation at the CPP level is fast, its granularity is coarse and results
in an LRDB containing more line ranges than necessary. This brings
us to our sixth research question (RQ6): Is the CPP the appropriate
level of abstraction for gathering LRDB information?

To address this question, we propose a second method to popu-
late the LRDB with information from the abstract syntax tree (AST)
level. While we have implemented this AST-level LRDB extraction,
we have not yet integrated it with our SiB approach. Our prototype
is currently rather slow, only works on C source code, which is why
Bochs is excluded, and would necessitate additional syntax-aware
handling of incoming patches. However, it is already sufficient to
answer RQ6 by comparing its results with the coverage ratio of the
LRDB extracted at the CPP level.

The core idea of AST-level LRDB extraction is to record source-
code line ranges that contain top-level definitions (e.g., global vari-
ables, function bodies). However, since these definitions are influ-
enced by (1) top-level declarations (i.e., types, enums, function pro-
totypes) and (2) CPP macros, we must follow these cross-references

Tobias Landsberg, Christian Dietrich, and Daniel Lohmann

from the definition ranges recursively. This cross-reference search
on the AST from top-level definitions draws inspiration from
cHash [9], which calculates a hash value for each AST node. For
LRDB extraction, we extended it conceptually by macro-expansion
tracking. Again, we implemented this approach as a Clang plugin.

To make AST-level line coverage more intuitive, Lst. 2 provides
a small example: The AST traversal starts at the main() function
(lines 7-10). As main () uses the struct baz type, which itself refer-
ences struct foo, we also include lines 4 and 6 in the LRDB. Since
the declaration on line 5 is never referenced, we can exclude it.
Similarly, the macros FOO and CONSTANT are used within an already
used range, requiring us to include lines 1 and 3 in the LRDB, while
the macro on line 2 is not referenced and can be excluded. If com-
bined with the SiB approach, we could filter out patches that affect
lines 2 and/or 5. In contrast, the CPP-only approach would include
all lines in the LRDB, as there are no #ifdef statements present.

Coming back to RQ6, we execute both extraction methods (on
CPP and AST level) for the standard configuration of our three
open-source projects developed in C and quantify the number of
source files and lines included in the LRDB (see Tab. 2). Further, we
distinguish between lines that originate from within the project
repository and those lines that stem from external headers.

For each project, the #included line indicates the number of
files (and their accumulated source lines) that were selected by the
build system. Due to its extensive SPL nature, the Linux standard
configuration only includes around 10 percent of its source lines.
For OpenSSL and SQLite, the gap between the repository and the
included numbers mainly stems from test cases.

As expected, there is a considerable gap between the LRDB size
if filled from the CPP or the AST level. For Linux and OpenSSL,
about five percent of all lines are in excluded CPP blocks, while the
AST level excluded four to five times as many lines. This gap is not
only caused by the increased precision of the AST-level reachability
analysis (i.e., unused type declarations) but also by lines outside a
top-level definition that are blank or only contain a comment. For
SQLite, which manages less of its variability using the build system,
both CPP and AST level result in much smaller LRDBs.

In examining source code pulled from outside the source repos-
itory (i.e., headers), the AST approach substantially reduces the
covered maintenance surface, which drops to less than 7 percent
for OpenSSL and SQLite (Linux does not rely on external headers).
Although headers, which are primarily comprised of type decla-
rations, function prototypes, and macros, were anticipated to be
covered to a lesser extent, the magnitude of this effect exceeded our
initial expectations. This highlights the potential benefits of an AST-
based approach to capture (configurable) build-time dependencies
between different projects.

This provides us with a partial answer to RQ6: AST-level line
ranges, as compared to those at the CPP level, will likely lead to
a reduction in LRDB size. We anticipate this will correspondingly
improve the effectiveness of patch filtering. However, it’s important
to bear in mind that this could be offset by increased overheads and
additional challenges, which we will discuss in Sec. 5.1. Whether
these potential drawbacks justify the use of an AST-based approach
remains a subject for future research.

