
Program-Structure–Guided
Reduction of the Execution Time of

Fault-Injection Campaigns on the ISA Layer

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

D O K T O R - I N G E N I E U R

(abgekürzt: Dr.-Ing.)

genehmigte Dissertation

von Herrn

Oskar Pusz, M.Sc.

geboren am 21. November 1990

in Hannover, Deutschland

2024

1. Referent Prof. Dr.-Ing. habil. Daniel Lohmann
2. Referent Prof. Dr.-Ing. Horst Schirmeier
Tag der Promotion 19.08.2024

Abstract

Due to shrinking transistor structure sizes and operating voltages, hardware becomes more suscepti-
ble to transient hardware faults. In the domain of safety-critical systems, fault injection campaigns on
the instruction-set–architecture layer have become a widespread approach to assess the resilience of a
system concerning this kind of fault. Full fault-injection campaigns are an approach to systematically
assess the reliability of a system and the effectiveness of implemented software-based hardening
techniques on fixed hardware.

A straightforward fault-injection campaign may result in practically unrealizable runtimes,
especially when aiming for a comprehensive and complete reliability analysis of the system under
test. Established acceleration methods are common to either reduce the number of necessary fault
injections or speed up individual injections, ultimately decreasing the overall runtime of the whole
campaign.

However, despite the effectiveness of these established methods, the runtimes may still be
infeasible, the campaign results lack precision, or the focus might be limited to specific aspects of
the system under test only.

This dissertation introduces three new approaches to handling these challenges. The approaches
use extracted program structures of the executed software, tailored to the running program inde-
pendent from system behaviors under evaluation.

The first approach extracts the data flow and instruction semantics to utilize instructions’ propa-
gation and masking effects through a data flow graph. Compared to the ground truth method, my
data-flow-sensitive acceleration method significantly reduces the number of necessary injections for
a comprehensive reliability analysis by up to 18.4 percent precisely.

The second approach utilizes extracted dynamic jump addresses to represent the control flow,
partitioning the program’s execution into temporal segments. These fault-space regions operate
as distinct entities, each with its data flow potentially flowing from one to the next. Injecting the
traversing data flows and approximating their results to the other non-traversing data flows leads to
an injection reduction of up to 77.5 percent system-wide, accompanied by an approximation error
of only 2 percent and a strong locality of the results.

The last contribution focuses on accelerating individual injections that do not lead to the ter-
mination of systems, thus, reaching a fixed timeout threshold. This work presents an analysis of
timeouts in this context and initial approaches to predict such timeouts during runtime. The final
part of this contribution is the timeout detector, ACTOR. This detector uses autocorrelation to detect
whether patterns exist in the program’s taken jumps, thereby approximating whether the program is
in a loop. ACTOR can achieve end-to-end campaign accelerations of up to 27.6 percent through
timeout predictions in individual injections. Thereby, the absolute prediction error is always less
than 0.5 percent.

The methods developed in this work expand the overall portfolio of potential acceleration methods
in the fault-injection community. These generically designed methods, implemented and evaluated
in the instruction-set–architecture layer, can also be conceptually applied to other system layers.
They offer versatility and are seamlessly combinable with each other and established acceleration
methods.

iii

Kurzfassung

Aufgrund immer kleinerer Transistorgrößen und Betriebsspannungen wird Hardware immer anfäl-
liger für transiente Hardwarefehler. Im Bereich sicherheitskritischer Systeme haben sich Fehlerin-
jektionskampagnen auf der Ebene der Befehlssatzarchitektur zu einem weit verbreiteten Ansatz
entwickelt, um die Funktionssicherheit eines Systems im Hinblick auf diese Art von Fehlern zu be-
werten. Vollständige Fehlerinjektionskampagnen sind ein Ansatz zur systematischen Bewertung der
Zuverlässigkeit eines Systems einerseits und der Effektivität von implementierten softwarebasierten
Härtungstechniken auf im Vorhinein spezifizierter Hardware andererseits.

Eine naiv ausgeführte Fehlerinjektionskampagne führt durch die schiere Menge an Injektionen
allerdings schnell zu praktisch nicht realisierbaren Laufzeiten, insbesondere wenn eine umfassende
und vollständige Funktionssicherheitsanalyse des zu testenden Systems angestrebt wird. Um dem
entgegenzuwirken, sind etablierte Beschleunigungsmethoden üblich, die entweder die Anzahl not-
wendiger Fehlerinjektionen reduzieren oder individuelle Injektionen beschleunigen, was letztlich
die Gesamtlaufzeit einer gesamten Kampagne reduziert.

Es kann jedoch vorkommen – trotz der Effektivität von etablierten Methoden –, dass die Kampa-
gnen immer noch zu lange Laufzeiten besitzen, dass die Ergebnisse nicht präzise genug sind oder
dass der Fokus nur auf bestimmte Aspekte des zu testenden Systems beschränkt ist.

Diese Dissertation stellt drei neue Ansätze vor, die darauf abzielen, diese Herausforderungen
zu bewältigen. Dazu verwenden sie Programmstrukturen, die aus gegebener Software extrahiert
werden. Diese sind auf das laufende Programm zugeschnitten und unabhängig vom zu evaluierenden
Systemverhalten.

Der erste Beitrag extrahiert Datenflüsse und Instruktionssemantik, um Propagations- und Mas-
kierungseffekte von Instruktionen über einen Datenflussgrafen zu nutzen. Im Vergleich zur Referenz-
methode reduziert meine datenflusssensitive Beschleunigungsmethode die Anzahl der notwendigen
Injektionen für eine vollständige Funktionssicherheitsanalyse präzise um bis zu 18,4 Prozent.

Der zweite Beitrag nutzt extrahierte dynamische Sprungadressen als Repräsentanten des Kon-
trollflusses und partitioniert die Programmausführung in zeitliche Segmente. Diese Segmente heißen
Fehlerraum-Regionen und agieren als eigenständige Entitäten, von denen jede ihren eigenen Daten-
fluss hat, der potenziell von einer zur nächsten fließt. Die Injektion der austretenden Datenflüsse
und die Approximation ihrer Ergebnisse auf die anderen Datenflüsse, die eine Region nicht ver-
lassen, führt zu einer systemweiten Reduktion der Injektionen von bis zu 77,5 Prozent mit einem
Approximationsfehler von nur 2 Prozent und einer starken Lokalität der Ergebnisse.

Der letzte Beitrag konzentriert sich auf die Beschleunigung individueller Injektionen, die nicht
zur Terminierung eines Systems führen, und daher nach einer festgelegten Frist (Timeout) beendet
werden. Dazu präsentiere ich eine Analyse von Timeouts in diesem Zusammenhang und erste
Ansätze zur Vorhersage solcher während der Laufzeit. Der finale Teil dieses Beitrags ist der Timeout-
Detektor ACTOR. Dieser Detektor nutzt Autokorrelation, um Muster in den genommenen Sprüngen
des Programms zu erkennen, um damit approximativ zu bestimmen, ob sich das Programm in einer
Schleife befindet. ACTOR ist in der Lage, durch Timeout-Vorhersagen für individuelle Injektionen
Ende-zu-Ende Kampagnenlaufzeitbeschleunigungen von bis zu 27,6 Prozent zu erreichen. Dabei ist
der absolute Fehler in den Vorhersagen durchgehend bei unter 0,5 Prozent.

Die in dieser Arbeit entwickelten Methoden erweitern das Gesamtportfolio potenzieller Beschleu-
nigungsmethoden in der Forschungsgemeinschaft der Fehlerinjektion. Diese generisch konzipierten
Methoden, die in der Ebene der Befehlssatzarchitektur implementiert und evaluiert wurden, können
konzeptionell auch auf andere Systemebenen angewendet werden. Sie sind vielseitig einsetzbar

v

und lassen sich sowohl untereinander als auch mit etablierten Beschleunigungsmethoden nahtlos
kombinieren.

vi

Danksagungen

Mein Weg zu dieser Dissertation ist mit vielen tollen Menschen gepflastert, denen ich an dieser Stelle
danken möchte. Jeder für sich hat innerhalb meiner Zeit als HiWi und wissenschaftlicher Mitarbeiter
einen Teil davon auf unterschiedlichstem Wege beigetragen.

Ioannis akquirierte mich beim Fachgebiet System- und Rechnerarchitektur (SRA) der Leibniz
Universität Hannover (LUH) als studentische Hilfskraft und startete damit die Kette an Ereignissen,
die mich durch die Zeit am SRA begleitet haben. Danke Dir für Dein Vertrauen, das Du damals in
mich hattest, Dich in Deinen Forschungsfragen zu unterstützen.

Eine lange Zeit als Tutor und HiWi war ich bei Sebastian, der auch meine beiden Abschlus-
sarbeiten beide betreut hat. Danke, Sebastian, für Deine aufopfernde Betreuung meiner Bachelor-
und Masterarbeit, wie auch für die tolle Erfahrung an “Mantella” und “Hugo” zu arbeiten, für
die inspirierenden Diskussionen und meine ersten Erfahrungen in der Lehre. Auch Dir, unserem
“Fachgebietsinventar” Kiechle, danke ich für die Unterstützung über die Jahre, sei es in der Lehre
und Forschung wie auch mit Sebastian zusammen für unser gemeinsames wildes Abenteuer als
Aussteller auf der Hannover Messe.

Während meines Praktikums und kurz vor meiner Masterarbeit lernte ich meinen dortigen
Betreuer für Studierende Dennis kennen. Er als Promovierter der LUH hat mir während diverser
Mittagspausen das wissenschaftliche Arbeiten erläutert und schmackhaft gemacht. Auch wenn es
Dir nicht bewusst war, Dennis, aber Du hast den ursprünglichen Samen gesät, der mein Interesse an
der wissenschaftlichen Arbeit geweckt hat und dafür danke ich Dir.

