
kpac: Efficient Emulation of the ARM Pointer
Authentication Instructions

Accepted at EMSOFT 2024

Illia Ostapyshyn∗, Gabriele Serra†, Tim-Marek Thomas∗, Daniel Lohmann∗
∗Leibniz Universität Hannover

Hannover, Germany
{ostapyshyn,thomas,lohmann}@sra.uni-hannover.de

†Scuola Superiore Sant’Anna
Pisa, Italy

gabriele.serra@santannapisa.it

Abstract—ARMv8.3-A has introduced the Pointer Authenti-
cation (PA) feature, a new set of measures and instructions to

sign and validate pointers. PA is already used and supported by

the major compilers to protect return addresses on the stack

as a measure against memory corruption attacks. As more and

more SoCs implement ARMv8.3-A and code compiled with PA

is even fully backwards compatible on CPUs without (where

the new instructions are just ignored), we can expect PA-

enabled binaries to become standard in the near future. This

gives rise to the question, if and how also systems without

native PA could benefit from the extra security provided by

the return address protection.

In this paper, we explore kpac, a set of efficient software-

based approaches to bring PA-based return-address pro-

tection onto platforms without hardware support in an

easily adoptable (binary-compatible) and scalable manner.

Technically, kpac achieves this by either a synchronous

trap-based emulation inside the kernel or an asynchronous

novel memory-based invocation of a dedicated CPU core. Our

experiments with the CortexSuite benchmarks, Chromium,

and Memcached on a variety of platforms running Linux

ranging from a Xilinx ZCU102 board, over a Raspberry Pi

4, up to an 80-core Ampere Altra demonstrate the broad

applicability and scalability of our approach. Furthermore,

we discuss how the principles of kpac can be generalized to

other, suited problem areas.

I. Introduction
Hardware-based implementations for Control-Flow Integrity

(CFI) are becoming increasingly popular, with Intel’s Control-
Flow Enforcement Technology (CET) [1]–[3] and ARM’s Pointer
Authentication (PA) [4] features being the most prominent
candidates. Both provide measures to ensure the integrity
of the programmer-intended control-flow by protecting
the return addresses on the stack, a frequent target for
buffer-overflow attacks in combination with techniques like
return- or jump-oriented programming (ROP/JOP) [5]–[7].
The hardware-based implementations overcome the most
significant acceptance limitations of software-based CFI
techniques: poor performance [8] and issues regarding the
protection of the protection measure itself [9]–[12]. While
the ARMv8.3-A PA feature is long supported by standard
compilers [13], [14] and the Linux kernel (in contrast to

This work was partly supported by the German Research Foundation
(DFG) under grant no. LO 1719/4-1 (391395160). We thank the anonymous
reviewers for their feedback and fruitful comments.

Intel’s CET, which only very recently made it into Linux [15]),
for the last five years only Apple’s A12/M1 actually im-
plemented it. However, this is currently changing with
Qualcomm’s Snapdragon 8cx Gen 3 [16], which includes PA
support. As PA-enabled binaries are fully backwards compat-
ible (the special new instructions inserted by the compiler
to encode/decode return addresses resolve to NOPs on CPUs
without), we can expect to see a much broader adoption in the
near future. Therefore, we consider it worthwhile to explore
how and at what costs it would be possible to emulate the PA
feature for return address protection on platforms without
native PA.

A. About this Paper

In this paper, we provide, discuss, and evaluate four different
approaches to emulate PA-based return-address protection
on ARM processors without PA support. We compare our
results to the only attempt in this direction we are aware of,
which is pac-pl of Serra and colleagues [17], who employed an
FPGA for the hardware-based encryption/decryption of return
addresses. While pac-pl provides an acceptable performance
impact (negligible in many cases, up to 3x in some cases),
it also comes with a number of drawbacks. Firstly, pac-pl
is not binary compatible, as the code has to be compiled
with a custom GCC extension. Furthermore, it requires the
availability of an FPGA, which alone makes it unsuitable
for many application scenarios. Consequently, their work
triggered our attempt to look for more efficient software-
based and, if possible, also binary-compatible approaches.
In a nutshell, we present a 2 × 2 matrix of software-

based approaches that either require recompilation (like pac-
pl) or are binary compatible (via code patching) and either
execute synchronously (by trapping) or asynchronously (by
employing a dedicated CPU core) and compare them to kpacpl,
a reimplementation of pac-pl by its author. Our results show
that with the extra core (which in real-world settings is
arguably more available/affordable than the on-board-FPGA),
we outperform the PL-based approach in all cases. Without
the extra core, the synchronous and binary-compatible variant
comes at a worst-case overhead of 17.37x, which is orders of
magnitude below the costs for software emulation reported so
far [17]. For instance, Chromium on an Raspberry Pi 4 receives



Pointer
0x0000AABBCCDDEEFF

Context
PAC

Key

PAC Pointer
0x1234AABBCCDDEEFF

PAC Pointer

Context
AUT

Key

(a)

(b) Pointer
0x0000AABBCCDDEEFF

Invalid pointer
0x800000000BADC0DE

E

=
̸=

Fig. 1: The pointer authentication mechanism.

an actual slowdown by 7.13x in the JetStream benchmark,
which could be considered as acceptable for security-critical
web applications.
In particular, we claim the following contributions:
• We describe kpac, an approach for efficient software-
based and optionally ARMv8.3-ABI-compatible pointer
authentication as an extension to the Linux kernel.

• We provide remote-core system call (rcsc), a novel mecha-
nism for efficient and safe interaction between user-mode
threads and dedicated kernel cores.

• We explore and evaluate the design space for kpac on a
variety of benchmarks and platforms.

The remainder of the paper is organized as follows: Sec. II
presents the ARM PA mechanism and Serra et al.’s implemen-
tation based on programmable logic [17]. Sec. III describes
the assumed threat model, Sec. IV our approach, and Sec. V
the concrete implementation. In Sec. VI we evaluate the
implementation variants and discuss our findings in Sec. VII.
Finally, we review further relevant literature in Sec. VIII and
conclude the paper in Sec. IX.

II. Background
A. ARMv8.3-A Pointer Authentication

Pointer Authentication (PA) is an approach to protect code
and data pointers with negligible footprint in performance,
memory and hardware. The key idea is to utilize free bits in
the unused upper part of pointers to store a cryptographic
hash of the pointer value as its signature, so that unintended
modifications can easily be detected. Typical memory con-
figurations on AArch64 require only 48-bit virtual addresses,
which leaves 16 bits for the signature, called the pointer
authentication code (PAC) [4]. The signature algorithm is left
to the implementation; ARMv8.3-A suggests the QARMA block
cipher [18], which can efficiently be realized in hardware.
The mechanism features instructions for the creation and

validation of these signatures. Fig. 1 (a) visualizes the signing
instructions using the mnemonic PAC. These instructions take
three values, the 64-bit pointer itself, a 128-bit key (implicitly),
and 64-bit context information to produce a pointer with a
PAC in its upper bits. The ARM implementation features

five keys: two for instructions and data pointers each, and
one general-purpose key. They are stored in system control
registers that are accessible only by higher privilege levels
(i.e., the operating system kernel) and, thus, kept secret from
user applications requesting authentication. Linux, Windows,
and XNU [16], [19], [20] manage these keys on a per-process
basis for systems with the PA extension; Linux 5.7+ and XNU
even support PA inside the kernel itself [21].
After the pointer has been signed using PAC instructions,

their counterparts based on the mnemonic AUT are responsible
for verification of signature before usage (Fig. 1, b): The AUT

instructions take the authenticated pointer, recompute the
PAC, and compare the result with the code stored in the signed
pointer. If the signature matches, the PAC is stripped from
the pointer. Otherwise a trap will occur, either immediately
(ARMv8.6-A) or upon dereferencing of the pointer.

GCC and LLVM compilers already employ PA [13], [14]
to protect function return addresses (the backward edges
of the control flow) that might be stored on the stack,
where they would become vulnerable for buffer overflow
attacks. This is done by inserting PACIASP and AUTIASP

instructions, operating on the link register (LR/X30) with the
stack pointer (SP) as context value in the function prologues
and epilogues, respectively. In the ARM ISA, these instructions
are located in the NOP instruction space, which ensures
backward compatibility of newly compiled programs with
CPUs lacking the PA extension. As leaf functions never push
their return address onto the stack, the standard setting is to
omit PA instructions in them.