Should I Bother? Fast Patch Filtering for Statically-Configured Software Variants

4.7 Evaluation Summary

Our evaluation demonstrates that SiB outperforms binary-
equivalence-based patch filtering in terms of efficiency (RQ1) while
maintaining comparable accuracy (RQ2). Furthermore, we establish
that patches in real-world projects are indeed sensitive to variabil-
ity (RQ4) and that SiB effectively filters out high-priority patches
(RQ5). Additionally, we demonstrated (RQ6) that while populating
the LRDB with CPP-level information is adequate, it could be fur-
ther improved, especially if external headers should be considered,
by utilizing AST-level information. But most importantly, we show
that SiB can reduce deployments by up to 68 percent (RQ3).

5 DISCUSSION

Several potential threats could impact the validity of our experi-
mental results. The potential savings and, to a lesser degree, the
overheads of SiB depend on (1) the configurations utilized, (2) the
patches applied to the software, and (3) the extent of conditional
compilation employed by the software. We have endeavored to
minimize these threats by implementing a rigorous experimental
design, which includes (1) the utilization of 15 distinct configura-
tions, some of which were chosen randomly, (2) the evaluation of
200 patches per project that were not subjectively selected, and (3)
the selection of four distinct target applications, each with different
characteristics and complexity.

5.1 Applicability and Generalizability

SiB can be applied to any project that utilizes the CPP for managing
variability. Although the extraction of relevant lines through the
Clang plugin relies on the project’s ability to be compiled using
Clang, and the utilization of git for identifying changed lines re-
quires a git repository, the underlying concept is not limited to a
specific compiler or VCS. Even the CPP could be replaced by other
preprocessors like M4. The dependency on a compilation database
is easily addressed through the use of external tools, rendering it a
non-issue. This versatility is further bolstered by SiB’s resilience
to build instability. As long the instability has no semantic impact,
SiB also integrates, in contrast to binary equivalence, with a build
process that does not produce bit-wise-identical artifacts.

The line-based concept itself offers potential for generalization
to other languages and variability mechanisms. Essentially, such a
generalization would require two key steps: (1) identifying which
lines are relevant for a given variant and (2) determining whether
we are allowed to match a patch against the LRDB.

As we move towards semantically richer variability mechanisms,
these steps become more complex than for CPP-based variability.
For example, in Sec. 4.6, we illustrated the first step (filling the
LRDB) for the C programming language, which involves a static
reachability and usage analysis on the AST. However, for this vari-
ability mechanism, we have not yet addressed step (2). The principal
question posed to a patch is whether it impacts the variability struc-
ture itself. For CPP this is simple as it suffices to check it for a new
CPP block. However, for C-based variability we would already have
to check whether a patch introduces or splits a function.

For more complex languages such as C++, this step (2) becomes
even more challenging: A patch can introduce a new function that
influences the overload resolution for existing function lookups. If

SPLC *24, September 02-06, 2024, Dommeldange, Luxembourg

the patch performs its modifications in a line range not included in
the variant, we would encounter a false negative.

On the other hand, operating at the AST level would further
enable us to encompass statically-evaluated dynamic variability:
Developers use configuration switches to deliberately enable or
disable certain control-flow branches (i.e., if (CONF_A)...), which
are subject to standard type checking, unlike disabled CPP blocks.
If disabled, the compiler’s dead-code elimination removes the dead
then-branch entirely. For our AST-level LRDB, we would exclude
such disabled code blocks if we were certain that their guarding
condition can never evaluate to true.

So while the line-based approach is highly generalizable, we
believe we have found a suitable implementation. However, it comes
with constraints that might hinder its applicability: (1) We extract
line ranges for all shipped variants. Consequently, SiB’s costs scale
with the number of shipped variants. While it will scale much better
than the BE-based approach, situations with enormous variant sets
may limit its benefits. (2) Although we do not require a semantic
understanding of the patch, we still have to be conservative with
changes to the variability structure itself. While these, if occurring
often, could deteriorate SiB’s benefits, studies of CPP usage [19]
showed that developers tend to use it in a “disciplined” fashion.