Jürgen, Du hast mich während der Anfertigung meiner Masterarbeit damals auf dem Fahrrad
auf dem Weg nach Hause noch gefragt, ob ich denn nicht Lust hätte zu promovieren. Damit hast Du
zeitlich passend die Weichen gestellt, die mich kurz vor Fertigstellung der Masterarbeit zum wis-
senschaftlichen Mitarbeiter gemacht haben. Danke Dir dafür, für die Zusammenarbeit in Forschung
und Lehre, wie auch für alle nicht-universitären Annehmlichkeiten Deinerseits, sei es für alle Leck-
ereien aus dem Frankenland oder Deinem “Zaubertrank”.

Ich danke ebenfalls vielmals Herrn Christian Müller-Schloer für die Zeit, die ich unter Ihnen als
Fachgebietsleiter erleben durfte. Danke für die inspirierenden Gespräche zu meiner Anfangszeit
als wissenschaftlicher Mitarbeiter, die Geheimtipps für Wanderstrecken und dafür, dass Sie mich
schlussendlich als Mitarbeiter eingestellt haben.

Ich danke auch den zu dieser Zeit am SRA anwesenden Doktoranden Yvonne, Henning, Jan und
Lukas, die jeder für sich auf unterschiedliche Weise meine Zeit am SRA bereichert haben.

Mit dem Wechsel des Fachgebietsleiters kam mein Doktorvater Daniel ans SRA. Daniel, Du
brachtest ein neues Forschungsgebiet mit und ich danke Dir für Dein Vertrauen in mich als Deinen
“geerbten” Doktoranden wie auch für die stetigen Begeisterungsschübe, mich für mir unbekannte
Thematiken zu begeistern. Ich danke Dir, dass Du mich auf dem Weg begleitet hast, für die lehrreiche
Zusammenarbeit an Forschungsfragen, wie auch die aktive Mitarbeit an meinen Veröffentlichungen,
die im Endeffekt zu dieser Dissertation geführt haben. Ich danke Dir auch für die Korrekturlesung
und Deinen Dienst als Erstgutachter meiner Dissertation.

Ebenfalls danken möchte ich Horst, der sich dazu bereit erklärt hat, als Zweitgutachter meiner
Dissertation zu fungieren. Horst, ich danke Dir für Dein Tool FAIL*, das meine Forschungsarbeit
gestützt hat, wie auch für die fruchtbaren Diskussionen rund um das Thema Fehlerinjektionen,
die meine Arbeit bereichert haben, wie auch die Vorträge für meine Studierenden im Rahmen von
Seminaren.

Vielmals danken möchte ich an dieser Stelle auch meinem damaligen Kollegen Christian. Ich
danke Dir, Christian, für all Deine konstruktive Zusammenarbeit und Deine passionserfüllten Beiträge

vii

zu meinen Themen. Du hattest hervorragende Einwürfe zu meinen Themen und bist damit ebenfalls
zu einem Teil am Erfolg meiner Arbeit beteiligt.

Vielen Dank auch an meine Abschlussarbeitenden Zena, Daniel K., Felix, Jannis und Tim, die
jeweils mit ihrem Beitrag meine Veröffentlichungen positiv beeinflusst haben.

Rechenintensive Forschung benötigt starke Hardware, die ich lange Zeit dem fachgebietsinternen
Cluster zu verdanken habe. Ich danke Dir, Lars M., für Deinen Dienst als unseren Techniker, die
Betreuung der Infrastruktur und Server wie auch um das Kümmern aller technischen Belange rund
um meine Arbeit.

Ein Dankeschön auch an Dich, Monika, unsere Sekretärin und der Engel der Verwaltung des SRA.
Du hast Dich in meiner Zeit um so viel Formelles gekümmert, hast immer eine gute Idee gehabt
Dinge zu organisieren und nimmst damit viel Arbeit ab.

Danke auch an all meine “Doktorgeschwister” oder sonstigen Leidensgenossen, die mich während
meiner Zeit als Doktorand begleitet haben: Alexander, Andreas K., Andreas Z., Björn, Christian,
Christoph, Dominik, Florian K., Florian R., Gerion, Lars W., Ralf, Romeo, Stefan, Tim, Tobias und
Valentin. Danke für die enge und familiäre Zusammenarbeit in Lehre, Forschung wie auch für die
tollen Momente nach Feierabend oder auf Ausflügen, die die Zeit am SRA neben den Unmengen
Kilos an Leibniz-Keks–Bruchware weiter versüßt hat.

Ebenfalls bedanke ich mich bei diversen Gastforschenden und Studierenden in unserem Fachge-
biet für die interessanten und inspirierenden Gespräche zu allerlei spannenden Themen der Infor-
matik.

Ich bedanke mich an dieser Stelle auch bei allen beteiligten Korrekturlesenden, die mit ihrem
Beitrag diese Dissertation nochmals zu einer besseren gemacht haben. Ich danke Euch, Daniel,
Daniela, Maximilian, Tim und Gerion.

Vielen Dank an die tollen Leute in meinem Leben außerhalb des SRAs, die mich stets motiviert
und unterstützt haben. Ich danke ebenfalls für diverse Aufmerksamkeiten, wie die “Physiker-Tüte
einer noblen, intellektuellen Sorte” und das Verständnis aller, dass ich mich von allem im Alltag
abkapseln musste.

Besonderen Dank auch an meine Partnerin Daniela, die mich während der Zeit der Anfertigung
der Dissertation tatkräftig unterstützt hat. Danke Dir, Daniela, für jeden Gedanken und für jede
einzelne Stunde Deiner Zeit, die Du für mich investiert hast und für meine “Dissertationstasse”.

Zuallerletzt möchte ich mich hier bei meiner Mutter Marta bedanken. Mama, letztendlich hast
Du mit einfach allem in unserem Leben dafür gesorgt, dass ich genau diesen Text hier verfassen
darf. Dies ist auch Dein Verdienst, dass ich das erreichen durfte. Danke, Mama!

Hannover, August 2024

viii

Table of Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Research Context . 4
1.3 Purpose of this Dissertation . 5
1.4 Structure . 7
1.5 Typographical Conventions . 8

2 Dependable Computing and Fault Injection 9
2.1 Dependable Computing . 11

2.1.1 Attributes of Dependability . 11
2.1.2 Growing Danger to Hardware Reliability . 13

2.1.2.1 Transistor Trends . 15
2.1.2.2 Observed Occurrences of Transient Hardware Faults 16

2.1.3 The Fault Propagation Chain - Fault, Error, Failure 19
2.1.4 Dependability Metrics . 21
2.1.5 Enhance the Dependability . 23

2.2 Fault Injection . 33
2.2.1 Fault Space . 33
2.2.2 Fault-Injection–Campaign Process . 35
2.2.3 Types of Fault-Injection Techniques . 38

2.2.3.1 Criteria of Fault-Injection Techniques 38
2.2.3.2 Hardware-Based Fault Injection . 39
2.2.3.3 Software-Implemented Fault Injection 39
2.2.3.4 Simulation-based Fault Injection . 40
2.2.3.5 Summary of the Fault-Injection Techniques 40

2.2.4 Fault Model . 41
2.2.4.1 Components of the Fault Model . 41
2.2.4.2 Fault-Model Summary . 44

2.3 Accelerating Fault-Injection Campaigns . 45
2.3.1 Fault-Injection–Campaign Runtime Explosion . 45
2.3.2 Pre-Injection Analysis . 46

2.3.2.1 Def/Use Pruning . 47
2.3.2.2 Heuristical Fault-Space Pruning . 48

2.3.3 Dynamic Fault-Injection–Experiment Acceleration 49
2.3.4 Summary of Accelerating Fault-Injection Campaigns 50

3 Implementation and Evaluation Process 51
3.1 The Fault-Injection Framework FAIL* . 53

3.1.1 FAIL* Procedure . 53
3.1.2 Failure Classification . 56
3.1.3 FAIL* Plugins and Tools . 58

3.2 Evaluating Fault-Injection–Campaign Improvements . 59
3.2.1 Fault-Injection–Campaign Acceleration Effectiveness and Efficiency 59

3.2.1.1 Ground Truth . 59

ix

Table of Contents

3.2.1.2 Fault-Injection Framework Effectiveness and Efficiency 61
3.2.1.3 Fault-Injection Campaign Acceleration Effectiveness and Efficiency . 61
3.2.1.4 Summary of Effectiveness and Efficiency 64

3.2.2 Estimating the Ground Truth with FAIL* . 64
3.2.3 Experimental Setup . 67

3.2.3.1 Benchmark Portfolio . 67
3.2.3.2 Technical Setup . 69

3.3 Summary of Implementation and Evaluation Process . 70

4 Data-Flow–Sensitive Fault-Space Pruning 71
4.1 Data-Flow–Aware Fault-Equivalence Set . 73

4.1.1 Instruction Awareness . 73
4.1.2 Value Sensitivity . 73
4.1.3 Exemplary Data-Flow–Aware Fault-Equivalence Sets 74

4.2 Data-Flow–Sensitive Fault-Space Pruning Process . 77
4.2.1 Data-Flow Graph . 77
4.2.2 Instruction-Local Fault-Equivalence Set . 77

4.2.2.1 Instruction-Local Fault-Equivalence Set Mapping 78
4.2.2.2 Instruction-Local Fault-Equivalence Set Mappings in this Thesis . . . 79
4.2.2.3 Generic Algorithm for Determining Instruction-Local Fault-Equivalence

Sets . 82
4.2.3 Injection-Symbol Propagation . 83

4.2.3.1 Initiation . 83
4.2.3.2 Symbol Equalization . 84
4.2.3.3 Conditions for Symbol Equalization . 85

4.2.4 Fault-Injection–Campaign Planning . 89
4.3 Evaluation . 90

4.3.1 Distribution of Instructions in the Benchmarks . 91
4.3.2 Validation of the Data-Flow Pruning . 93

4.3.2.1 Comparison of Def/Use Pruning and Data-Flow Pruning 93
4.3.2.2 Validation Procedure . 93

4.3.3 Results . 94
4.3.3.1 Data-Flow–Pruning Efficiency: Overhead 94
4.3.3.2 Data-Flow–Pruning Effectiveness: Reduction of the Number of Pilots 95