However, half a decade following the introduction of the PA
mechanism in the ARM specification and despite ubiquitous
compiler and OS support, only few systems are readily
available that implement it in hardware. Most notably, the
A12 chip presented by Apple in 2018 and all its successors
come with PA [22] mechanism. This has only recently
be complemented by Qualcomm’s Snapdragon 8cx Gen 3
SoC [16], which brings PA also to the Windows and Android
domains. Nevertheless, we face a plethora of systems with no
support for pointer authentication and adoption will continue
to be slow, especially in the embedded domain.

B. PA using an FPGA: The pac-pl Approach
As a solution for this, Serra et al. implemented the PA

mechanism on an SoC featuring a field programmable gate
array (FPGA) [17]. Since we base our work on theirs and use
a reimplementation as a comparison point, we briefly present
and discuss it here.1
The main idea of pac-pl is to perform the signing and

authentication of pointers using programmable logic (PL)
on the SoC. Its architecture consists of two components:
A QARMA block cipher [18] crypto engine and an AXI
subordinate device, which handles interaction between the
crypto engine and the host over the AXI bus via memory-
mapped registers, which are mapped into the kernel- and

1Unfortunately, the original pac-pl code underlies IP restrictions, but its
author provided us with a personal reimplementation of its core features.



user-level address spaces, respectively. Instead of using the
ARMv8.3-A PAC/AUT instructions, the signing/authentication
of pointers is triggered by writing into the corresponding
registers, which lets the pac-pl accelerator generate, remove,
and check the PAC. Hence, the approach is not binary-
compatible: the software has to be compiled with a custom
GCC plugin that generates the necessary instructions.
Since QARMA is designed to be particularly fast in

hardware, the overheads are dominated by the communication
latency, which is costly due to the mismatch in the clock
frequencies between the FPGA and the host CPU. While
calculating the cipher itself only requires 10 host cycles,
a complete PAC/AUT operation takes at least 426 cycles. In
our measurements on a Xilinx ZCU102 @ 1.2GHz this
approach leads (with the most strict PA application mode
all, explained later) to an average overhead of 34 percent
for the CortexSuite [23] benchmarks. The operation time is
bounded, making it suitable for real-time systems.
In the paper [17], the utilization of an FPGA is partly

justified by comparing it to performance results from a
software-based emulation of their approach, which bears much
higher (up to 5 orders of magnitude!) overheads. However,
this extremely high overhead is likely caused by the employed
user-kernel interface, which induces two page faults per
PAC/AUT transaction (hence, four page faults per protected
function) to emulate a pac-pl device. Furthermore, while
QARMA is optimized for hardware implementations, another
cipher might be more suitable for a CPU-based software
implementation. Last but not least, the work does not evaluate
nor mention support of multithreaded applications. In the
remainder of this paper, we explore the options for more
efficient and optionally binary-compatible PA emulation that
scales well in concurrent environments.

III. Security Objectives and Threat Model

ARMv8.3 Pointer Authentication was developed to accom-
plish pointer integrity. Intuitively, pointer integrity seeks to
prevent alterations to pointers while residing in memory,
ensuring that the value of a pointer at the time of its use (i.e.,
dereferencing) remains consistent with the value intended
during its creation or storage. Control-flow attacks and
numerous other data-oriented attacks hinge on manipulating
susceptible pointers. Consequently, the enforcement of pointer
integrity defends against these attacks. The security objective
of ARMv8.3 PA, therefore, consists of preventing the attacker
from forging pointers used by a vulnerable program.

Likewise, kpac pursues the same security guarantees. Our
approach shall satisfy the following functional requirements:
1) Pointer Integrity: Prevent and detect the use of corrupted

code or data pointers.
2) Attack resistance: Resist attempts to forge valid pointers

and resist pointer reuse attacks.
Further, we identify nonfunctional requirements, which allow
wider compatibility:

1) Compatibility: Enabling Pointer Integrity protection of
existing programs without interfering with their operation
even without dedicated hardware support.

2) Performance: Minimize run-time overhead by providing
configurable protection scopes as a trade-off between
hardening and performance.

The following assumptions define the attacker’s capability,
consistent with prior works in this area ([24], [25]). Our
adversary model reckons with an attacker: (i) with un-
restricted user-space memory read and write capabilities,
constrained exclusively by the Data Execution Prevention
(DEP) mechanism, therefore with the ability to read any
program memory and write to nonexecutable segments
exploiting input-controlled memory corruption errors in the
victim process (e.g., controlling return addresses, function
pointers or VTable pointers); (ii) disposes of a full knowledge
of the process memory layout and has successfully bypassed
address space layout randomization (ASLR), if present; (iii)
with no control over privilege levels higher than the user
level, meaning without the ability to access kernel space or
higher privilege levels.
Note that assumptions (i) and (ii) rule out the feasibility

of randomization-based defenses susceptible to information
disclosure, such as stack canaries, ASLR or software shadow-
stacks. kpac, was designed to maintain its effectiveness even
when the complete memory layout of the victim process is
disclosed as long as the assumption (iii) holds. Therefore,
the attacker cannot deduce the keys, which are located in
memory not directly readable from user space.
According to the presented threat model, kpac is as

secure as ARMv8.3 Pointer Authentication. The pac-pl [17]
authors have obsoleted the assumption (iii) by employing
ARM TrustZone, which creates isolated secure environments
to protect sensitive data, for key management. This extra
protection is applicable to kpac as well, but not further
explored in this paper.

IV. The kpac Approach

A key point of the ARMv8.3-A PA (also mimicked by pac-
pl) is that it delegates key management to the OS running
on EL1 privilege level (supervisor mode), ensuring higher
protection. In order to stay true to this property, kpac
delegates key management and exception handling to the
OS kernel. As a corollary, the partial interpretation of the PAC

and AUT operations by software has to take place inside the
kernel, which generally induces significant overhead, as every
operation thereby comes with a minimum of two user–kernel
context switches. Mitigating this overhead as far as possible
is one key to an efficient software implementation. The other
key is the overhead of the signing algorithm itself.

The central component of kpac is a Linux kernel extension,
which implements the PA backend. Since QARMA is not
suitable for fast software implementation, SipHash [26] has
been selected as the cryptographic hashing algorithm instead.
It is designed to be efficient and secure with short inputs



to compute a 64-bit message authentication code, which is
truncated to the unused bits of the pointer.

The kernel extension exposes two interfaces for user-space
applications to request pointer authentication (Fig. 2):
(A) Synchronous system calls (svc requests), which execute
the PA within the invoking thread. This is the canonical
way to implement a user–kernel interaction.

(B) Remote-core system call (rcsc), a novel asynchronous
communication protocol based on per-CPU shared memory,
which executes the PA on a dedicated kernel core running
the kpacd daemon. This (kind of) mimics the idea of pac-
pl to use extra hardware (here a CPU core instead of an
FPGA) for the PA.

To instrument applications with either invocation scheme,
two methods have been investigated:
(C) Static instrumentation by a compiler plugin (as in pac-pl).
This is, assumingly, the most run-time efficient way, as it
facilitates static optimization of the code and also provides
configurable protection scopes for overhead mitigation.

(D) Load-time instrumentation by a dynamic library (libkpac)
that is applied by the LD_PRELOAD feature of the system’s dy-
namic loader and patches at load time all PACIASP/AUTIASP
instructions in the code to invoke kpac instead. This
provides full binary compatibility for ARMv8.3-A binaries
that were compiled with PA support.

Tab. I briefly summarizes the resulting four kpac variants,
together with pac-pl and a native ARMv8.3-A processor.
The given overhead numbers should be considered as a
ballpark figure only. They describe the geometric mean over
all CortexSuite benchmarks on a Xilinx ZCU102 @ 1.2GHz.
Our experiments with Apple’s M1 Ultra did not yield any
measurable overhead for the native ARMv8.3-A PA.

TABLE I: Properties of presented emulation approaches.

Approach Hardware
requirements

Multi-
threaded

Binary
compat.

Bounded
WCET

Average
overhead

native ARMv8.3-A ✓ ✓ ✓ 0 %

(C) kpacpl-static FPGA ✓ 34 %
(AC) svc-static ✓ ✓ 88 %
(BC) kpacd-static extra core ✓ ✓ 17 %

(D) kpacpl-libkpac FPGA ✓ ✓ 44 %
(AD) svc-libkpac ✓ ✓ ✓ 87 %
(BD) kpacd-libkpac extra core ✓ ✓ ✓ 31 %

V. Implementation
We integrated kpac into the Linux kernel version 6.1. The
compiler support for the static instrumentation is provided
as a GCC 12.2 plugin.