5.2 Further Usage in the Development Process

Patch management is not confined to the maintenance phase but is
also part of the development cycle before the software is shipped
to the customer. In this context SiB could also be employed in
the domain of regression test selection (RTS) [36] for SPLs. RTS
answers the question of which downstream (unit) test cases need to
be (re-)executed after a certain modification is made. By integrating
SiB into this process, we could effectively select only the relevant
test cases that are impacted by the change.

SiB could also be used to provide developers with real-time
feedback from their integrated development environment (IDE).
As LRDB queries, even in large projects like Linux, are executed
swiftly, developers can receive immediate feedback regarding the
impact of their intended changes. Thereby, developers are directly
informed which shipped variants and, consequently, which cus-
tomers would be affected by a planned change. This knowledge
can aid developers in exercising caution, particularly when a large
number of customers stand to be impacted.

The LRDB’s information may be utilized to find source code
not used by any shipped variant. This could help with debloating
variability, where tool support has been reported as sparse [1].

6 RELATED WORK

The challenge we address resides at the intersection of two key
research areas: patch assessment and static analysis of configurable
software. As most related works tend to focus on only one area, we
first discuss these areas separately before exploring their overlaps.

Patch Assessment Considering the vast array of research on
patch assessment, we will focus on a select few that are notably
relevant to our work.

Our patch filtering technique is closely related to change-impact
analyses [5], which aim to automatically understand the impact of

SPLC °24, September 02-06, 2024, Dommeldange, Luxembourg

a change. However, in contrast to such detailed analyses, SiB only
provides a binary impact decision, thus promoting its efficiency.

Extensive research has been conducted in the realm of patch
classification: Sawadogo et al. [38] classify patches based on their
relevance to security, whereas Murgia et al. [30] offer more nuanced
classifications by parsing commit messages. Lomio et al. [23] have
worked on identifying patches that could potentially introduce
new security vulnerabilities. Another facet of this domain is patch
correctness — determining whether a patch is safe to apply without
altering the program’s intended behavior, as is often the case with
security patches [24]. Wang et al. [48] offer a comprehensive survey
on the assessment of patch correctness, specifically for patches
generated by automated systems. Patch retrieval (see Fig. 2) is the
process of identifying whether a software system is vulnerable to
a specific vulnerability. In this context Plate et al. [31] examined
known vulnerabilities in executed code, including dependencies.

Although these approaches address more complex problems
than SiB, which solely determines whether a patch influences a pro-
gram variant, they do not account for statically-configured software.
Thus, these intricate, and hence slower, analyses must be executed
for each configuration, leading to inefficient scaling behavior. To our
knowledge no research has been conducted on the binary decision
of patch relevance for statically-configurable software.

Static Analysis of Configurable Software Configurable soft-
ware poses a significant challenge for static analysis due to the
co-existence of multiple variants in a single code base.

Sampling [46] is one strategy often employed to mitigate this
issue by individually analyzing a large number of (random) con-
figurations, aiming to cover the entire configuration space. SiB
complements such methods if we treat each sampled configuration
as a shipped variant. While sampling provides a level of coverage,
it lacks soundness. To ensure comprehensive coverage of the entire
SPL, variability-aware static analysis was proposed. Such methods
often involve configuration-aware parsing as done by tools like
SuperC [13] or TypeChef [14]. For example, Liebig et al. [20] utilize
TypeChef to propose variability-aware type-checking and liveness
analyses. However, configuration-aware parsing can be slow for
larger projects and relies on the actual programming language (i.e.,
C), a dependency that SiB does not have.

Maintaining configurable software is another critical aspect:
Vamypr [40] is a tool designed to provoke variability-dependent
compiler warnings. Further, Angerer et al. [3] propose a dead code
analysis, although it only applies to the current configuration. Un-
dertaker [41] extends this concept, translating the feature model
into propositional logic to identify dead CPP blocks across all pos-
sible configurations. Zhang and Becker [50] present metrics for
variability models that help improve the SPL, while Lillack et al.
[21] analyze load-time configuration usage in Android apps.

While variability-aware static analysis provides a range of meth-
ods, these are typically designed with variability in mind and often
require specialized knowledge about the software (e.g., variability
model). Unlike these tools, SiB does not require this specialized
information and it targets the later stages of the software life cycle,
as opposed to focusing on the development phase.