4.4 Summary of Data-Flow–Sensitive Fault-Space Pruning 97

5 Program-Structure–Guided Approximation of Fault Spaces 99
5.1 Program Control Flow in the Context of This Dissertation 101

5.1.1 Control Flow: Order and Execution of Instructions 101
5.1.2 Dynamic Control Flow . 101

5.2 Fault-Space Region . 103
5.2.1 Determining Region Borders . 104

5.2.1.1 Basic-Block Region . 105
5.2.1.2 Function-Call Region . 106

5.2.2 Distinguishing Inner and Outer Fault-Equivalence Set 107
5.2.3 Defining Fault-Space Region Pilots . 107

5.2.3.1 Weight of a Fault-Space Region . 108
5.2.3.2 Evolved Weight Functions for the Fault-Space Region Pilots 108

x

Table of Contents

5.2.4 Summary of Applying Fault-Space Regions . 109
5.3 Evaluation . 110

5.3.1 Fault-Space–Region Effectiveness and Result Deviation 110
5.3.2 Results Overview . 111

5.3.2.1 MiBench Benchmarks . 111
5.3.2.2 Micro Benchmarks . 112
5.3.2.3 Overview Summary . 113

5.3.3 Fault-Space–Separated Results . 114
5.3.3.1 Whole Fault Space . 114
5.3.3.2 Memory Fault Space . 115
5.3.3.3 Register Fault Space . 116

5.3.4 Locality of the Results . 117
5.3.4.1 Benchmark- and Fault-Space Sensitivity 117
5.3.4.2 Failure-Class Sensitivity . 118

5.3.5 Validation . 119
5.4 Summary of Program-Structure–Guided Approximation of Fault Spaces 120

6 Timeout-Detection Methods for Fault-Injection–Experiment Acceleration 121
6.1 Fault-Injection Experiment Time . 123

6.1.1 Experiment Time Line . 123
6.1.2 Fault-Injection Campaign Workload . 124

6.1.2.1 Number of Fault-Injection Experiments and its Simulated Instructions124
6.1.2.2 Instructions over Fault-Injection Campaign Time 125
6.1.2.3 Conclusions . 127

6.2 Timeouts in Fault-Injection Campaigns . 127
6.2.1 Common Timeout Handling . 127

6.2.1.1 Timeout Thresholds . 128
6.2.1.2 Detector Decision Logics . 128
6.2.1.3 Summary . 129

6.2.2 Quality of Timeout Detectors . 129
6.2.2.1 Campaign Runtime and Timeout-Detection–Quality Trade-Off 129
6.2.2.2 Statistical Binary Classification . 130

6.2.3 Potential Fault-Injection–Campaigns Runtime Savings 132
6.2.3.1 Ground Truth in this Dissertation . 133
6.2.3.2 Optimal Timeout Detector . 133
6.2.3.3 Analysis . 134

6.3 Initial Timeout-Detector Research . 135
6.3.1 Jump-Address Histograms . 135
6.3.2 Adaptive Timeout Thresholds . 136

6.4 Autocorrelation Timeout Detection . 137
6.4.1 Autocorrelation . 137
6.4.2 Implementation . 138

6.4.2.1 Timing of ACTOR . 138
6.4.2.2 Jump-History–List Length . 139
6.4.2.3 Set of Lags . 139
6.4.2.4 Jump-Counter Threshold . 139

6.4.3 Evaluation . 140
6.4.3.1 Evaluation’s Ground Truth . 140

xi

Table of Contents

6.4.3.2 Results . 140
6.4.3.3 Summary of ACTOR . 142

6.5 Summary of Early Timeout-Detection Mechanisms . 143

7 Discussion and Related Work 145
7.1 Fault Model . 147

7.1.1 ISA-Layer . 147
7.1.2 Single-Fault Assumption . 150

7.2 Contributed Fault-Injection–Campaign Acceleration Methods 152
7.2.1 Data-Flow–Sensitive Fault-Space Pruning . 152
7.2.2 Program-Structure–Guided Approximation of Fault Spaces 153
7.2.3 Early Timeout-Detection Mechanisms for Fault-Injection–Experiment Acceler-

ation . 155
7.2.3.1 ACTOR: Autocorrelation-based Timeout Restriction 155
7.2.3.2 Initial Timeout-Detector Research . 156

7.3 Experimental Setup . 158
7.3.1 Simulated Hardware . 158
7.3.2 Benchmarks for Fault-Injection–Campaigns Improvements 159

7.4 Related Work . 161

8 Conclusion 163
8.1 Summary . 165
8.2 Conclusion . 167

Lists 169
Acronyms . 169
Mathematical Symbols . 173
Bibliography . 177
List of Figures . 203
List of Tables . 205
List of Listings . 207

xii

1
Introduction

A problem is a chance for you to do your best.

EDWARD KENNEDY “DUKE” ELLINGTON (1899–1974)

1

1.1 Motivation

1.1 Motivation

Semiconductor-based integrated circuits are ubiquitous today, influencing various aspects of daily
life through devices such as cell phones and household appliances. Embedded systems, such as those
found in automobiles, execute essential functions like assistance or multimedia systems, forming
complex computer networks with multiple control units. The continuous miniaturization of hardware
structures [Com22] and the declining unit costs [Sch97] have also impacted industries in domains like
aviation and space flight. In safety-critical domains like those mentioned above, ensuring reliability
is paramount. Reliability entails a system consistently fulfilling its externally observable purpose
within specified time frames, free from failures, regardless of prevailing circumstances [Avi+04]. If
a system cannot maintain reliability and eventually will fail, it is safe if it can prevent catastrophic
consequences [Avi+04].

This prevalence stems from the ongoing reduction in transistor sizes within the hardware. This
trend allows for significantly more transistors per chip surface, potentially boosting chip performance
and non-functional requirements like cost or energy efficiency. The continuously shrinking transistor
substrate sizes and implicitly lower operating voltages [Com22] make them more susceptible to
environmental effects [Shi+02; Con03; Bor05; Bau05; NX06; DW11]. Interfering impulses, aging,
thermal effects, humidity, and radioactive and cosmic radiation, which can threaten the transistor’s
stability, are common hazards to transistors.

Overall, this trend makes hardware more vulnerable to permanent and transient hardware faults;
soft errors is a term often used to refer to transient hardware faults. This situation introduces a new
challenge in designing systems, known as the “reliability wall” [BJS07] or “soft-error wall” [Muk08].
Permanent hardware faults are consistently identifiable, whereas transient faults are momentary
and vanish after a brief period. Consequently, these transient faults can alter the transistor’s state,
becoming untraceable.

For instance, if the transistor is part of a memory cell, this transistor-state change can lead to
a bit flip in the cell, potentially resulting in an externally observable system failure. In response to
these emerging threats, certification authorities require explicit measures to address transient faults
in their safety standards [Sch16], such as IEC 61508 [IEC98] or ISO 26262 [ISO18].

Known system failures caused by transient faults are the unexpected pitch-down maneuver of
a Qantas Flight 72 in 2008 [Bur08] and the uncontrollable acceleration of some Toyota Lexus ES
350 [Yos13; Koo14], for instance, which resulted in injuries or fatalities. Implementing protective
countermeasures (hardening) to detect or rectify such bit flips is crucial to ensure the system’s
reliability or, at the very least, its safety. Cost optimization may have prevented implementing
hardening techniques in the Lexus ES 350. [Yos13; Koo14].

A hardening technique should aim to detect or directly correct bit flips within the system. These bit
flips should be corrected while the system is in operation. Implemented error detection and correction
techniques protect the system from errors. Prominent examples of these techniques are n-Modular
Redundancy [HHJ90; Yeh96; Sle+99; Rat04; Muk08], which replicate hardware or software n times,
and a final result is determined using a voting mechanism, and Error-Correcting Code (ECC) [Muk08;
Ros+11] implemented in software, which can correct bit flips in memory blocks during operation.

Hardening techniques can be implemented in hardware, offering high performance but limited
flexibility and higher costs, mainly due to its obliviousness to application demands [Sch16]. In
contrast, Software-Implemented Hardware Fault Tolerance (SIHFT) techniques are more flexible,
cost-effective, and can be more finely tailored to specific purposes, making them popular [Rei+05b;
Kon08; RGF23].

3

1.2 Research Context

1.2 Research Context

To validate the effectiveness of hardening techniques, it is possible to actively flip bits in systems at
specific times and bit locations during operation, ensuring the system continues running afterward.
This process, known as Fault Injection (FI), emulates transient faults [Cho+13; DC+14; Sch+15;
Sch16]. The resulting externally observable behavior is classifiable based on whether the FI is benign
or led to unexpected behavior, such as non-termination or outputting corrupted results.

Implementing or developing hardening techniques is challenging in practice. Systematic FI
evaluates hardened systems’ reliability and assesses hardening techniques’ effectiveness. Such
an evaluation involves systematically examining the resulting system behaviors when potentially
transient faults occur. An FI campaign encompasses individual FIs executed independently to classify
resulting behaviors at every possible point in time and bit location. The results of the FI campaign
allow for the quantification of the overall system reliability using relevant metrics. This process and
the obtained results allow iterative improvements to the system, measurably enhancing its reliability
with each iteration.

The Fault Space (FS) [Gol+06] concept outlines all possible FIs of the System Under Test (SUT). An
FS F is the set of all time points T and bit locations L that the system handles during its operation:
F = T × L. There are two approaches to handling the set F when assessing the reliability of the
SUT, depending on the purpose of the analysis: (1) either FIs are probabilistically determined to
cover the FS as completely as necessary, or (2) FIs are determined for each point in the FS to cover
it completely, which is more time-consuming.