A. svc: The Synchronous System Call Interface

The AArch64 instruction set defines the SVC (supervisor
call) instruction, which transfers the control flow to the EL1

user
kernel

(A) svc request (trap) (B) kpacd request (remote core syscall)

¤
hash()

waiting

application thread

¤
hash()

waiting

kpacd thread

Shared memory
per CPU core

Fig. 2: Application requesting pointer authentication by
making (A) an svc request, followed by (B) a kpacd request.privilege level running the OS kernel. This instruction is used
across operating systems to implement system calls and has a
16-bit immediate argument. On Linux, the system call number
is passed in the W8 register and the immediate argument of
the SVC instruction is ignored.
We extend the Linux system call interface to emulate the

ARMv8.3-A PACIASP and AUTIASP instructions by reserving
two values of the SVC instruction’s immediate argument.
These new emulation calls thereby require a single instruction
in the code that only alters the link register, making them
semantically equivalent to the PACIASP/AUTIASP instructions
emitted by standard compilers. As the execution time of the
SVC instruction and the SipHash algorithm takes bounded
time [26], the emulation is also suitable for hard real-time
settings that demand bounded WCETs.

B. kpacd: The Remote-Core System Call Interface
On many platforms, context switches into the OS kernel

induce a high overhead for changing the privilege level and
the address space. Furthermore, the executed kernel code
may put extra pressure to the CPU-local caches and the
TLB, significantly impairing performance [27]. An alternative
approach is to run kernel services asynchronously on a
dedicated core [28], [29] that always stays in kernel mode. The
services are invoked by a shared-memory interface between
both cores, omitting the above overhead altogether. Our
remote-core system call implements this idea for Linux, while
additionally providing for lock-free per-core separation.

With rcsc, one or several CPU cores are reserved for kpac
and execute the kpacd (Kernel PAC Daemon) in kernel mode,
which polls a shared memory page for PA requests. This
is comparable to pac-pl, where the service core acts as the
accelerator instead of an FPGA.

Sacrificing a full core just for PA purposes might appear as
an odd design decision, given that such core induces a much
higher hardware overhead than a small FPGA. However, in
practice, an unused core is way more often available and
actually cheaper for many embedded systems than an FPGA.
Invocation of kpacd: Lst. 1 demonstrates the assembly
code corresponding to an authentication rcsc to the kpacd

thread: After storing the pointer and the context value at the
respective offsets in the rcsc page (L3), the application hands
off the request by writing the operation code into the first
status word of the page (L6), which wakes the remote kpacd

to perform the requested operation. The status word is then
checked in a loop (L9–11) by loading the first word of the



1 mov x9, #KPAC_BASE
2 mov x10, sp
3 stp lr, x10, [x9, #REG_PLAIN] // store pointer and context
4
5 mov x10, #OP_PAC
6 stlr x10, [x9] // request operation
7
8 sevl
9 1: wfe // sleep for event <--+

10 ldxr x10, [x9] // |
11 cbnz x10, 1b // until completion ---+
12 ldr lr, [x9, #REG_CIPHER] // obtain result

Listing 1: Assembly code of a function prologue requesting a
signed pointer from kpacd .

page with the exclusive load (LDXR) instruction, branching to
WFE if the value is not zero (zero signals completion). The WFE

instruction hints the CPU core to enter a low-power state,
until a wake-up event occurs [4]. A remote store (by the
kpacd core) to this location, which was recently read using an
exclusive load (LDXR), generates such an event. Hence, on both
sides the polling does not come with an extra energy/heat
overhead. The combination of LDXR and WFE is also used in
the AArch64 __CMPWAIT_CASE macro of the Linux kernel.
Multithreading support: On multiprocessor systems,
multiple threads from within the same or different processes
might invoke kpacd simultaneously. These concurrent requests
need to be isolated and coordinated. rcsc solves this by
providing an individual rcsc page for each core, which is
(implicitly) used by the thread currently executing on this
core. Hence, no synchronization is required when accessing
the rcsc page, enabling scalability. As each core executes
exactly one thread at a time, the per-core pages also ensure
isolation. Upon a switch to another thread, the scheduler
completes any pending rcsc requests and saves the relevant
content (24 B) of the shared page in the thread control block.
Technically, the provision of per-core pages (which we

consider a general mechanism) has to be integrated with
the virtual memory subsystem. For this, the data structure
representing the address space and containing the pointer to
the top-level page directory (Page Global Directory, PGD), is
extended to support a different PGD per core. As illustrated
in Fig. 3, all the entries in these PGDs are kept synchronized
except for one: The entry leading to the core-local rcsc page.
Thereby, all cores use the same virtual address to access their
core-specific memory. This comes at the cost of duplicated
PGDs for processes using the kpacd service. Moreover, when a
PGD entry is modified, the changes have to be mirrored into
the PGDs of other CPU cores. The performance overhead
of this is negligible, since top-level page-directory entries
are only populated at the process start and rarely modified
during execution. As the underlying page tables are shared, all
changes in them (e.g., induced by an mmap()) are immediately
seen by other CPU cores and require no further mirroring
nor synchronization.

For load balancing in larger multi-core systems, an arbitrary
number of cores could be assigned to kpacd . Each kpacd core
services a fixed set of application cores in a round-robin
manner. Hence, the worst-case service time of kpacd is also
bounded in multi-core settings.

KPAC_BASE KPAC_BASE

CPU-local
kpac page tables

Shared
user page tables

CPU-local
PGD

CPU-local
PGD

CPU 0 CPU 1

Fig. 3: Page table arrangement introduced by CPU-local top-
level page directories (PGDs).

C. Static Instrumentation via Compiler Plugin

Applying either of the kpac invocation approaches for
return-address protection requires adding the signing and
authentication code in the prologues and epilogues of func-
tions. One way to achieve this, also taken by Serra and
associates [17], is to employ a compiler plugin and add an
additional pass working on the register-transfer language
representation of the program.
Protection scopes: If compiling code for ARMv8.3-A with
-mbranch-protection, GCC would apply PA-based return
address protection on the prologues and epilogues of all
nonleaf functions (which push the return address to memory).
As PA-based return address protection basically just adds two
instructions to a protected function, this does not induce any
measurable overhead. In contrast, a PA emulation induces a
much higher overhead, so it might be worthwhile to explore
different protection scopes and let the compiler plugin only
instrument the most vulnerable functions.
Our compiler plugin therefore resembles the protection

levels of GCC’s and Clang’s -fstack-protector feature [13],
[14], a purely compiler-based CFI measure that comes with
the common limitations regarding performance and actual
protection (cf. Sec. I). However, its defined protection levels
are established among developers who have to trade between
hardening and performance of their software. The three
different protection scopes are referred to in the following as
char, strong and all.
char protects nonleaf functions that place char arrays of at

least size 8 (ssp-buffer-size) on the stack and nonleaf func-
tions, that perform dynamic stack allocation with alloca().
This protection scope bears the lowest performance impact,
while already providing some protection for simple but
common buffer-overflow attacks.

strong extends the scope of protected functions to nonleaf
functions that accommodate any arrays or variables that
have their address taken on the stack. This further mitigates
the range of some advanced attack techniques based on
ROP at a moderate performance impact.

all extends the scope even further to all (nonleaf) functions,
which provides the highest protection level, but also induces
significant performance costs.



1 paciasp // PAC lr
2 sub sp, sp, #0x60
3 stp x20, x19, [sp, #32]
4 stp fp, lr, [sp, #16]
5
6 // function body omitted
7
8 ldp fp, lr, [sp, #16]
9 ldp x20, x19, [sp, #32]
10 add sp, sp, #0x60
11 autiasp // AUT lr
12 ret

(a) Before patching

1 sub sp, sp, #0x60
2 stp x20, x19, [sp, #32]
3 stp fp, lr, [sp, #16]
4 bl kpacd_pac_24 // PAC [sp+24]
5
6 // function body omitted
7
8 bl kpacd_aut_24 // AUT [sp+24]
9 ldp fp, lr, [sp, #16]
10 ldp x20, x19, [sp, #32]
11 add sp, sp, #0x60
12 ret

(b) After patching

Listing 2: An example function from Memcached patched
by libkpac for kpacd invocation. The kpacd_{pac,aut}_24

trampoline operates on the return address at offset 24 from
the stack pointer.

Our plugin supports all optimization levels, but automatically
disables the ipa-ra and shrink-wrap optimizations, as we
depend on caller-saved registers to be actually saved and
the function prologue at the beginning of a function.