Variability-Aware Change Impact Few works have inte-
grated the field of change-impact analysis with variability-aware
program analysis. Angerer et al. [2] propose a configuration-aware

Tobias Landsberg, Christian Dietrich, and Daniel Lohmann

change impact analysis for load-time variability, using an inter-
procedural and conditional system dependency graph. While their
approach is elegant, it relies on extracting configuration-aware de-
pendencies from the AST. As we target compile-time variability, this
would require a variability-aware parser, like TypeChef or SuperC.
Wang et al. [47] undertook such a complete approach based on
variability-aware functional-equivalence checking. Their approach
takes seconds for projects with few features and requires a formal
feature model, which is often not available for OSS components.
Further, the analyzed program must not contain global variables,
jumps, or recursive function calls. Instead of identifying all possible
configurations with changed semantic, SiB restricts itself to the
known and, therefore, relevant configurations, enabling faster re-
sults. Test2Feature [25] handles regression test selection. Depending
on a change, only tests regarding affected features should be exe-
cuted. Michelon et al. [27] analyze and propagate feature revisions.
While both approaches, like SiB, work on line-based textual changes,
mapping features to lines is handled as a constraint satisfaction
problem, which differs fundamentally from SiB. Schwarzkopf et al.
[39] address a conceptually similar problem in the context of virtual
machine images, but there are no technical similarities. Their ap-
proach involves performing checks for updated software packages
across all images in a cloud environment.

Our proposal, SiB, bridges the gap between patch management
and configurable-software research. By filtering out irrelevant
patch-variant combinations, SiB can reduce the number of variants
that need to be processed by the patch-management process, all
without requiring fundamental modifications to the process.

7 CONCLUSION

Patch management and deciding on patch roll-outs (e.g., for security
fixes) is a tedious and expensive process in software maintenance.
However, most system software is highly compile-time configurable,
so there is a high chance that (even critical) patches do not affect
all shipped or installed variants.

Therefore, we proposed variant-aware patch-filtering as a part
of the early patch assessment process for statically-configured soft-
ware with a predefined set of variants. Our SiB approach integrates
with the C preprocessor during build time to record the relevant
line-number ranges for each variant, which are matched against
incoming patches to determine the set of affected variants.

In our evaluation, conducted on four large system-software
projects (Linux, OpenSSL, SQLite, Bochs), we could confirm that
for a set of 15 (random) configurations SiB correctly classifies up
to 68 percent of variants as unaffected and, therefore, can reduce
deployments significantly. Moreover, SiB does not produce false
negatives, so it is also usable and effective to filter out high-priority
security patches for unaffected variants.

Please refer to the published artifacts to verify and replicate the
experiments [17].

ACKNOWLEDGMENTS

We would like to thank our reviewers for their constructive feed-
back. This work has been supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) — 236869097.

Should I Bother? Fast Patch Filtering for Statically-Configured Software Variants

REFERENCES

[1] Mathieu Acher, Luc Lesoil, Georges Aaron Randrianaina, Xhevahire Térnava,

[10

(11

[12

[14

[15

[16

[17

[18

[19

[20

[21

=

]

]

]

]

and Olivier Zendra. 2023. A Call for Removing Variability. In 17th Intl. Working
Conf. on Variability Modelling of Software-Intensive Systems. ACM. https://doi.
org/10.1145/3571788.3571801

Florian Angerer, Andreas Grimmer, Herbert Prahofer, and Paul Grunbacher. 2015.
Configuration-Aware Change Impact Analysis (T). In 2015 30th IEEE/ACM Intl.
Conf. on Automated Software Engineering (ASE). IEEE. https://doi.org/10.1109/
ASE.2015.58

Florian Angerer, Herbert Prihofer, Daniela Lettner, Andreas Grimmer, and Paul
Griinbacher. 2014. Identifying inactive code in product lines with configuration-
aware system dependence graphs. In 18th Intl. Software Product Line Conf. -
Volume 1. ACM. https://doi.org/10.1145/2648511.2648517

Apache. 2021. CVE - CVE-2021-44228. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=2021-44228

Robert S Arnold. 1996. Software change impact analysis. IEEE Computer Society
Press.