For a complete analysis of the SUT’s reliability through FIs, the FI campaign must contain FIs
whose resulting SUT behavior thoroughly covers the whole FS. Achieving complete coverage of
the FS by executing an FI for every point in F is infeasible regarding the exploding execution time
for such an FI campaign; the more points in the FS exist, the longer the execution of the SUT’s
program is. The campaign runtime can span several Central Processing Unit (CPU) years, even for
smaller systems with high hardware performance, tiny memory size, and a very short program
runtime. When seeking a complete statement on the outcome of an FI at any location and time of
the SUT, the FS must be covered entirely, although using probabilistic approaches to FS’s coverage
can significantly reduce the campaign runtime.

However, two ways exist to reduce the overall FI-campaign runtime tcpn = n · tFI: (1) The
pre-injection analysis contains methods that reduce the number of FIs n needed for complete FS
coverage before the campaign starts. (2) The second option is to dynamically optimize the execution
time tFI of individual FIs technically or by predicting resulting SUT behaviors post FI. Achieving full
coverage of the FS sets an upper bound for the number of FIs computed in probabilistic methods.
Thus, any method falling under (1) or (2) and ensuring complete FS coverage can be adapted for
probabilistic approaches. Consequently, the primary focus of this work is on methods that achieve
complete FS coverage.

As shown in Figure 1.1, an iterative analysis process cycle starts with the SUT. Using the methods
in the pre-injection analysis (1) to accelerate an FI campaign impacts the number of executed FIs
within the campaign. The FS F is also sketched in the figure, containing all possible FIs T × L.
The second option (2) occurs dynamically during the individual execution of the FIs within the
FI campaign. The resulting behaviors from the campaign are used for the concluding reliability
evaluation, leading to further improvements in SUT’s hardening.

This iterative process is reiterated until the desired system reliability requirement is met.
Acceleration methods vary in two essential properties, depending on the context and whether

methods reduce the FIs overall or dynamically accelerate single FIs:

4

1.2 Research Context

SUT

FI Campaign

FI Results
FI Result 4

FI Result 3

FI Result 2

FI Result 1

...

Reliability
EvaluationHardening

...

...

L

T

FI

(1)

(2)

(2)

(2)(2)

Pre-Injection
Analysis

Figure 1.1 – Iterative Reliability Evaluation using Fault Injection.
The SUT starts with a pre-injection analysis (1) before executing any FIs, thus reducing the
necessary number of FIs. Subsequently, the FI campaign executes individual FIs more swiftly
through acceleration measures (2). The FIs from the initial step ensure that the FI campaign
covers the entire FS F = T × L, defined by all possible points in time of the SUT execution T
and all its bit locations L. The assessment of the SUT’s reliability requires gathering all the FI
results. Following the concluding evaluation regarding the current SUT’s reliability, a subsequent
version of the SUT receives new or improved hardening, which iteratively refines the SUT and
allows it to undergo the same process as often as needed.

FS-completeness This property relates to the ability to make statements about the system behavior
at specific points in the FS after the completion of the FI campaign. The scope here is the
entire FS and is thus irrelevant to individual FI acceleration methods.

Precision An acceleration method is precise if it delivers deterministic, reproducible results without
relying on heuristics; otherwise, it is considered approximative.

It is possible to combine acceleration methods, like combining the pre-injection analysis method
Def/Use Pruning (DUP) [Smi+95; GS95; Ben+98b; BP03; Bar+05; Gri+12] and the dynamic
acceleration method checkpointing [Par+00a; Par+00b; Ber+02; SH+14; Par+14], for instance.
The well-established FS-complete and precise DUP use data read and data write access patterns to
group FIs into sets of FIs with equivalent resulting SUT behaviors post-FI. Checkpointing restores
recorded system states instead of executing the system entirely from the very beginning for every
single FI. This results in a set or chain of acceleration methods that completely covers the FS and
works precisely before and during the campaign’s execution.

1.3 Purpose of this Dissertation

The chosen abstraction layer of the SUT influences the set of time points and locations for the FS.
Selecting an abstraction layer for FI is a complex decision, with injectable layers ranging from the
software application through the Instruction-Set Architecture (ISA) and gate logic down to the physics
layer. Injecting closer to the physics ensures a more accurate overall estimation. However, low-level
hardware models for FI may be unavailable or too complex to handle for practical FI [SB19]. High-
level system layers, like the ISA layer, may be less precise but can be very fast [Cho+13] and ease
understanding erroneous application behavior [Sch+15]. The ISA layer, as an interface between the
software and hardware of a system, is well-suited for testing SIHFT techniques on a fixed hardware
configuration and makes iterative improvements for systems with implemented SIHFT methods
possible.

5

1.3 Purpose of this Dissertation

This dissertation focuses on accelerating FI campaigns on the ISA layer to evaluate a system’s
reliability on fixed hardware with implemented SIHFT techniques. Despite methods like DUP reducing
the number of required FIs significantly by up to five orders of magnitude [Bar+05], the overall
campaign runtime can still be huge, even when combined with other acceleration methods.

To further reduce the FI-campaign runtime and enhance its feasibility, I extract the program
structure of the system’s program. This extracted information is then used to reduce the campaign’s
runtime through specifically designed acceleration methods. Parnas defines program structure as the
organization and arrangement of components, instructions, and data within a computer program,
and it encompasses the overall architecture, control flow, data flow, and relationships between
different parts of the program [Par72]. In this regard, I consider the data flow, the control flow, and
their interweaving and influence on the program flow to reduce the number of FIs needed for whole
FS coverage, irrespective of the resulting system behavior, and to accelerate single FI executions
specifically.

The outcome of my research encompasses three contributions that reduce the execution time of FI
campaigns on the ISA layer by utilizing extracted program structures. I distinguish between methods
executed in the pre-injection analysis (refer to (1) in Figure 1.1) and methods that accelerate the
execution of individual FIs, referred to as dynamic fault-injection acceleration (see (2) in Figure 1.1):

(1) Pre-Injection Analysis

Contribution 1 Data-Flow–Sensitive Fault-Space Pruning
The precise and FS-complete Data-Flow Pruning (DFP) method [�PDL21] extends the well-
established DUP by using information from the data flow, instruction semantics, and lifetimes
of dynamic values, which works independently from the focused resulting system behavior.
Specifically, the individual components of this contribution are:

• The concept of the DFP method for data-flow–sensitive ISA-layer FI reduction

• The utilization of the data flow, its instruction semantics, and value-dependent bit-wise
local fault-equivalence rules

• Quantitative comparison against DUP with significant precise FI reduction

Contribution 2 Program-Structure–Guided Approximation of Fault Spaces
The approximative but FS-complete Fault-Space Regions (FSRs) concept [�Pus+19], which
uses dynamic jump addresses and data flows to reduce the number of FIs of DUP further. The
individual components of this contribution are:

• The concept of forming FSRs for program-structure–guided ISA layer FI reduction

• I present two instantiations of the FSRs concept using basic blocks and function scopes

• Evaluation of this approach to demonstrate that this approximation reaches acceptable
error rates compared to a precisely covering method, like the DUP

(2) Dynamic Fault-Injection Acceleration

Contribution 3 Timeout-Detection Methods for Fault-Injection–Experiment Acceleration
As part of this contribution, I explore non-terminating systems post-FI, also known as timeouts.
My general findings on this topic are guidelines for developing timeout detectors for indi-
vidual FIs. Following this, I describe my initial approaches that lead to the timeout detector
ACTOR [�Tho+22]. The components of this contribution are in detail as follows:

6

1.3 Purpose of this Dissertation

• A detailed analysis of the nature of timeouts, including an upper-bound analysis regarding
the maximum achievable runtime savings, as well as the initial findings about my first
approaches in predicting timeouts and the resulting takeaways for my concurrent work
in this context

• The dynamic, heuristic acceleration method ACTOR uses autocorrelation [IKP16] based
on dynamic jump addresses to detect whether a system terminates.

• Evaluation of ACTOR, its prediction-error rate, and the achieved FI-campaign–runtime
end-to-end savings

1.4 Structure

This section describes the structure of this dissertation, gives an outline for every chapter, and assigns
the three contributions to the respective chapters:

Chapter 2 Dependable Computing and Fault Injection (pp. 9-50)
This foundational chapter addresses essential elements of dependable computing and the
potential impact of transient hardware faults. The chapter delves into the effects of transient
hardware faults on systems and outlines strategies for hardening systems against such faults to
enhance their reliability. Additionally, I elaborate on fault injection to test and gauge a system’s
reliability. Given that FI typically entails a substantial workload, I also explore the concept of
FI acceleration methods aimed at optimizing the reliability evaluation process through FI.

Chapter 3 Implementation and Evaluation Process (pp. 51-70)
In this chapter, I introduce the used FI framework FAIL*, detailing its structure and the
integration of my contributions into FAIL*, and explore the examined system failure classes. I
establish the foundational concepts of effectiveness and efficiency in acceleration methods,
which are essential for future evaluations, and establish the ground truths in this dissertation.
Furthermore, I provide insights into the setup of my dissertation, encompassing my benchmark
portfolio and the technical setup used across all evaluations in this work.

Chapter 4 Data-Flow–Sensitive Fault-Space Pruning (pp. 71-98)
Here, I delve into my first contribution, outlining the Data-Flow Pruning (DFP) methodol-
ogy [�PDL21]. Leveraging the extracted data flow from the executed program of the SUT
and the inherent instructional semantics, I utilize masking effects to minimize the required
number of FI. I comprehensively describe the DFP in this chapter, showcasing its effectiveness
and efficiency in reducing the number of FIs.

Chapter 5 Program-Structure–Guided Approximation of Fault Spaces (pp. 99-120)
In this chapter, I introduce my second contribution, the Fault-Space Regions (FSRs) [�Pus+19],
established through extracted program structures, specifically the dynamic jump targets of the
program. The FSRs define the temporal segmentation of the FS, offering a method to diminish
the necessary number of FI. I describe this approach in detail within this chapter and present
the subsequent FSRs’ evaluation results.