D. Load-Time Instrumentation via libkpac

While recompiling existing applications might be feasible
in some settings (e.g., embedded applications), this is often
not the case, especially in end-user environments. Thus, we
propose a binary-compatible method of adding software-
emulated PA to programs already compiled for ARM PA by
providing a run-time library (libkpac). libkpac patches the
program at load time and can be applied selectively to the
whole system or single application processes.

Technically, libkpac is injected by setting the LD_PRELOAD

environment variable, which causes the system’s dynamic
loader to additionally load the library and execute its con-
structor function. The LD_PRELOAD mechanism provides for
maximum flexibility on the user’s side: For example, the user
might run one instance with kpac support to improve security
and another one without, for performance-sensitive activities.
The constructor function parses the memory map of the

process, exposed by Linux in the procfs file system, and takes
note of the executable memory areas in the address space. It
then iterates over these areas and searches for PACIASP and
AUTIASP instructions. At these places, the code needs to be
patched to invoke kpac by either the synchronous svc or the
asynchronous rcsc mechanism.
svc-only mode: In this mode, the PACIASP and AUTIASP

instructions are simply replaced by their respective svc

equivalents. As this takes only a single opcode and clobbers
the same set of registers (just the LR register), this is trivially
possible in all cases.
kpacd and kpacpl modes: Invoking kpacd or kpacpl via
their shared-memory interface requires inserting additional
branches to a subfunction, which is more complicated and
not (safely) possible in all cases. The general idea of patching
a function for such invocation is demonstrated in Lst. 2.
Fundamentally, it is not possible to just replace PACIASP and
AUTIASP by a call to the kpacd/kpacpl invocation, as this would
overwrite the return address stored in the link register (LR)

to be protected. Instead, the invocations have to be put at the
end of the prologue (beginning of the epilogue), when LR has
been saved onto the stack. The required space for these calls
is created by shifting the stack frame (de)allocation sequences
into the PACIASP/AUTIASP instructions. However, as compilers
might do arbitrary things in their function pro/epilogues (e.g.,
reordering), the patching falls back to the svc mechanism if
no familiar stack frame (de)allocation sequence is detected.
When instrumenting binaries for kpacpl, the svc fallback uses
the accelerator for QARMA computation from kernel space.

Upon invocation, the actual return address to be en/decoded
resides on the stack, but at an varying offset that depends on
the function-specific stack frame. To deal with this, libkpac
provides trampoline functions for offsets from 0 to 504 bytes
(at machine word granularity). As the AArch64 BL instruction
can jump only in the region of ±128MiB, libkpac furthermore
places the trampolines in neighboring address-space holes in
the case of large text sections. For example, this is required
to fully patch Chromium’s 161.02MiB executable segment.

VI. Evaluation
In our evaluation, we (A) demonstrate the latency of a single

PAC/AUT transaction, (B) show that our approaches efficiently
implement PA in software, (C) illustrate multi-core scalability
using memory caching system Memcached, and (D) showcase
the ease of use of the binary-compatible approaches using
the Chromium browser.
We have integrated our mechanism into Linux 6.1 on

three systems: (1) Xilinx Zynq UltraScale+ ZCU102 evaluation
board with XCZU9EG MPSoC @ 1.2GHz, (2) Raspberry Pi 4
single-board computer with Broadcom BCM2711 @ 1.8GHz,
and (3) Gigabyte R152-P31 rack server with 80-core Ampere
Altra Q80-30 CPU @ 3GHz. The ZCU102 evaluation board
allows us to directly compare our approaches with the pac-pl
reimplementation, as the SoC features an FPGA fabric on
the chip. The Raspberry Pi resembles a typical medium-end
hardware used in embedded appliances. This does obviously
not hold for the 80-core Ampere Altra/Memcached setup,
which we include for the sole purpose of stressing the multi-
core scalability of our approach.
As baseline, we chose to run the targets without any

enabled PA. This corresponds to our measurements on Apple’s
M1 Ultra (see Tab. I), which did not yield any measurable
overhead for the native PA.

A. Cost of User–Kernel Interaction and Hashing

Firstly, we evaluate the cost of user–kernel interaction meth-
ods introduced in Sec. IV by measuring the end-to-end latency
of the transactions on the mentioned systems. Simultaneously,
we demonstrate the high overhead of the QARMA hashing
algorithm when implemented in software and motivate the
choice of SipHash for fast hashing. Tab. II demonstrates the
99th percentile latencies for the PA requests in clock cycles
over 32 million samples. The cycles are measured using the
PMU’s cycle counter PMCCNTR_EL0. Consequently, the kpacd



TABLE II: 99th percentile round-trip latency of PA requests
in clock cycles.
(a) Ampere Altra Q80, 3 GHz

Hashing alg. svc kpacd

None 389 476
SipHash 434 488
QARMA 3903 3947

(b) Broadcom BCM2711, 1.8 GHz

Hashing alg. svc kpacd

None 2095 420
SipHash 2170 508
QARMA 6779 5332

(c) Xilinx XCZU9EG, 1.2 GHz

Hashing algorithm kpacpl svc kpacd

None 643 2020 217
SipHash — 2122 339
QARMA 650 11608 8231

spin loop does not use WFE, as it is undefined whether the
counter continues to increment in low-power state [4].

The measurement in the None row of Tab. II does not per-
form any hashing and thus represents the raw communication
overhead for svc- and rcsc-based transactions. Comparing the
raw communication overhead across systems, both ZCU102
and Raspberry Pi 4 require over two thousand cycles for a NOP
system call. The kpacd request on these systems is much faster,
by factor 4.99 on Raspberry Pi 4 and by factor 9.31 on the
ZCU102 evaluation board. On the Xilinx ZCU102 evaluation
board, a kpacd transaction takes only 217 clock cycles, which
amounts to 180.8 ns. On the same system, a round trip to the
PL takes 643 cycles or 535.8 ns. In contrast, the Ampere Altra
Q80 system shows a different picture: a system call is 18.28
percent faster than a round trip over shared memory and
takes only 389 clock cycles or 129.7 ns. This demonstrates
that high-end systems might implement system calls more
efficiently and could profit from fast software PA without an
additional accelerator core.

Moving onto hashing algorithms, the ARM-suggested
QARMA cipher comes with an overhead of at least three
thousand cycles on all systems even when subtracting the raw
communication costs. For instance, a system call calculating
the QARMA cipher takes 9.67 µs on the ZCU102 evaluation
board. Having an FPGA at its disposal, this is the only system
providing a low latency for QARMA with kpacpl taking 650
clock cycles to authenticate a pointer. In fact, the QARMA
calculation costs are fully amortized by the communication
overhead, as the round trip latency is nearly equal to the
latency without hashing. This stems from the mismatch in
the clock frequencies between the FPGA and the host CPU,
together with the costs for the data transfer.

SipHash offers a practical alternative to the QARMA cipher.
Subtracting the communication overhead, its calculation takes
roughly 100 cycles on all systems. This results in the round-
trip latency of 339 cycles (282.5 ns) on the ZCU102 evaluation
board, 434 cycles (144.7 ns) on the Ampere Altra machine via
svc, and 508 cycles (282.2 ns) on the Raspberry Pi 4. Therefore,
we use SipHash in the rest of evaluation.

char strong all libkpac
1.0

1.2

1.4

1.6

1.8

2.0

Ge
om

et
ric

 m
ea

n

kpacpl

char strong all libkpac

svc

char strong all libkpac

kpacd
static

loadtime

Fig. 4: Geometric mean of CortexSuite benchmark run
durations normalized to the baseline run on Xilinx ZCU102.

B. Approach Comparison

For the comparison of the kpac approaches, we chose the
CortexSuite [23]. It is a representative embedded workload,
as it consists of machine learning, computer vision, language
processing and IoT tasks. As baseline, we compile all the
benchmarks without any protection using GCC 12.2 with
-O2 optimization level. For the static instrumentation, the
benchmarks are compiled with our compiler plugin with the
same optimization level.2 For the binary-compatible libkpac

evaluation, the compilation flags are complemented with
-mbranch-protection=pac-ret to add return-address protec-
tion using ARMv8.3-A PA. The benchmarks are executed
on the Xilinx Zynq UltraScale+ ZCU102 evaluation board,
allowing us a direct comparison to PL-based approach kpacpl.