Maider Azanza, Leticia Montalvillo, and Oscar Diaz. 2021. 20 years of industrial
experience at SPLC: a systematic mapping study. In 25th ACM Intl. Systems and
Software Product Line Conf.

T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. 2013. A Study of
Variability Models and Languages in the Systems Software Domain. IEEE Trans.
on Software Engineering 39, 12 (2013). https://doi.org/10.1109/TSE.2013.34
Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns. Addison-Wesley.

Christian Dietrich, Valentin Rothberg, Ludwig Fiiracker, Andreas Ziegler, and
Daniel Lohmann. 2017. cHash: Detection of Redundant Compilations via AST
Hashing. In 2017 USENIX Annual Technical Conf. (USENIX °17). USENIX Associa-
tion. https://www.usenix.org/conference/atc17/technical-sessions/presentation/
dietrich

Christian Dietrich, Reinhard Tartler, Wolfgang Schroder-Preikschat, and Daniel
Lohmann. 2012. A Robust Approach for Variability Extraction from the Linux
Build System. In 16th Software Product Line Conf. (SPLC ’12), Eduardo Santana
de Almeida, Christa Schwanninger, and David Benavides (Eds.). ACM Press.
https://doi.org/10.1145/2362536.2362544

Nesara Dissanayake, Asangi Jayatilaka, Mansooreh Zahedi, and M Ali Babar.
2022. Software security patch management-A systematic literature review of
challenges, approaches, tools and practices. Information and Software Technology
144 (2022).

Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, and
J. Alex Halderman. 2014. The Matter of Heartbleed. In 2014 Conf. on Internet
Measurement Conf. (IMC ’14). Association for Computing Machinery. https:
//doi.org/10.1145/2663716.2663755

Paul Gazzillo and Robert Grimm. 2012. SuperC: parsing all of C by taming the
preprocessor. In ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI ’12). ACM Press. https://doi.org/10.1145/2254064.2254103
Christian Kastner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. 2011. Variability-Aware Parsing in the Presence
of Lexical Macros and Conditional Compilation. In 26th ACM Conf. on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA ’11). ACM
Press. https://doi.org/10.1145/2048066.2048128

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2020.
Spectre attacks: Exploiting speculative execution. Commun. ACM 63, 7 (2020).
Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. 2020. Set the
Configuration for the Heart of the OS: On the Practicality of Operating System
Kernel Debloating. ACM on Measurement and Analysis of Computing Systems 4,
1, Article 03 (2020). https://doi.org/10.1145/3379469

Tobias Landsberg, Christian Dietrich, and Daniel Lohmann. 2024. Should I Bother?
Fast Patch Filtering for Statically-Configured Software Variants — Artifacts. https:
//doi.org/10.5281/zenodo.11611859

Ryan M. Layer, Kevin Skadron, Gabriel Robins, Ira M. Hall, and Aaron R. Quinlan.
2012. Binary Interval Search: a scalable algorithm for counting interval intersec-
tions. Bioinformatics 29, 1 (2012). https://doi.org/10.1093/bioinformatics/bts652
Jorg Liebig, Christian Kastner, and Sven Apel. 2011. Analyzing the discipline
of preprocessor annotations in 30 million lines of C code. In 10th Intl. Conf. on
Aspect-Oriented Software Development (AOSD ’11), Shigeru Chiba (Ed.). ACM
Press. https://doi.org/10.1145/1960275.1960299

Jorg Liebig, Alexander von Rhein, Christian Késtner, Sven Apel, Jens Dérre, and
Christian Lengauer. 2013. Scalable analysis of variable software. In 2013 9th Joint
Meeting on Foundations of Software Engineering. ACM. https://doi.org/10.1145/
2491411.2491437

Max Lillack, Christian Késtner, and Eric Bodden. 2014. Tracking load-time config-
uration options. In 29th ACM/IEEE Intl. Conf. on Automated Software Engineering.
ACM. https://doi.org/10.1145/2642937.2643001

[22]