Chapter 6 Timeout-Detection Methods for Fault-Injection–Experiment Acceleration (pp. 121-144)
In contrast to my previous contributions to reducing the necessary FIs, this chapter delves
into accelerating the execution of individual FIs. Here, the primary focus is timeouts, which
signify potentially non-terminating systems after completing an FI. In this chapter, as the third

7

1.4 Structure

contribution, I extensively explore timeouts within the context of FI. Subsequently, I describe
the methodologies I have developed to detect timeouts at an early stage, ultimately leading to
the creation of the timeout detector ACTOR [�Tho+22]. Finally, I detail the functionality of
ACTOR and present its evaluation results.

Chapter 7 Discussion and Related Work (pp. 145-162)
In this part of my dissertation, I delve into essential facets of ongoing FI-related research,
bridging key concepts with my contributions. I discuss fundamental aspects within the FI-
accelerating research landscape and this work. Concluding, I present related research pertinent
to my contributions.

Chapter 8 Conclusion (pp. 163-167)
I aim to recapitulate my dissertation’s core topics and contributions in this final chapter. I
revisit the key elements and potential future-work topics that emerged during my research.

1.5 Typographical Conventions

Throughout this dissertation, I use the italic font shape to emphasize an essential term or fragment
of a sentence. When presenting figures from previously published articles, I use the phrase “The
figure is adapted from [citation]” to specify a modified or recreated version from the source, and “The
figure is from [citation]” to denote an unaltered one. In my citation marks, an open triangle denotes
that I am the primary author or one of the co-authors (e.g., [�PDL21]). I typeset source code and
in-text references to source-code identifiers (like function(), variable) in a monospace font.

8

2
Dependable Computing and

Fault Injection

Don’t only practice your art, but force your way into its secrets, for it and
knowledge can raise men to the divine.

LUDWIG VAN BEETHOVEN (1770–1827)

This elementary chapter provides a basis by explaining key concepts for understanding the
subsequent topics. It begins with exploring dependable computing terminology and dependability’s
significance in ensuring computer systems’ reliability and performance.

The chapter overviews transient hardware faults and their potential impact on computing systems
and sketches countermeasure approaches to make a system less prone to these transient faults.

It dedicates fault injection as a testing technique. This technique involves explicitly injecting
faults into a system to assess its reaction, identify vulnerabilities, and evaluate the effectiveness of
implemented countermeasures.

The chapter’s final section introduces the dissertation’s core topic – reducing end-to-end runtimes
in fault-injection campaigns comprising systematic fault injections. This reduction is pivotal for
conducting efficient and practical assessments of system reliability.

9

2.1 Dependable Computing

2.1 Dependable Computing

In the world of safety-critical systems, a precise definition of terms is inevitable, and Figure 2.1
illustrates the most essential terminologies as the dependability tree.

The first aspect of dependability is the differentiation of five different attributes. These attributes
describe related concepts but address different aspects of dependability. The differentiation and
delimitation of different threats, in terms of faults, errors, and failures, is also essential to distinguish
between their causes and effects.

We will learn about the increasing demand for transistors and the trends regarding the size of
transistors in the future. Afterward, I will present the physical causes of transient hardware faults
and how shrinking transistor sizes intensify the probability of transient hardware faults.

A fault triggers the fault propagation chain, activating an error, and further propagation can
lead to failures. We will also look at the assessment of dependability and the means to enhance
dependability in four different ways. I will present some common error-detection and error-correction
methods to help understand how these concepts work. The primary focus of this dissertation is fault
forecasting, an essential concept in dependable computing that estimates erroneous system behavior
during the occurrence of a transient effect.

For the remainder of the dissertation, I will use the term system to refer to a system with the
intended, fixed hardware configuration and the corresponding software in the target environment.

2.1.1 Attributes of Dependability

The system’s behavior results from implementing the functionality outlined in a specification. When
the system’s behavior deviates from the specification, it fails to fulfill its intended task. The impact
of this divergence can vary significantly depending on the domain or use case. In safety-critical
environments, minimizing or even preventing any imminent danger is paramount. A system is
dependable when it can effectively manage impending risks, maintaining an acceptable level of risk
while ideally adhering to its specification or, at the very least, not violating it beyond a defined
degree.

Dependability Threats Errors

Failures

Faults

Attributes

Means
Fault Removal

Fault Tolerance

Fault Prevention

Fault Forecasting

Availability

Safety

Reliability

Integrity

Maintainability

Figure 2.1 – Dependability Tree.
Dependability and its attributes, threats, and means (based on [Avi+04])

11

2.1 Dependable Computing

A system’s dependability is defined by its following five attributes [Avi+04]. Figure 2.2 shows an
overview of these five attributes and their relations.

Availability Integrity

Reliability

Safety

Maintainability

Figure 2.2 – Relations of the Dependability Attributes.
This figure consists of the five dependability attributes and their relations to each other. High
availability and integrity are prerequisites for a system to be reliable because only then it can
perform its task. Safety depends on reliability. If a system is not reliable, it cannot be safe. It
may only be safe if it is reliable if it prevents misbehavior. Maintainability affects all the other
attributes.
This work focuses mainly on the attribute reliability.

Availability This attribute is “that a system is functioning at a particular instant of time“ [Muk08]. The
system operates continuously, except for planned downtime for maintenance or unexpected
system outages. In an ideal scenario, the system is available 100 percent of the time and can
initiate its designated tasks. Availability indicates whether the system is operational without
guaranteeing it operates without failure.

Integrity The meaning of integrity in the context of dependability is the “absence of improper system
alternations“ [Avi+04]. It pertains to the components of a system that are essential for its
infrastructure or data structures. A system has high integrity when it can be assured, under all
circumstances, that it relies on the logical correctness and completeness of both hardware and
software, as well as any valid data (regardless of the data’s correctness). This also implies that
the system should consistently maintain valid system states, regardless of whether it fulfills its
specified function.

Reliability Reliability is often used interchangeably with robustness or functional correctness in the
research community. Reliability stands for the “continuity of correct service“ [Avi+04] during
the execution of the system. Reliability is a crucial aspect of dependability, but it depends on
the prior conditions of availability and integrity. Reliability refers to the system’s capability to
execute its specified function within a defined response time. In this context, what matters
is the system’s observable behavior, regardless of any undesired internal system states. The
sole criterion for reliability is that the system’s behavior remains correct even in the event
of an internal error or a loss in integrity. Integrity and reliability are interrelated because
a system with lower integrity might not be reliable as it fails to fulfill its tasks. However, a
system can terminate in a valid system state (high integrity) but not terminate correctly due
to an internal error. If such a case proceeds undetected, and the system is considered to be
operating correctly, it is termed a Silent Data Corruption (SDC).

12

2.1 Dependable Computing

Safety With safety, Avizienis means the “absence of catastrophic consequences“ [Avi+04]. When a
system becomes unreliable or an intented task is expected to fail in any way, it is safe if it
can prevent catastrophic consequences. In specific real-time scenarios, a system may be shut
down or restarted to bypass an error and avoid potentially dangerous outcomes. However,
even if a system is deemed reliable, external environmental factors can still impact its safety.
In the automotive context, for instance, the pedestrian protection system [GT07] is designed
to minimize the risk of pedestrian injury, prioritizing safety in such scenarios.

Maintainability This attribute is essential to ensure the system’s design allows for maintenance,
modifications, and repairs, indirectly supporting the other four attributes.

As Figure 2.2 shows, these five attributes are interrelated but address different depenability
aspects. In this dissertation, I focus on attribute reliability, which influences safety and depends on
availability and integrity. This dissertation does not consider maintainability.

2.1.2 Growing Danger to Hardware Reliability

This work delves into reliability concerning the correct execution of program code on the hardware.
The assumption of correct execution is fundamental in software development, relying on the proper
functioning of the hardware, specifically the transistors that comprise it in hardware.

The demand for transistors has increased since the late 70s and continues its exponential
growth [Com22], driven by the increasing digitalization of everyday life for end-users and the
ongoing reduction in transistor sizes. The continuous reduction in transistor size allows for more
transistors per single chip. Gordon Moore defined this development in a reduction in transistor sizes
as Moore’s Law in 1975, which describes that the number of transistors on the same chip surface
approximately doubles every two years1 [Sch97], a trend that persists today.

The increasing number of transistors on a single chip surface leads to enhanced hardware
performance, but it also introduces new challenges, such as the memory wall and power wall [BJS07;
Muk08]. The memory wall has slowed overall performance development in computer systems
because powerful processors outpaced memory speeds, causing memory to become a bottleneck.
Additionally, the densification of microstructures results in condensed particle charges, leading to
increased power dissipation and overheating issues, known as the power wall.

These walls have varying impacts on hardware development; various architectural solutions
have been designed to partially mitigate these challenges, including techniques like prefetching
and multi-threading and reducing supply voltages and clock frequencies [Muk08; Mit14; Com22].
However, these solutions often come at the expense of single-thread performance, which does not
keep pace with the rapid increase in transistors [Com22].

Another increasingly relevant challenge is the soft-error wall [Muk08] or reliability wall [BJS07].
The continuous reduction in transistor sizes decreases the charge quantity within transistors, in-
creasing the likelihood of erroneous behavior. This requires lower operating voltages, which can be
advantageous for addressing the power wall but also makes the hardware more susceptible to errors.
Although additional hardware can compensate for potential incorrect behavior to some extent, it
consumes more energy. Implementing is not always straightforward due to constraints like chip size,
power usage, and performance limitations [Sch16].

1Moore’s Law is not a physical law but a general guideline. Originally proposed in 1965, it initially stated that the number
of transistors on a chip would double yearly. However, this prediction was revised to a two-year interval a decade later in
1975.

13

2.1 Dependable Computing

Another crucial factor impacting reliability is the hardware’s life cycle. This life cycle is often
described as the bathtub curve [Wil02a; Wil02b; LB17] and consists of three distinct phases, as
shown in Figure 2.3:

Infant Mortality This initial phase where manufacturing defects occur during development, even
before the hardware reaches the market. Manufacturers aim to identify and rectify these
defects to enhance hardware quality. This phase incurs a significant portion of production and
development costs [Hof16], making it a potential area where time and costs could be saved at
the expense of reliability.