Static instrumentation: The advantage of instrumenting
applications statically using the compiler plugin lies in the
ability to mitigate performance overhead using the protection
scope heuristics introduced in Sec. V-C. Thus, we evaluate
the three protection scopes and compare communication
approaches to each other. Fig. 4 provides a high-level overview
of the overhead over all CortexSuite benchmarks (summarized
using geometric mean) and Tab. III breaks down the figure
for individual benchmarks.
The highest overhead is measurable for the most secure

protection scope all, where all nonleaf functions are protected.
The svc-based instrumentation has the highest average over-
head of 1.88x and is outperformed by kpacpl with the average
overhead of 1.34x. The kpacd approach leads in this category
with the average overhead of 1.17x.

The protection scope strong reduces the overhead to a
lower figure for all approaches, while keeping the security
guarantees high, as the likelihood of a stack-buffer overflow
occurring in a function that never exposes addresses to its
stack is exceedingly low. There, kpacd still outperforms all
approaches with an average overhead of 1.03x. The worst-
case overhead for kpacd-strong is observed in the sphinx
benchmark with 1.20x or 20 percent. The respective kpacpl

figures are 1.06x for the average and 1.48x for the worst case

2This excludes optimizations incompatible with current compiler plugin
prototype discussed in Sec. V-C.



TABLE III: Run times of CortexSuite benchmarks normalized to the baseline run without protection on Xilinx ZCU102.

Benchmark Baseline run
duration [s]

kpacpl svc kpacd

char strong all libkpac char strong all libkpac char strong all libkpac

lda 18.25 1.01 1.01 4.37 7.53 1.04 1.04 17.38 17.37 1 1 2.38 5.37
sphinx 12.39 1.26 1.48 3.21 3.6 2.25 3.34 11.78 11.43 1.11 1.2 1.87 2.3
rbm 21 1 1.08 1.17 1.17 1 1.4 1.8 1.8 1 1.03 1.06 1.07
srr 29.12 1.01 1.04 1.04 1.11 1.01 1.16 1.16 1.16 1 1.02 1.02 1.08
svd3 14.55 1 1 1.02 1.03 1 1 1.14 1.14 1 1 1.01 1.01
motion-est. 9.42 1.03 1.04 1.05 1.03 1.03 1.08 1.13 1.1 1.02 1.03 1.03 1.01
spectral 6.96 1 1 1 1 1 1 1 1 1 1 1 1
pca 3.29 1 1 1 1.01 1 1 1 1.01 1 1 1 1
liblinear 25.75 1 1 1 1 1 1 1 1 1 1 1 1
kmeans 33.74 1 1 1 1 1 1 1 1 1 1 1 1

Geometric mean 1.03 1.06 1.34 1.44 1.09 1.2 1.88 1.87 1.01 1.03 1.17 1.31

in sphinx. Even for svc, which is inherently suboptimal on this
system due to the cost of system calls, the average overhead
is reduced to 1.20x with the worst case of 3.34x.
Depending on the application, the security can be traded

for performance by reducing the protection scope to char :
functions that allocate character arrays on the stack. Note
that this is the default mode of GCC’s stack protector and
the only one evaluated by Serra and associates for pac-pl
originally. This reduces the worst-case overhead to 1.26x for
kpacpl, 2.25x for svc, and 1.11x for kpacd . On average, char
yields the lowest overhead regardless of the approach.
Load-time instrumentation: Next, we examine the binary-
compatible approach based on load-time patching using
libkpac. In terms of security, load-time patching is tantamount
to the protection scope all, as GCC hardens all nonleaf
functions with PACIASP/AUTIASP instructions.

The average overheads are 1.44x and 1.31x for kpacpl and
kpacd respectively. The worst overhead can be observed in svc-
only mode (svc-libkpac), where the load-time instrumentation
yields 1.87x overhead on average. The is slightly better than
the respective static approach (svc-all with 1.88x) as the
dynamic instrumentation (unlike the compiler plugin) does
not require disabling any optimizations. Here, kpacd-libkpac
represents the middle ground between kpacd-all and svc-all,
since libkpac replaces PACIASP/AUTIASP conservatively with
a call to the optimized kpacd routine, resorting to costly svc

where no familiar prologue/epilogue sequences are recognized
(due to instruction reordering).

TABLE IV: Load-time statistics from libkpac patching routine.

Benchmark Text section
size [KiB]

Patched
locations

Patching time [µs]

svc kpacd/kpacpl

lda 9.11 53/54 455 640
sphinx 284.65 1529/1555 7928 8275
rbm 3.46 18/26 288 469
srr 12.45 30/39 490 654
svd3 25.15 145/145 872 1049
motion-est. 4.01 20/22 300 491
spectral 5.71 17/18 377 559
pca 5.40 18/18 293 496
liblinear 37.90 119/128 1060 1262
kmeans 2.09 6/8 286 473

Average 38.99 97.12 % 1235 1437

Tab. IV provides additional statistics on load-time patching.
Overall, libkpac in the kpacd/kpacpl modes manages to
successfully patch 97.12 percent of prologues and epilogues in
CortexSuite. The time required for patching does not exceed
10ms for any of the benchmarks and correlates roughly with
the size of the executable segment. The required average time
per KiB is 32 µs for svc-only and 37 µs for kpacd/kpacpl.

C. Case Study: Memcached

Despite the fact that kpacd requests do not require synchro-
nization with other threads, there is a risk of high contention
on a single service core when serving multiple application
cores. To accommodate highly parallel applications, the kpac
kernel allows flexibly configuring the amount of kpacd service
cores and the mapping to the application cores that they serve.
The synthetic benchmarks from the CortexSuite are single-
threaded and do not assess the multithreading aspect of kpac.
Hence, we deploy Memcached 1.6.22 on a Gigabyte R152-P31
rack server featuring Ampere Altra Q80-30 @ 3GHz with
80 Neoverse-N1 cores and 256GiB of DRAM. The machine
offers uniform memory access (UMA) latencies for all cores.

We chose Memcached for several reasons. The code base is
written in plain C, making it easy to deploy it with custom
CFI techniques like our software-emulated PA. Furthermore,
benchmarking tools are readily available. Also, Memcached
is a realistic use-case for PA as it is used in security relevant
environments, for example in combination with an LDAP
service for user authentication.
Workload: Memcached server is compiled with default
compiler flags including -O2 optimization level. It is com-
plemented with PA-based return address protection and ran
with 32 threads pinned to 32 CPU cores. For the client side,
we use the memtier_benchmark [30], which is developed by
Redis specifically for benchmarking key-value databases. The
Memtier benchmark starts 32 threads on another 32 cores
of the same machine. Each threads opens 50 connections
(resulting in 1600 active connections) and records latencies
of SET and GET requests with the default SET:GET ratio of
1:10 for 100 seconds. We vary the amount of kpacd service
threads on the remaining 16 cores of the machine.
Results: Fig. 5 displays the average latency in milliseconds
as well as the 99th-percentile tail latency for the baseline



svc
(32:0)

kpacd-16
(32:16)

kpacd-8
(32:8)

kpacd-4
(32:4)

kpacd-2
(32:2)

kpacd-1
(32:1)

baseline
(32:0)

Approach, application to service core ratio

0

1

2

3

4

5

6

7

8

9

10
Av

er
ag

e,
 ta

il 
la

te
nc

y 
[m

s]
P99
char
strong
all
libkpac

Fig. 5: Average latencies and 99th percentiles for the Memtier
benchmark with 0–16 service cores (svc, kpacd-𝑥 ).

reference without PA, svc-, and kpacd-instrumented runs
(statically via compiler plugin, load time via libkpac). For
kpacd , the latencies are measured for different amounts of
service cores (kpacd-𝑥 ).
The baseline average and tail latencies are 1.09ms and

1.66ms respectively. When using one service core there is a
high latency for all protection scopes except for char . In fact,
due to the low amount of protected functions, char shows no
measurable change for all approaches both in average and tail
latencies. For all, the average latency increases almost tenfold
to 9.30ms. This figure halves as we double the amount of
service cores: it amounts to 4.62ms (4.24x) for two service
cores and 2.37ms (2.17x) for four service cores. Distributing
the load over eight kpacd threads and above, they are no
longer saturated, and the latency does not exceed 1.43ms
(1.31x of the baseline). The figures are similar to all for libkpac-
instrumented kpacd experiments as libkpac manages to patch
91.78 percent of locations with a kpacd invocation. Looking
at the strong protection scope, the average latency increase
is low for 4 service cores and above. For two service cores
the increase is 1.45x or 1.58ms.
Interestingly, svc-instrumented servers (including all and

libkpac variants) demonstrate the same average latency as
the baseline run. The tail latency, however, shows a minor
increase of 28.52 percent for libkpac and 23.20 percent for
strong. This stems from the architecture of the used machine.
As demonstrated in Sec. VI-A, the Ampere Altra Q80 CPU
features particularly fast system calls. Combined with the
fact that the svc approach does not induce contention in
multithreaded scenarios, this results in fast return-address
protection. This highlights that the underlying hardware and
architecture needs to be taken into account when applying
the mechanism. In this case, the svc-libkpac approach can
be easily applied to an already compiled Memcached server
(e.g., from the distribution’s repository) without significantly
affecting the performance of the database. This comes at a
cost of relatively short 1.55ms patching time for the 147 KiB

executable segment of the Memcached binary and all the
libraries it links with.