[23

[24

[29

[30

[31

[32

[38

[39

[40

SPLC *24, September 02-06, 2024, Dommeldange, Luxembourg

Daniel Lohmann. 2022. "What is the Ideal Operating System?’: Technical Per-
spective. Commun. ACM 65, 5 (2022). https://doi.org/10.1145/3524299
Francesco Lomio, Emanuele Iannone, Andrea De Lucia, Fabio Palomba, and
Valentina Lenarduzzi. 2022. Just-in-time software vulnerability detection: Are
we there yet? Journal of Systems and Software 188 (2022). https://doi.org/10.
1016/j.js5.2022.111283

Aravind Machiry, Nilo Redini, Eric Camellini, Christopher Kruegel, and Giovanni
Vigna. 2020. SPIDER: Enabling Fast Patch Propagation In Related Software
Repositories. In 2020 IEEE Symp. on Security and Privacy (SP). IEEE. https:
//doi.org/10.1109/SP40000.2020.00038

Willian D. F. Mendonga, Silvia R. Vergilio, Gabriela K. Michelon, Alexander Egyed,
and Wesley K. G. Assuncio. 2022. Test2Feature: feature-based test traceability
tool for highly configurable software. In 26th ACM Intl. Systems and Software
Product Line Conf. - Volume B. ACM. https://doi.org/10.1145/3503229.3547031
Neel Metha, Riku, Antii, and Matti. 2014. Heartbleed Bug. https://heartbleed.com/
Gabriela K. Michelon, Wesley K. G. Assuncio, Paul Griinbacher, and Alexander
Egyed. 2023. Analysis and Propagation of Feature Revisions in Preprocessor-based
Software Product Lines. In 2023 IEEE Intl. Conf. on Software Analysis, Evolution
and Reengineering (SANER). https://doi.org/10.1109/SANER56733.2023.00035
Gabriela K. Michelon, Wesley K. G. Assungéo, David Obermann, Lukas Linsbauer,
Paul Griinbacher, and Alexander Egyed. 2021. The life cycle of features in
highly-configurable software systems evolving in space and time. In 20th ACM
SIGPLAN Intl. Conf. on Generative Programming: Concepts and Experiences. ACM.
https://doi.org/10.1145/3486609.3487195

Gabriela Karoline Michelon, David Obermann, Lukas Linsbauer, Wesley Klew-
erton G. Assuncédo, Paul Griinbacher, and Alexander Egyed. 2020. Locating
feature revisions in software systems evolving in space and time. In 24th
ACM Conf. on Systems and Software Product Line: Volume A - Volume A. ACM.
https://doi.org/10.1145/3382025.3414954

Alessandro Murgia, Giulio Concas, Michele Marchesi, and Roberto Tonelli. 2010.
A machine learning approach for text categorization of fixing-issue commits
on CVS. In 2010 ACM-IEEE Intl. Symp. on Empirical Software Engineering and
Measurement. ACM. https://doi.org/10.1145/1852786.1852794

Henrik Plate, Serena Elisa Ponta, and Antonino Sabetta. 2015. Impact assessment
for vulnerabilities in open-source software libraries. In 2015 IEEE Intl. Conf. on
Software Maintenance and Evolution (ICSME). IEEE. https://doi.org/10.1109/ICSM.
2015.7332492

Matthew Prince. 2014. The Hidden Costs of Heartbleed. https://blog.cloudflare.
com/the-hard- costs-of-heartbleed/

Rick Rabiser, Klaus Schmid, Martin Becker, Goetz Botterweck, Matthias Galster,
Iris Groher, and Danny Weyns. 2018. A Study and Comparison of Industrial
vs. Academic Software Product Line Research Published at SPLC. In 22nd Intl.
Systems and Software Product Line Conf. - Volume 1 (SPLC ’18). Association for
Computing Machinery. https://doi.org/10.1145/3233027.3233028

Georges Aaron Randrianaina, Djamel Eddine Khelladi, Olivier Zendra, and Math-
ieu Acher. 2022. Towards incremental build of software configurations. In
ACM/IEEE 44th Intl. Conf. on Software Engineering: New Ideas and Emerging
Results. ACM. https://doi.org/10.1145/3510455.3512792