Normal Life In this phase, the hardware operates as intended, with a relatively constant probability
of erroneous behavior over time [Wil02b; LB17]. Transient hardware faults resulting from
internal and external interference sources cause around 80 to 90 percent of errors during this
phase [CS90; Lal97].

Aging Phase In the final phase of the life cycle, aging processes significantly increase the probability
of erroneous behavior, which can lead to permanent, irreparable defects in the hardware caused
by time-dependent dielectric breakdown [McP07]. Decreasing transistor sizes also significantly
increases the susceptibility to these breakdowns and thus generally shortens the operational
lifetime of the hardware until it becomes unusable [Sri+04].

Hence, we have identified two significant factors that threatens hardware’s reliability: (1) Moore’s
law, which suggests that transistors continually shrink in size, brings about persistent challenges
in hardware development. (2) Notably, the reliability wall becomes a significant obstacle to the
progression of technology. This wall’s impact is most pronounced during the normal-life phase (see
Figure 2.3) of hardware, primarily due to transient hardware faults, which is the main reason for
erroneous behavior [CS90; Lal97]. Furthermore, the constant reduction in transistor size amplifies
this issue. In summary, as transistors become smaller and smaller, the likelihood of transient hardware
faults increases, leading to a higher reliability wall.

The combination of Moore’s law and the reliability wall presents a complex challenge for the
dependable operation of modern hardware systems.

In
cr

ea
se

d
Fa

ilu
re

 R
at

e

Time

Infant Mortality
Decreasing Failure Rate

Normal Life
Low „constant“ failure rate

Aging Phase
Increasing Failure Rate

Figure 2.3 – The Bathtub Curve as the Life Cycle of Hardware.
This illustration depicts the failure rate of hardware over time, delineated into three distinct
phases. In the Infant Mortality phase, the failure rate is initially relatively high. As the hardware
undergoes iterative development and transitions into productive use, it enters the Normal Life
phase, characterized by a low and relatively constant failure rate. In the final phase, known as
the Aging Phase, the failure rate experiences a significant upsurge due to the effects of aging.
The figure is adapted from [Wil02a].

14

2.1 Dependable Computing

For instance, in a 6T-Static Random-Access Memory (SRAM) cell, a charged particle can trigger a
transient fault in one of the six transistors, potentially causing the SRAM cell to change its state or
access type. More specifically, due to transient transistor faults, the stored bit within the SRAM cell
can be inverted or flipped from a logical zero to a logical one or vice versa [Zie+96]. This is known as
a bit flip resulting from a transient fault, also referred to as a soft error or Single-Event Upset (SEU)2

[GWA79].

2.1.2.1 Transistor Trends

As early as 1978, the Intel Corporation observed transient effects induced by radioactive radiation
from contaminated casing materials [MW79]. In the same year, cosmic rays were identified as
another possible cause of transient semiconductor faults [ZL79]. The initial concept of the critical
charge Qcrit for transient faults in semiconductors [MW79] remains relevant in semiconductor
manufacturing today [Com22].

Due to the continuous miniaturization of transistors, the critical charge Qcrit has been decreas-
ing, making cosmic rays an increasingly important factor in aeronautical engineering. Cosmic rays
have become highly relevant in the upper layers of the atmosphere [TN93]. Normand and col-
leagues [Nor96a], however, discovered in 1996 through experiments that cosmic rays can cause
operational failures even at sea level, which IBM further confirmed by many years of studies, which
observed the influence of cosmic rays even in standard computer systems [Zie+96] and through obser-
vations of failures in Sun UltraSPARC-II workstations, which were also attributed to radiation-induced
bit flips in Static Random-Access Memory (SRAM) cells [Hof16]. Subsequent research increasingly
highlighted single-bit errors in SRAM cells and vulnerabilities in Dynamic Random-Access Memory
(DRAM) cells concerning transient faults [Sri+15].

In 2001, semiconductor manufacturers expressed concerns as transistor structure widths de-
creased to less than 100 nm, suggesting that transient faults could affect not only memory cells but
also logic elements [All+02]. This statement began understanding the “reliability wall”, essential in
today’s hardware manufacturing.

New transistor technologies, such as FinFET, LGAA, LGAA-3D, and VGAA transistors, occurred
to overcome this wall and enhance chip performance. Currently, technologies with feature sizes as
small as 7 nm are on the market, with developments progressing towards 3 nm. The International
Roadmap for Devices and Systems committee predicts that these technologies will reach feature
sizes of less than 1 nm by 2034 [Com22].

In line with this trend, transistors are operated with ever-decreasing operating currents [Hoe12;
CS17; Com22], while their substrates continue shrinking and their charge decreases [Hoe12; Com22]
. This exacerbates the challenge posed by the reliability wall. To illustrate the concept of lower charge,
consider the channel length l as a standard metric for transistor sizes. Figure 2.E2 shows the distance
between the two semiconducting materials connected to the source and drain terminals. In the case
of Metal-Oxide–Semiconductor Field-Effect Transistor (MOSFET), a shorter channel length means fewer
silicon ions form the channel. With a covalent radius of approximately 102 pm = 0.102 nm [Bon64],
a channel with a length of around 1 nm contains only about ten silicon ions. Consequently, the
smaller the channel, the more susceptible it is to disturbances and charge changes. The current
trend is pushing transistors and their functionality to their physical limits.

2To provide more precise terminology, the case described here corresponds to a Single-Bit Upset (SBU), as it involves
explicitly a single bit flip. In addition to SBU, there are other categories, such as Multiple-Bit Upset (MBU) or its particular
case, Multiple-Cell Upset (MCU), where multiple states or bits are changed simultaneously by a transient effect. The term
SEU generalizes all these events, as per references [Nic10; Cor13]. Throughout this dissertation, the term SEU is used
interchangeably with SBU. MCU and MBUs are not extensively covered in this dissertation, but I will delve into MBUs again
in Section 2.2.4 and Section 7.1.1.

15

2.1 Dependable Computing

2.1.2.2 Observed Occurrences of Transient Hardware Faults

The current trend significantly impacts memory cells or even logic circuits in the form of an SEU,
which can propagate to higher abstraction layers and manifest as externally observable system failures
or unexpected system behavior. As transient hardware faults do not result in permanent system
damage, it can be challenging to identify whether a transient effect has occurred, especially in the
context of increasingly complex hardware systems. In the following, I will provide examples of
unexpected system behaviors that were externally observable. However, it is not always possible to
conclusively attribute these issues to transient faults:

• In 2003, electronic voting was implemented in the Belgian elections. However, during the
analysis of the election results, a peculiar anomaly emerged: one candidate received more votes
than the total number of eligible voters in the corresponding electoral district. Subsequent
investigations sought to uncover the root cause of this discrepancy. The candidate had received
exactly 4096 more votes, which is a power of two and strongly suggests a bit flip in the
electronic voting system [Gla04; Pau04].

• Server systems, like other critical systems, are subject to the five dependability attributes
discussed in Section 2.1.1. In 2003 and 2004, a series of significant failures in server systems
were documented. These failures had a severe impact on the system’s functionality. The root
cause of these failures was SEUs, which compromised the systems’ ability to ensure reliability
and availability [Mic+05].

• The incident involving Qantas Flight 72 in October 2008 resulted in injuries caused by a bit
flip. The air data inertial reference units processed data that an SEU had corrupted. This
corruption led to an unintended pitch-down maneuver initiated by the aircraft’s autopilot,
resulting in a descent with a force of -0.8 times the Earth’s gravity. Subsequently, the aircraft
executed a maneuver with a force of 0.2 times Earth’s gravity, causing serious injuries to the
passengers [Bur08].

• In 2008, Infineon highlighted the significance of transient effects on automotive systems and
discussed potential countermeasures [Kon08]. Just a year later, the impact of these effects
became a reality. Reports surfaced of drivers experiencing uncontrollable acceleration in Toyota
Lexus ES 350 vehicles. The initial assumption was that the issue was related to the accelerator
pedal being stuck due to a floor mat. However, further investigation revealed that SEUs were
the primary cause of this behavior. The problem stemmed from the electronic acceleration
system’s vulnerability to bit flips, leading to accidents that resulted in various fatalities [Yos13;
Koo14].

• In the context of digital certification, a Certification Authority (CA) employs Merkle trees to
verify the validity of certificates. When a new entry appends the tree, a new leaf in the tree
contains a new hash based on the hashes of all its predecessors up to the root. A posted
report, “A cosmic ray just murdered a Certificate Transparency log” [Val21], brought attention
to a potential transient fault that resulted in a security vulnerability. In the case of the Merkle
tree shard Yeti 2022 by the CA company Digicert, the certificate validation process no longer
worked correctly when checking from a leaf upwards. Finally, this issue was attributed to a
possible bit flip in the hash of a leaf [JR21].

• In the gaming world, gamers often engage in speedruns, where they compete to complete
a computer game as quickly as possible, sometimes for prize money. In a 2013 speedrun of

16

2.1 Dependable Computing

Super Mario 64, a speedrunner unexpectedly warped up several layers in the game, giving
them an unexpected advantage. This phenomenon remained a mystery for years until it was
finally determined that an SEU must have caused it, which is consistent with a bit flip affecting
the variable that tracks the height of the in-game character [Bur20; Ram21].

As the list above shows, transient effects that are externally observable exist in various domains.
Although they may be entertaining in the context of a computer game, they can pose significant
risks in matters related to safety or security. It is crucial to consider and address transient effects in
transistors to ensure the reliability of systems.