D. Case Study: Chromium

Investigating the binary-compatible approach further, we
concentrate on its ease of use with already existing software
and toolchains. We demonstrate this by applying svc- and
kpacd-based PA using libkpac to the Chromium browser. For
this we use the Raspberry Pi 4 single-board computer featuring
a quad-core Cortex-A72 64-bit SoC clocked at 1.8 GHz. We
chose this system, as it represents a small lightweight ARM
desktop PC.
The Chromium browser is a long-existing project with a

large code base, leading the browser market with the usage
share of 63 percent on all platforms (September 2023) [31].
Moreover, the binary Chromium package of the AArch64
Debian distribution is already hardened with the ARMv8.3-A
return address protection using PACIASP/AUTIASP instructions.
However, this protection has no effect on systems without PA.
This makes Chromium a prime target for our evaluation, as we
want to showcase the ease of use and the low adoption hurdle
for end-users. Security in web browsers is highly relevant
in general, as users use them for online banking, healthcare
information, and a wide range of other sensitive tasks. The
Chromium project itself states that around 70 percent of their
security bugs are memory safety problems [32]. The severity
of those bugs would be alleviated by enabling PA.
Workload: To stress test our mechanism and give an
intuition on how usable the binary-compatible approaches are
for user-oriented applications, we execute the Speedometer 2.1,
Jetstream 2.1, and Motionmark 1.2 browser benchmarks from
WebKit’s Browserbench suite [33]. Speedometer emulates user
input by adding, changing and removing to-do items from
a web application, evaluating the browser’s responsiveness.
Jetstream, on the other hand consists of Web Assembly
and JavaScript benchmarks (64 in total), which are then
scored using the geometric mean. These benchmarks consist
of several cryptography algorithms, data processing tasks,
parsers, and so on. The third Browserbench benchmark,
Motionmark, puts the browser’s graphics engine to the test
by animating complex scenes.
Results: Our library manages to patch 95.85 percent of
prologues and epilogues of the chromium-browser binary with
the optimized kpacd invocations. As this binary is quite large
(161.02MiB executable segment), we need 549.89ms to patch
it. This corresponds to the rate of 3.42ms/MiB. Extending
the patching onto libraries that link with chromium-browser,
the patching takes 571.13ms. Out of those libraries, only
libffmpeg.so (part of the Chromium package) and libgnutls.so
(distribution’s version) are compiled with ARMv8.3-A PA. All
experiments ran without any changes to the source code and
without any crashes or errors.

Fig. 6 displays the reached scores for both benchmarks. The
optimized kpacd-based instrumentation reduces the scores by
a factor of 4.43x for the Speedometer benchmark and by a



baseline svc kpacd
0

5

10

15

20

25

Sc
or

e
Speedometer 2.1

baseline svc kpacd
0

5

10

15

20

25

30

35

Jetstream 2.1

baseline svc kpacd
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Motionmark 1.2

Fig. 6: Scores as reported by the Browserbench benchmarks
for libkpac-instrumented browser. Higher scores are better.

factor of 3.54x for the Jetstream benchmark. On the other
hand, the svc approach reduces the scores by a factor of
10.63x and 7.13x for Speedometer and Jetstream respectively.
The Motionmark benchmark shows only minor difference
between the three browser variants, with a worst-case score
reduction of 14.05 percent for svc.
The results are consistent with the transaction latencies

measured for this system in Sec. VI-A, where performing
a system call calculating SipHash PAC has the quadruple
latency of an rcsc transaction. The high overall overhead
can be attributed to the fact that browsers spend significant
amount of their time interpreting JavaScript code. If one of the
interpreter’s hot functions is nonleaf and thus authenticates
its return address, this results in a high performance impact
when compared to CortexSuite and Memcached figures.
However, even with svc-libkpac, the browser remains usable
and responsive, which suggests restricting this protection
technique for security-critical applications.

VII. Discussion
General applicability: Given that the vast majority of
even recent ARMv8.3 designs do not yet include the PA
extensions, its efficient software-based emulation in the kernel
will probably be useful for several years – but (hopefully)
eventually become obsolete. However, the four techniques
and their trade-offs presented in this paper for such emulation
are not restricted to PA. They could most probably be applied
also to future security/safety-related ISA extensions. The rcsc
mechanism is furthermore usable for the easy offloading
of any kind of performance- or security-critical service to
a dedicated core. By its CPU-local page-tables, it provides
seamless integration into multithreaded applications without
extra synchronization efforts.
Hardware costs: Offloading kernel tasks to dedicated cores
has been shown to be effective in improving performance in
many settings [29], but to the best of our knowledge not yet
as an alternative to a relatively simple FPGA-based solution.
We consider this as a question of pragmatics: Technically, (i.e.,
with respect to HW overhead), the FPGA-based solution is
undoubtedly a lot cheaper. However, actual availability and
market prices often tell a different story. While SoCs including
an FPGAs are still a development niche, multi-core CPUs are

prevalent on the market and benefit from competitive pricing
and mass production — for procurement, the SoC including
an extra core is often cheaper than the one with the FPGA.
Besides, these multi-core CPUs are rarely utilized to their full
potential due to limited parallelism within the software. This
warrants considering dedicating one or multiple cores to a
service like kpac for increased security or performance or
employing them instead of an FPGA accelerator. In the end,
the question of spending an extra core or not comes down
to the actual performance—cost tradeoff, as developers can
always opt for one of the synchronous emulation variants.

VIII. Related Work
Software-based pointer protection: Before ARMv8.3-A
PA, the idea of adding a cryptographic MAC to code pointers
has been explored in a technique called CCFI [34]. To keep
the key secret, CCFI reserves 11 XMM registers on x86-
64, which constitutes a change to the ABI, requiring the
recompilation of the program and all its dependencies. Its
predecessor, PointGuard [35] introduces a compiler extension
that instruments programs to encrypt pointers when storing
them into memory using simple XOR with a key stored in
the same address space. Another approach, called CPI [36],
protects pointers by storing them in a secret location along
with metadata. However, Evans [37] demonstrated an attack
that is able to bypass CPI and argued that security mechanisms
relying on information hiding are ineffective.
Compared to these approaches, kpac maintains higher

security guarantees by computing the cryptographic signature
in the kernel space, which allows it to reliably hide the secret
key from the attackers.
Applications of PACs: The ARM PA mechanism is not
limited to return address protection. In recent years, many
CFI mechanisms employing PA codes in the user space
have been proposed. Liljestrand et al. have presented several
works on this subject. PARTS [24] is an instrumentation
framework, which extends the set of protected pointers to
local, global, and static pointers as well as pointers in C
structures. PCan [38] revisits the concept of stack canaries by
dynamically generating their value for each function call using
PA instructions, eliminating the need to hide their value in
memory. PACStack [39] upgrades the return address protection
by cryptographically binding its value to all previous return
addresses in the call stack, preventing pointer reuse attacks.
PTAuth [40], PACMem [41], and CryptSan [42] are sanitizers
that detect spatial and temporal memory bugs by leveraging
PACs. Schilling, Nasahl, and colleagues utilize PACs to thwart
not only software, but also fault attacks by (1) ensuring CFI
at the basic block granularity [43] and (2) protecting indirect
branches by encoding them at compile time and verifying
them at run time [44]. The work of Fanti et al. [45] generalizes
PA by protecting not only pointers, but all spilled registers.
Given the scarcity of systems with hardware PA, many

of these works have resorted to emulating PA instructions
using a rudimentary XOR “encryption” as a proof-of-concept.
With kpac, all these PA-based techniques could be seamlessly



integrated with our cryptographically-secure approaches,
extending the CFI guarantees beyond the backward edge
protection for systems without hardware-assisted PA.
Dedicated service cores: Several other works have
explored the possibility of dedicating CPU cores of the system
for some specific service in order to avoid context switching
overhead. For example, Lozi et al. [29] replace lock acquisitions
with remote calls to a dedicated core executing a critical
section and observe performance increase, attributing it to
data locality. The technique of offloading network packet
processing to a separate CPU core has been repeatedly
proposed since the early days of consumer-grade multi-
core CPUs [46], [47]. IsoStack [48], Shenago [49] implement
that kind of network stack and demonstrates significant
performance improvements. A similar technique has also
been successfully applied to speed up virtualization [50], [51].