Joel Rosdahl. 2010. Ccache — Compiler cache. https://ccache.dev

Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing Regression Test
Selection Techniques. IEEE Trans. Softw. Eng. 22, 8 (1996). https://doi.org/10.
1109/32.536955

Andreas Ruprecht, Bernhard Heinloth, and Daniel Lohmann. 2014. Automatic
Feature Selection in Large-Scale System-Software Product Lines. In 13th Intl. Conf.
on Generative Programming and Component Engineering (GPCE ’14), Matthew
Flatt (Ed.). ACM Press. https://doi.org/10.1145/2658761.2658767

Arthur D. Sawadogo, Tegawendé F. Bissyandé, Naouel Moha, Kevin Allix, Jacques
Klein, Li Li, and Yves Le Traon. 2022. SSPCatcher: Learning to catch security
patches. Empirical Software Engineering 27, 6 (2022). https://doi.org/10.1007/
510664-022-10168-9

Roland Schwarzkopf, Matthias Schmidt, Christian Strack, and Bernd Freisleben.
2011. Checking Running and Dormant Virtual Machines for the Necessity of
Security Updates in Cloud Environments. In 2011 IEEE Third Intl. Conf. on Cloud
Computing Technology and Science. IEEE. https://doi.org/10.1109/CloudCom.
2011.40

Reinhard Tartler, Christian Dietrich, Julio Sincero, Wolfgang Schroder-Preikschat,
and Daniel Lohmann. 2014. Static Analysis of Variability in System Soft-
ware: The 90,000 #ifdefs Issue. In 2014 USENIX Annual Technical Conf. (USENIX
’14). USENIX Association. https://www.usenix.org/conference/atc14/technical-
sessions/presentation/tartler

Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schréder-
Preikschat. 2011. Feature Consistency in Compile-Time-Configurable System
Software: Facing the Linux 10,000 Feature Problem. In ACM SIGOPS/EuroSys
European Conf. on Computer Systems 2011 (EuroSys ’11), Christoph M. Kirsch and
Gernot Heiser (Eds.). ACM Press. https://doi.org/10.1145/1966445.1966451

The Clang Team. 2023. JSON Compilation Database Format Specification. https:
//clang llvm.org/docs/JSONCompilationDatabase. html

https://doi.org/10.1145/3571788.3571801
https://doi.org/10.1145/3571788.3571801
https://doi.org/10.1109/ASE.2015.58
https://doi.org/10.1109/ASE.2015.58
https://doi.org/10.1145/2648511.2648517
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-44228
https://doi.org/10.1109/TSE.2013.34
https://www.usenix.org/conference/atc17/technical-sessions/presentation/dietrich
https://www.usenix.org/conference/atc17/technical-sessions/presentation/dietrich
https://doi.org/10.1145/2362536.2362544
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2254064.2254103
https://doi.org/10.1145/2048066.2048128
https://doi.org/10.1145/3379469
https://doi.org/10.5281/zenodo.11611859
https://doi.org/10.5281/zenodo.11611859
https://doi.org/10.1093/bioinformatics/bts652
https://doi.org/10.1145/1960275.1960299
https://doi.org/10.1145/2491411.2491437
https://doi.org/10.1145/2491411.2491437
https://doi.org/10.1145/2642937.2643001
https://doi.org/10.1145/3524299
https://doi.org/10.1016/j.jss.2022.111283
https://doi.org/10.1016/j.jss.2022.111283
https://doi.org/10.1109/SP40000.2020.00038
https://doi.org/10.1109/SP40000.2020.00038
https://doi.org/10.1145/3503229.3547031
https://heartbleed.com/
https://doi.org/10.1109/SANER56733.2023.00035
https://doi.org/10.1145/3486609.3487195
https://doi.org/10.1145/3382025.3414954
https://doi.org/10.1145/1852786.1852794
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://blog.cloudflare.com/the-hard-costs-of-heartbleed/
https://blog.cloudflare.com/the-hard-costs-of-heartbleed/
https://doi.org/10.1145/3233027.3233028
https://doi.org/10.1145/3510455.3512792
https://ccache.dev
https://doi.org/10.1109/32.536955
https://doi.org/10.1109/32.536955
https://doi.org/10.1145/2658761.2658767
https://doi.org/10.1007/s10664-022-10168-9
https://doi.org/10.1007/s10664-022-10168-9
https://doi.org/10.1109/CloudCom.2011.40
https://doi.org/10.1109/CloudCom.2011.40
https://www.usenix.org/conference/atc14/technical-sessions/presentation/tartler
https://www.usenix.org/conference/atc14/technical-sessions/presentation/tartler
https://doi.org/10.1145/1966445.1966451
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