EXCURSUS: Transient Faults in Metal-Oxide–Semiconductor Field-Effect Transistors

To understand how transient hardware faults occur, a basic understanding of the functionality
of transistors is necessary.
The most common and widely used type of transistor is the Metal-Oxide–Semiconductor
Field-Effect Transistor (MOSFET). One common variant of the MOSFET is the n-Channel En-
hancement Mode MOSFET (nMOS), and Figure 2.E1 illustrates its functionality. The MOSFET
features three terminals: source, gate, and drain. Technically, a MOSFET has four terminals.
The fourth terminal the body or bulk. It is usually internally connected to the source terminal
to prevent unintended additional electric fields and voltage shifts at the transistor’s bound-
aries. This detail is not crucial for a basic understanding of transistor functionality, but those
interested in a more in-depth exploration can refer to literature like Liening [LB17] for more
information.

+
p-Doped Material

(Substrate)

Source Gate Drain

Depletion
Region

–

–

– –

––
–

–
–

– –
––– –

–
–

– –
–

–

–
–

––
–

–– –
–

–
+ +

+

+

+

+ + +

+

+++

+

+

+

+

+

+

+

+ +

++
+

+

+

+

+

+

+ +

+

+

++

++

+

+

–

+
++

+
+

+n-Doped
Material

(a) Non Conducting

+

Source Gate Drain

–

–

– –
–

–

–
–

–

–– –
–

–

+

+

+ + +

+

+++

+

+

+

+

+

+

+ +

++ +

+

+
+

+

+

+ +

+

+

++

+

+

–

+

+

+
+ +

–+ –+ + +– – – –

+ + + +++

–

– –
–

––
–

+
–

–

––– –
–

–

+

––– – – – – – – – –

(b) Conducting

Figure 2.E1 – Functionality of an n-Channel Enhancement Mode MOSFET.
An enhancement-mode MOSFET features three terminals that enable it to transition
between conducting and non-conducting states. A positive voltage is applied to the gate
terminal to enable the flow of electrons between the source and drain terminals. This
voltage shift induces a change in the charges within the n-doped and p-doped materials
of the MOSFET, leading to the formation of a conducting n-channel between the source
and drain terminals.

The source and drain terminals are connected to semiconducting material. This material
is produced through a process known as doping. In the case of an nMOS, the source and
drain materials consist mainly of negatively charged particles, typically electrons. As a result,
they are called n-doped materials [CH02; WH11]. p-doped material known as the transistor
substrate separate these n-doped materials. The transistor substrate can hold more positive
charges [CH02; WH11]. The gate terminal is positioned between the two n-doped regions

17

2.1 Dependable Computing

and connects an electrically insulated layer, usually made of silicon dioxide. This insulating
layer separates the gate terminal from all the semiconducting materials.
A voltage between the source and drain creates a depletion region at the transition between
the n-doped and p-doped materials. Both of these regions function as diodes, preventing
the flow of electrons from source to drain and vice versa. In contrast to the enhancement
mode described here, the opposite depletion mode initially establishes a conducting channel
between the diodes instead of preventing the flow.
Figure 2.4a shows the non-operating or non-conducting state of an nMOS. The gate terminal
is crucial to enable the flow of electrons between the source and drain. When a positive voltage
applies to the gate terminal, it shifts charges within the substrate. Initially, a depletion region
forms beneath the gate’s insulating layer, connecting and uniting the existing regions. When
the voltage surpasses a certain threshold, it causes the electrons beneath the insulating layer
to create a conducting channel between the source and drain, as illustrated in Figure 2.4b.
This phenomenon is known as the field effect [WH11; DHE12]. The channel, which carries
electrons, is referred to as an n-channel due to the negative charge of the electrons.
In addition to the npn arrangement of semiconducting materials in an nMOS transistor, a
pnp arrangement is possible, resulting in a p-Channel Enhancement Mode MOSFET (pMOS)
transistor. Consequently, the formed p-channel transports positive charges when a negative
voltage is applied to the gate terminal.
The backbone of the most commonly used CMOS technology for manufacturing processors
and SRAM cells, consists of nMOS and pMOS transistors. They are applied complementary,
where nMOS circuits represent the desired logic, and complementary circuits with pMOS
transistors minimize noise and reduce power consumption. For example, a 6T-SRAM cell is
composed of six MOSFETs. This cell stores a bit using four MOSFETs (two nMOSs and two
pMOS) that form two cross-coupled inverters. Two additional nMOS transistors control read
and write accesses. Even though DRAM cells use capacitors to store a bit, nMOS transistors
are still employed for accessing the cell [JWN10; WH11].
Transistors, essential components of processor circuits and power cells, must ensure proper
functioning to guarantee that the hardware constructed with them reliably performs its
intended tasks.
In addition to the aging processes, transistors are vulnerable to internal and external factors
that can result in hardware failures during their “normal life” phase, as depicted in Figure 2.3.
These failures are not permanent and do not make the hardware unusable; instead, they
involve unpredictable and transient effects that can temporarily alter the state of a transistor,
potentially impacting the hardware’s behavior.
Transient faults can arise from various sources. Internal sources of transient faults may include
crosstalk from adjacent interconnects or signal reflections at interconnect ends, leading to
noise or signal delays [Con03; CMV02; RCE02].
On the other hand, external sources of transient faults can be fluctuations in the supply
voltage, electromagnetic interference, and, most notably, ionizing radiation. Both particle
radiation, such as alpha, beta, and cosmic high-energy neutron radiation, and electromagnetic
radiation in the form of X-rays or gamma radiation have the potential to induce a charge shift
within the transistor, which, in turn, can invert the state of a logic circuit [Zie+96; Muk08;
Hof16].
Figure 2.E2 schematically illustrates the ionization force when a particle interacts with a
transistor. During the particle’s path through the transistor material, the deceleration of the

18

2.1 Dependable Computing

particle leads to the creation of electron-hole pairs within the material. This, in turn, results
in an expanded depletion region, causing an ion shift that generates a transient conducting
channel or a power pulse.

+

Source Gate Drain

–

–

– –

––
–

–
–

– –
––– –

–
–

– –
–

–

–
–

––
–

–– –
–

–
+ +

+

+

+

+ + +

+

+++

+

+

+

+

+

+

+

+ +

++ +

+

+
+

+

+

+ +

+

+

++

+

+

+ +

–

+

Environmental
Effect

l

+–
+–

+–
+–

+–
+–

+–+–
+

–+
–

Figure 2.E2 – Influence of an Environmental Effect in a MOSFET.
This figure depicts the non-conducting state of a MOSFET, as shown in Figure 2.4a.
An external environmental effect induces an arbitrary transient conduction channel
through an ion shift. When the emerging depletion region expands to connect the two
diodes sufficiently, it transiently functions as a conduction channel between the source
and drain terminals despite the original non-conducting state of the transistor.

In the case of a transistor in a conducting state, this ion shift disrupts the existing conducting
channel between the diodes [Bau05]. Consequently, it induces a short-term, transient, and
undesired state of charge within the transistor. If the resulting charge, which depends on
the initial kinetic energy of the particle, surpasses a critical threshold Qcrit, the state of the
transistor switches [MW79].

2.1.3 The Fault Propagation Chain - Fault, Error, Failure

After discussing the potential causes of transient hardware faults and their underlying physical
reasons, I will delve into the specific consequences of these faults or threats, as mentioned in the
dependability tree (refer to Figure 2.1), on the behavior of a software-executing hardware system.
Establishing a precise definition of what constitutes a system failure is essential. Throughout this
dissertation, when referring to a system, I am generalizing it to encompass any hardware that
executes software designed to fulfill a task as specified during the design or requirement process.

As previously discussed, every system aiming for reliability faces the threat of faults. These faults
can manifest as errors, ultimately leading to system failures. A linear fault propagation chain visualize
this progression: fault→ error→ failure → fault→ error→ failure → ·· · [Lap+90; Avi+04]. A
transient hardware fault can serve as the initial trigger for such a chain.

Exceeding the critical charge in a transistor results in a change of its state, referred to as a
fault. However, a faulty charge state in a transistor does not necessarily lead to unexpected system
behavior or misoperation. If the affected transistor is recharged after the change or remains unused
during a system’s execution on the hardware, the fault is considered passive or dormant [Lap92;
ALR01; Avi+04; Gol+06]. In this context, a passive fault does not impact the correct execution of a
program, even if a faulty charge state exists within the system.

The fault is activated once the system uses a transistor with a faulty charge state and transforms
into an error. At this point, the fault impacts the system state and becomes an effective fault. However,
an error does not necessarily result in a system misbehavior and can be masked by side effects. An

19

2.1 Dependable Computing

example of error masking is an AND gate connected to an error-holding memory cell. If any other
input of the AND gate carries a zero, the error is masked and does not influence the system.

Once a fault is activated, an error exists in the system, which may propagate from one layer to
another. If the error eventually reaches the system’s boundary and results in externally observable
misbehavior, it is a system failure. A system failure indicates that the system no longer serves its
intended purpose.

Failure FailureErrorFault Fault

Activation Propagation

Layer i-1 Layer i+1Layer i

···

Failure

Layer n

System
Boundary

Error

Environmental
Effect

Figure 2.4 – Fault Propagation Chain.
A fault, whether caused by environmental effects or the failure of the previous layer, has the
potential to be activated and transformed into an error. This error can then propagate to the
layer boundary, resulting in a layer failure. The layer failure, in turn, becomes a fault in the
subsequent layer. If this sequence continues across multiple layers and ultimately reaches the
system boundary, it culminates in an externally observable system failure.

Figure 2.4 illustrates the interconnection of individual chain links across multiple layers. Consider
a system comprising n layers. Environmental effects can induce a fault at layer i, initiating the fault
propagation chain. If this fault is activated, it results in an error at layer i. When this error subsequently
propagates to the boundary of layer i, a “layer failure” occurs, causing a fault at the next layer, layer
i + 1. This process can propagate up to the final layer n. Suppose an error on layer n propagates
to the system boundary. In that case, it leads to externally observable unexpected system behavior,
resulting in a system failure where the system no longer fulfills its specified tasks.