The novelty of our approach lies in the idea of modifying
the virtual memory layer to present each application thread
with the page private to the CPU core it is running on.
This forms a framework for secure communication with the
dedicated service core without requiring any synchronization.

IX. Conclusions
ARMv8.3-A Pointer Authentication is a promising CFI

mechanism, which is expected to gain more traction in
the following years. It provides significant security gains
for minimal performance impact, owing to its hardware
implementation. However, CPUs implementing this feature
are still rare and we face many systems without PA support.

In this work, we explore how PA can be emulated in soft-
ware, while maintaining low performance overhead. For this,
we extended the Linux kernel with a PA service and exposed
two communication interfaces for user applications: (1) the
classical synchronous system call and (2) a shared memory
page for asynchronous communication. We also investigated
two instrumentation methods for existing applications: (1)
statically, by recompiling them with our compiler plugin,
and (2) in the ARMv8.3-ABI-compatible way, by patching
them at load time. In the static case, we employ several
heuristics inspired by GCC’s stack protector feature [13] to
limit protection to vulnerable functions, offering a flexible
balance between performance and security.

We combined all the aspects into a total of eight approaches
and evaluated their run-time impact using the CortexSuite
benchmarks and the Memcached key-value database. We
also assessed the ease of use in end-user environments by
applying our approaches to the Chromium browser without
recompilation. For the best of our approaches, we observed
low overheads: a worst-case run duration increase of 20
percent for the CortexSuite benchmarks when using kpacd-
strong, and a modest 29 percent increase in tail latency for
Memcached with svc-libkpac.
The source code and evaluation artifacts are available at:
https://github.com/luhsra/kpac

References
[1] Intel® 64 and IA-32 architectures software developer’s manual,

combined volumes: 1, 2a, 2b, 2c, 2d, 3a, 3b, 3c, 3d and 4, 2022.
[2] T. Garrison, Intel CET answers call to protect against common

malware threats, https://www.intel.com/content/www/us/en/
newsroom/opinion/intel-cet-answers-call-protect-common-
malware-threats.html, 2020.

[3] V. Shanbhogue, D. Gupta, and R. Sahita, “Security analysis of
processor instruction set architecture for enforcing control-
flow integrity,” inWork. on Hardware and Architectural Support
for Security and Privacy, 2019, 8:1–8:11. doi: 10.1145/3337167.
3337175.

[4] Arm Limited, Arm® architecture reference manual for A-profile
architecture, DDI 0487H.a, 2022.

[5] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-
oriented programming: Systems, languages, and applications,”
ACM Trans. Inf. Syst. Secur., vol. 15, no. 1, 2012, issn: 1094-
9224. doi: 10.1145/2133375.2133377.

[6] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls,” in Proc. of the
14th ACM Conf. on Computer and Communications Security,
ser. CCS ’07, 2007, 552–561, isbn: 9781595937032. doi: 10.
1145/1315245.1315313.

[7] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: A new class of code-reuse attack,” in Proc. of the
6th ACM Symp. on Information, Computer and Communications
Security, 2011, 30–40, isbn: 9781450305648. doi: 10 . 1145 /
1966913.1966919.

[8] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost
of shadow stacks and stack canaries,” en, in Proc. of the 10th
ACM Symp. on Information, Computer and Communications
Security, 2015, 555–566, isbn: 978-1-4503-3245-3. doi: 10.1145/
2714576.2714635.

[9] C. Zou, X. Wang, Y. Gao, and J. Xue, “Buddy Stacks: Protecting
return addresses with efficient thread-local storage and
runtime re-randomization,” en, 2, vol. 31, 2022, 1–37. doi:
10.1145/3494516.

[10] C. Zou, Y. Gao, and J. Xue, “Practical software-based shadow
stacks on x86-64,” en, 4, vol. 19, 2022, 1–26. doi: 10.1145/
3556977.

[11] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity: Principles, implementations, and applications,” in
Proc. of the 12th ACM Conf. on Computer and Communications
Security, 2005, pp. 340–353, isbn: 1-59593-226-7. doi: 10.1145/
1102120.1102165.

[12] N. Burow, X. Zhang, and M. Payer, “SoK: Shining light on
shadow stacks,” en, in 2019 IEEE Symp. on Security and Privacy,
2019, 985–999, isbn: 978-1-5386-6660-9. doi: 10.1109/SP.2019.
00076.

[13] The GNU project, Using the GNU compiler collection (GCC),
Version 12.1, 2022. [Online]. Available: https://gcc.gnu.org/
onlinedocs/gcc-12.1.0/gcc/.

[14] The LLVM project, Clang 14.0.0 documentation, 2022. [Online].
Available: https://releases.llvm.org/14.0.0/tools/clang/docs/.

[15] J. Corbet, The rest of the 6.6 merge window, 2023. [Online].
Available: https://lwn.net/Articles/943245/.

[16] Microsoft. “MWC 2022: The next Microsoft Pluton device +
PAC technology.” (2022), [Online]. Available: https://blogs.
windows.com/windowsexperience/2022/02/28/mwc-2022-
the-next-microsoft-pluton-device-pac-technology/.

[17] G. Serra, P. Fara, G. Cicero, F. Restuccia, and A. Biondi,
“PAC-PL: Enabling control-flow integrity with pointer au-
thentication in FPGA SoC platforms,” in 28th IEEE Real-
Time and Embedded Technology and Applications Symp., 2022,
pp. 241–253. doi: 10.1109/RTAS54340.2022.00027.

https://github.com/luhsra/kpac
https://www.intel.com/content/www/us/en/newsroom/opinion/intel-cet-answers-call-protect-common-malware-threats.html
https://www.intel.com/content/www/us/en/newsroom/opinion/intel-cet-answers-call-protect-common-malware-threats.html
https://www.intel.com/content/www/us/en/newsroom/opinion/intel-cet-answers-call-protect-common-malware-threats.html
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.1145/3494516
https://doi.org/10.1145/3556977
https://doi.org/10.1145/3556977
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1109/SP.2019.00076
https://doi.org/10.1109/SP.2019.00076
https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc/
https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc/
https://releases.llvm.org/14.0.0/tools/clang/docs/
https://lwn.net/Articles/943245/
https://blogs.windows.com/windowsexperience/2022/02/28/mwc-2022-the-next-microsoft-pluton-device-pac-technology/
https://blogs.windows.com/windowsexperience/2022/02/28/mwc-2022-the-next-microsoft-pluton-device-pac-technology/
https://blogs.windows.com/windowsexperience/2022/02/28/mwc-2022-the-next-microsoft-pluton-device-pac-technology/
https://doi.org/10.1109/RTAS54340.2022.00027


[18] R. Avanzi, S. Banik, O. Dunkelman, M. Eichlseder, S. Ghosh,
M. Nageler, and F. Regazzoni, “The tweakable block cipher
family QARMAv2,” IACR Cryptol. ePrint Arch., p. 929, 2023.
[Online]. Available: https://eprint.iacr.org/2023/929.

[19] “Linux 5.0 changelog.” (2018), [Online]. Available: https://cdn.
kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.0.

[20] “ARMv8.3 pointer authentication in xnu.” (2021), [Online].
Available: https://opensource.apple.com/source/xnu/xnu-
7195.50.7.100.1/doc/pac.md.

[21] “Linux 5.7 changelog.” (2020), [Online]. Available: https://cdn.
kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.7.

[22] “Apple pointer authentication guidelines.” (2023), [Online].
Available: https : / / developer . apple . com / documentation /
security / preparing _ your _ app _ to _work _with _ pointer _
authentication.

[23] S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau,
S. Garcia, and M. B. Taylor, “CortexSuite: A synthetic brain
benchmark suite,” in 2014 IEEE Intl. Symp. on Workload
Characterization, 2014, pp. 76–79. doi: 10.1109/IISWC.2014.
6983043.

[24] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg,
and N. Asokan, “PAC It up: Towards pointer integrity using
arm pointer authentication,” in Proc. of the 28th USENIX
Conf. on Security Symp., ser. SEC’19, 2019, 177–194, isbn:
9781939133069.