SPLC °24, September 02-06, 2024, Dommeldange, Luxembourg

[43] The kernel development community. 2019. The Linux Kernel — Reproducible
builds. https://www.kernel.org/doc/html/latest/kbuild/reproducible-builds.html

[44] Thomas Thiim, Sven Apel, Christian Késtner, Ina Schaefer, and Gunter Saake. 2014.
A Classification and Survey of Analysis Strategies for Software Product Lines.
ACM Computing Survey 47, 1, Article 6 (2014). https://doi.org/10.1145/2580950

[45] Thomas Thiim, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, Mukelabai
Mukelabai, Mahsa Varshosaz, Goetz Botterweck, Ina Schaefer, and Timo Kehrer.
2019. Towards Efficient Analysis of Variation in Time and Space. In 23rd Intl.
Systems and Software Product Line Conf. - Volume B. ACM. https://doi.org/10.
1145/3307630.3342414

[46] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thiim, Tobias Runge, Moham-
mad Reza Mousavi, and Ina Schaefer. 2018. A Classification of Product Sam-
pling for Software Product Lines. In 22nd Intl. Systems and Software Prod-
uct Line Conf. - Volume 1 (SPLC ’18). Association for Computing Machinery.
https://doi.org/10.1145/3233027.3233035

Tobias Landsberg, Christian Dietrich, and Daniel Lohmann

[47] Alan Wang, Nick Feng, and Marsha Chechik. 2023. Code-Level Functional

Equivalence Checking of Annotative Software Product Lines. In 27th ACM Intl.
Systems and Software Product Line Conf. - Volume A. ACM. https://doi.org/10.
1145/3579027.3608978

Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou,
Xiaoguang Mao, and Hai Jin. 2020. Automated patch correctness assessment:
how far are we?. In 35th IEEE/ACM Intl. Conf. on Automated Software Engineering.
ACM. https://doi.org/10.1145/3324884.3416590

Scott Yilek, Eric Rescorla, Hovav Shacham, Brandon Enright, and Stefan Savage.
2009. When private keys are public: Results from the 2008 Debian OpenSSL
vulnerability. In 9th ACM SIGCOMM Conf. on Internet Measurement.

Bo Zhang and Martin Becker. 2012. Code-based variability model extraction for
software product line improvement. In 16th Intl. Software Product Line Conf. -
Volume 2. ACM. https://doi.org/10.1145/2364412.2364428

https://www.kernel.org/doc/html/latest/kbuild/reproducible-builds.html
https://doi.org/10.1145/2580950
https://doi.org/10.1145/3307630.3342414
https://doi.org/10.1145/3307630.3342414
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1145/3579027.3608978
https://doi.org/10.1145/3579027.3608978
https://doi.org/10.1145/3324884.3416590
https://doi.org/10.1145/2364412.2364428

	Abstract
	1 Introduction
	2 Problem Description
	2.1 System Model
	2.2 Patch Management
	2.3 Variability-Aware Patch Filtering

	3 SiB: Fast Variability-Aware Patch Filtering
	3.1 Line-Range DB
	3.2 CPP Line Ranges
	3.3 Line-Range–Based Patch Filtering

	4 Evaluation
	4.1 Case Studies
	4.2 Evaluation Scenario
	4.3 Patch-Filtering Costs
	4.4 Patch-Filtering Accuracy
	4.5 High-Priority Patches
	4.6 AST-Level LRDB Information
	4.7 Evaluation Summary

	5 Discussion
	5.1 Applicability and Generalizability
	5.2 Further Usage in the Development Process

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