[25] Y. Wang, J. Wu, T. Yue, Z. Ning, and F. Zhang, “RetTag:
Hardware-assisted return address integrity on risc-v,” in Proc.
of the 15th European Work. on Systems Security, ser. EuroSec
’22, 2022, 50–56, isbn: 9781450392556. doi: 10.1145/3517208.
3523758.

[26] J.-P. Aumasson and D. J. Bernstein, “SipHash: A fast short-
input PRF,” in Intl. Conf. on Cryptology in India, Springer,
2012, pp. 489–508.

[27] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter,
“The performance of 𝜇-kernel-based systems,” in Proc. of the
16th ACM Symp. on Operating Systems Principles, 1997. doi:
10.1145/269005.266660.

[28] D. Wentzlaff and A. Agarwal, “Factored operating systems
(fos): The case for a scalable operating system for multicores,”
ACM SIGOPS Operating Systems Review, vol. 43, pp. 76–85, 2
2009, issn: 0163-5980. doi: 10.1145/1531793.1531805.

[29] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller,
“Remote core locking: Migrating critical-section execution to
improve the performance of multithreaded applications,” in
Proc. of the 2012 USENIX Annual Technical Conf., 2012, p. 6.

[30] RedisLabs, Memtier benchmark on github, https://github.com/
RedisLabs/memtier_benchmark.

[31] StatCounter. “Browser market share worldwide.” (2023),
[Online]. Available: https : / / gs . statcounter. com/browser -
market-share.

[32] “The chromium project.” (2023), [Online]. Available: https:
//www.chromium.org/Home/chromium-security/memory-
safety/.

[33] “WebKit’s browserbenchmarks.” (2023), [Online]. Available:
https://browserbench.org.

[34] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “CCFI:
Cryptographically enforced control flow integrity,” in Proc. of
the 22nd ACM SIGSAC Conf. on Computer and Communications
Security, ser. CCS ’15, 2015, 941–951, isbn: 9781450338325.
doi: 10.1145/2810103.2813676.

[35] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuard™:
Protecting pointers from buffer overflow vulnerabilities,” in
Proc. of the 12th USENIX Security Symp., 2003.

[36] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-Pointer Integrity,” in 11th USENIX Symp. on
Operating Systems Design and Implementation, 2014, pp. 147–
163, isbn: 978-1-931971-16-4.

[37] I. Evans, S. Fingeret, J. Gonzalez, et al., “Missing the point(er):
On the effectiveness of Code Pointer Integrity,” in 2015 IEEE
Symp. on Security and Privacy, 2015, pp. 781–796. doi: 10.
1109/SP.2015.53.

[38] H. Liljestrand, Z. Gauhar, T. Nyman, J.-E. Ekberg, and N.
Asokan, “Protecting the stack with PACed canaries,” in Proc.
of the 4th Work. on System Software for Trusted Execution,
ser. SysTEX ’19, 2019, isbn: 9781450368889. doi: 10.1145/
3342559.3365336.

[39] H. Liljestrand, T. Nyman, L. J. Gunn, J.-E. Ekberg, and N.
Asokan, “PACStack: An authenticated call stack,” in 30th
USENIX Security Symp., 2021, pp. 357–374, isbn: 978-1-939133-
24-3.

[40] R. M. Farkhani, M. Ahmadi, and L. Lu, “PTAuth: Temporal
memory safety via robust points-to authentication,” in 30th
USENIX Security Symp., 2021, pp. 1037–1054, isbn: 978-1-
939133-24-3.

[41] Y. Li, W. Tan, Z. Lv, S. Yang, M. Payer, Y. Liu, and C. Zhang,
“PACMem: Enforcing spatial and temporal memory safety
via ARM pointer authentication,” in Proc. of the 2022 ACM
SIGSAC Conf. on Computer and Communications Security, 2022,
pp. 1901–1915. doi: 10.1145/3548606.3560598.

[42] K. Hohentanner, P. Zieris, and J. Horsch, “CryptSan: Leverag-
ing ARM pointer authentication for memory safety in C/C++,”
in Proc. of the 38th ACM/SIGAPP Symp. on Applied Computing,
2023, pp. 1530–1539. doi: 10.1145/3555776.3577635.

[43] R. Schilling, P. Nasahl, and S. Mangard, “FIPAC: Thwarting
fault- and software-induced control-flow attacks with ARM
pointer authentication,” in 13th Intl. Work. on Constructive
Side-Channel Analysis and Secure Design, ser. Lecture Notes
in Computer Science, vol. 13211, 2022, pp. 100–124. doi:
10.1007/978-3-030-99766-3_5.

[44] P. Nasahl, R. Schilling, and S. Mangard, “Protecting indirect
branches against fault attacks using ARM pointer authentica-
tion,” in IEEE Intl. Symp. on Hardware Oriented Security and
Trust, 2021, pp. 68–79. doi: 10.1109/HOST49136.2021.9702268.

[45] A. Fanti, C. C. Perez, R. Denis-Courmont, G. Roascio, and
J. Ekberg, “Toward register spilling security using LLVM and
ARM pointer authentication,” IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., vol. 41, no. 11, pp. 3757–3766, 2022. doi:
10.1109/TCAD.2022.3197511.

[46] M. Rangarajan, A. Bohra, K. Banerjee, E. V. Carrera, R.
Bianchini, and L. Iftode, “TCP servers: Offloading TCP
processing in internet servers. Design, implementation, and
performance,” Rutgers University, Tech. Rep., 2002.

[47] T. Brecht, G. J. Janakiraman, B. Lynn, V. A. Saletore, and
Y. Turner, “Evaluating network processing efficiency with
processor partitioning and asynchronous I/O,” in Proc. of the
2006 EuroSys Conf., 2006, pp. 265–278. doi: 10.1145/1217935.
1217961.

[48] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda, “IsoStack
- highly efficient network processing on dedicated cores,” in
Proc. of the 2010 USENIX Annual Technical Conf., 2010. doi:
10.5555/1855840.1855845.

[49] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-
akrishnan, “Shenango: Achieving high CPU efficiency for
latency-sensitive datacenter workloads,” in 16th USENIX
Symp. on Networked Systems Design and Implementation, 2019,
pp. 361–378.

[50] J. Liu and B. Abali, “Virtualization polling engine (VPE): using
dedicated CPU cores to accelerate I/O virtualization,” in Proc.
of the 23rd Intl. Conf. on Supercomputing, 2009, pp. 225–234.
doi: 10.1145/1542275.1542309.

[51] A. Landau, M. Ben-Yehuda, and A. Gordon, “SplitX: Split
guest/hypervisor execution on multi-core,” in 3rd Work. on
I/O Virtualization, 2011.

https://eprint.iacr.org/2023/929
https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.0
https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.0
https://opensource.apple.com/source/xnu/xnu-7195.50.7.100.1/doc/pac.md
https://opensource.apple.com/source/xnu/xnu-7195.50.7.100.1/doc/pac.md
https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.7
https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.7
https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication
https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication
https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication
https://doi.org/10.1109/IISWC.2014.6983043
https://doi.org/10.1109/IISWC.2014.6983043
https://doi.org/10.1145/3517208.3523758
https://doi.org/10.1145/3517208.3523758
https://doi.org/10.1145/269005.266660
https://doi.org/10.1145/1531793.1531805
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://browserbench.org
https://doi.org/10.1145/2810103.2813676
https://doi.org/10.1109/SP.2015.53
https://doi.org/10.1109/SP.2015.53
https://doi.org/10.1145/3342559.3365336
https://doi.org/10.1145/3342559.3365336
https://doi.org/10.1145/3548606.3560598
https://doi.org/10.1145/3555776.3577635
https://doi.org/10.1007/978-3-030-99766-3_5
https://doi.org/10.1109/HOST49136.2021.9702268
https://doi.org/10.1109/TCAD.2022.3197511
https://doi.org/10.1145/1217935.1217961
https://doi.org/10.1145/1217935.1217961
https://doi.org/10.5555/1855840.1855845
https://doi.org/10.1145/1542275.1542309

	Introduction
	About this Paper

	Background
	ARMv8.3-A Pointer Authentication
	PA using an FPGA: The pac-pl Approach

	Security Objectives and Threat Model
	The kpac Approach
	Implementation
	svc: The Synchronous System Call Interface
	kpacd: The Remote-Core System Call Interface
	Static Instrumentation via Compiler Plugin
	Load-Time Instrumentation via libkpac

	Evaluation
	Cost of User–Kernel Interaction and Hashing
	Approach Comparison
	Case Study: Memcached
	Case Study: Chromium

	Discussion
	Related Work
	Conclusions