Consider various system layers and how the fault propagation chain can affect them, as depicted
in Figure 2.5. The fault propagation chain has the potential to transmit a fault caused by an SEU
at the physical layer across all abstraction layers of a system. An SEU, induced by environmental
influences, results in an undesirable charge state of a transistor on the physical layer. This fault can
lead to a malfunction on the physical layer, manifesting as a fault on the digital-logic layer.

The propagation of these faults can continue up to the application layer, ultimately causing the
original fault on the physical layer to result in externally observable misbehavior. Therefore, if a
fault on the physical layer is effective and the subsequent propagation through the layers extends
beyond the system boundary, it leads to a system failure.

In the context of an automotive controller designed to control an Anti-Lock Breaking System
(ABS) in a car, the propagation of a fault through the layers up to the system failure can be outlined
as follows:

Physical Layer A transient effect induces a transistor to switch.

Digital-Logic Layer The affected transistor is part of an OR gate on this layer. One input is a logical
zero, and the other is a logical one. The transistor’s switch in the physical layer causes both
inputs to become zeros, leading to zero output.

20

2.1 Dependable Computing

Digital Logic

Microarchitecture

Instruction-Set
Architecture

Physical Layer

Application

Hardware

Software

Environmental
Effect

System
Failure

Figure 2.5 – Fault Propagation Chain in Exemplary System Layers.
An SEU within a transistor triggers a fault at the physical layer due to environmental effects.
Once this fault is activated and the resulting error propagates, it results in a physical-layer
failure. This layer failure, in turn, induces a fault at the next layer, in this case, the digital-logic
layer. This sequence can continue upward to the application layer, eventually resulting in an
externally observable system failure.

Microarchitecture Layer The OR gate is part of a half adder within the Arithmetic Logical Unit
(ALU) on this layer. The ALU performs the binary addition (1001 0001)2 + 12 = 0x92. The
change in the OR gate’s output alters the first bit in the first summand from (1001 0001)2 to
(0001 0001)2, resulting in the incorrect result 0x12.

Instruction-Set Architecture (ISA) Layer The instruction ADD r1, #1 is in progress. The incorrect
calculation from the previous layer leads to an erroneous result, 0x12, stored in register r1,
which differs by one bit from the correct result.

Application Layer In our example application, which directly controls the car’s ABS, the incorrect
value from the previous layer causes a pointer variable to change. This variable should
dereference the next byte at memory address 0x92 in periodically updated sensor data to
trigger the ABS. However, after the fault, the variable points to address 0x12 instead, leading
to a pointer dereferencing the wrong byte.

This example highlights the propagation of a fault and emphasizes that it is not crucial on which
layer the fault propagation chain breaks to prevent a system failure. Once a fault is caught on one
layer, it does not propagate to the next, illustrating the importance of fault- and error tolerance-
mechanisms at various system layers. I will delve into this topic in more detail in Section 2.1.5.

2.1.4 Dependability Metrics

In earlier sections, we delved into the causes and potential consequences of faults in a system.
Dependability metrics allow the comparison and quantification of these effects, . These metrics find
utility in various contexts, such as system design, where they enhance dependability through iterative
improvements. The collection of these individual metrics listed here is based on the collection from
Schirmeier’s dissertation [Sch16].

21

2.1 Dependable Computing

The most fundamental metric, Time To Failure (TTF), quantifies error rates, although it pertains
explicitly to failures3 [Muk08]. If a system experiences an error after x years of operation, this
duration is referred to as its TTF.

In a more practical context, Mean Time To Failure (MTTF) represents the mean time between mul-
tiple errors within the same device or the mean time of TTF for multiple devices collectively [Muk08].

Closely related to MTTF, Mean Time To Repair (MTTR) measures the mean time required for
inherent device repair (I will revisit this in Section 2.1.5). Additionally, Mean Time Between Failures
(MTBF) denotes the mean time between multiple errors, encompassing the time needed for repairs:
MTBF=MTTF+MTTR.

With MTTF, one of the most widely known and used metrics for systems is Failure In Time
(FIT) [Muk08; Ass21], where 1FIT “represents an error in a billion (109) hours” [Muk08].

An advantage of FIT over MTTF is that FIT is additive. Therefore, the FIT of the entire system,
denoted as FITsystem, is estimated by adding the FITs of the system’s components [marwedel:21:book;
Muk08]:

FITsystem =
n
∑

i=1

FITcomponent i

FIT and MTTF are inversely related [marwedel:21:book; KK07; Muk08]:

MTTF=
109 h
FIT

Mukherjee introduced a specific reliability metric, denoted as r(t). This metric represents “the
probability that the system does not experience a user-visible error4 in the time interval (0, t]” [Muk08].
In simpler terms, r(t) quantifies the probability p that a system continues to function correctly and
fulfill its intended purpose until time t, without failing.

When considering a total of n similar systems at time t, and f (t) of them have failed by that
time, the reliability r(t) can be calculated as follows:

r(t) = 1− p = 1−
f (t)

n

In the case of systems with a constant and known failure rate λ, the reliability metric follows an
exponential function:

r(t) = e−λt

The exponential relationship between reliability and time is referred to as the exponential
failure law and is commonly used in transient fault analysis, as noted by Mukherjee [Muk08]. The
expectation of r(t) corresponds to the MTTF and is equivalent to λ.

Once this dissertation has addressed some other fundamentals, it will discuss of additional
metrics to measure dependability in more detail. I revisit the discussion of additional metrics to
measure dependability in more detail later once some other fundamentals have been addressed in
this dissertation.5

3The research community frequently uses the terms fault, error, and failures almost interchangeably, which is not entirely
accurate because these terms refer to different effects within the fault propagation chain [Lap+90; Avi+04]. Whenever a
metric name mentioned here includes the words “fault” or “error”, it often refers to a failure. Conversely, the failure mentioned
in the TTF metric in Mukherjee’s description [Muk08] pertains to an error in the context of the fault propagation chain,
which, unfortunately, is also a common terminology issue within the research community. There is no uniform standard,
establishing and explicitly defining these terms is highly advantageous, as done in Section 2.1.3.

4To clarify further, when Mukherjee refers to a failure, he is specifically addressing a failure within the context of the fault
propagation chain (as discussed in Section 2.1.3).

5I will explore other well-known dependability metrics in Section 2.2.2.

22

2.1 Dependable Computing

2.1.5 Enhance the Dependability

Eliminating the sources and causes of faults and errors is essential to achieving a dependable system
free from failures and disrupting the fault propagation chain. Since environmental effects that
lead to faults are non-deterministic and random, it may not always be possible to eradicate their
underlying causes. However, it is possible to reduce or identify faults while they are occurring. This
optimization process is effectively measurable with the dependability metrics mentioned before.

Techniques that enable failure-free execution or improve the probability of it and enhance the
five attributes of dependability are categorizable into four means [Avi+04]:

Fault Prevention Fault prevention is a crucial aspect integrated into the system’s design process.
Techniques falling under this category aim to prevent the initiation of faults within the system,
effectively preventing the initiation of the fault propagation chain and averting system failures.
An illustrative example of fault prevention is manufacturing chips packaging using radiation-
resistant materials [Con03].

Error Tolerance6 Error tolerance becomes relevant during system execution. When a fault is un-
avoidable, an error-tolerant system can still perform its intended task without issues. To achieve
this, we distinguish between error detection and error correction. Error-detecting techniques
ensure errors are detected, and systems execute appropriate actions after detection. For in-
stance, a simple error-detecting technique is using a parity bit. Error correction, on the other
hand, directly repairs detected errors in real time, allowing the system to continue operating
without failure. Failure-free execution can be, for instance, achieved through specific codes like
Gray code and techniques such as Error-Correcting Code (ECC) [Muk08; Ros+11], n-modular
redundancy with voting mechanisms [HHJ90; Yeh96; Sle+99; Rat04; Muk08], or resetting
the system to a specific safe state.

Regarding the fault propagation chain, this approach ensures that if the chain has already
begun, it will be interrupted along the way to the system boundary. Consequently, it prevents
system failure or, at the very least, enables a reset to a safe system state, ensuring the system
can carry out its tasks in the subsequent error-free execution.

Fault Forecasting This mean assesses the entire system, considering all fault prevention and error
tolerance techniques, in terms of the types and quantities of potential faults, their origins, and
the resulting consequences. This evaluation can be qualitative, involving the identification of
fault origins and tracing fault propagation, or quantitative, which may include statistics on
system failures such as FIT rates or probabilities of fault occurrences. One practical approach
is injecting faults at a specific time and location within the system to analyze the resulting
system behavior, known as fault injection.

Hardening7 As a concept, hardening reduces the occurrence of faults or errors in the system
during its runtime. Developers achieve this by preventing fault occurrences through thorough
verification against the system’s expected behavior, statically and dynamically. Additionally,

6The research community uses the terms fault tolerance and error tolerance often interchangeably, even though they
represent distinct concepts within the fault propagation chain. Avižienis himself employs the term fault tolerance [Avi+04].
However, fault tolerance can also imply that faults may occur but have no effect or are not activated, a concept closely aligned
with fault prevention. As tolerance approaches predominantly address activated faults, the terms error tolerance or error
correction are more precise and appropriate.

7Similarly to the term error tolerance, the term “fault removal”, as introduced by Avižienis [Avi+04], may not accurately
capture the terminology related to the fault propagation chain. In practice, some fault removal techniques can eliminate
errors, making distinguishing between fault removal and error removal challenging. Since both approaches contribute to a
more dependable system by reducing the likelihood of fault occurrences or activations, I refer to this concept as hardening.

23

2.1 Dependable Computing

they diagnose the origins of potential faults and enhance fault-prone system components. The
insights from fault forecasting are crucial in continuously improving fault prevention and error
correction techniques.

Figure 2.6 shows the four presented means and their relations to each other. This dissertation’s
primary focus is fault forecasting, a critical aspect that allows us to assess and quantify the system’s
reliability. Fault forecasting plays a pivotal role in shaping hardening strategies, as the insights
gained from this process directly inform decisions regarding fault removal and error tolerance.

Fault
Prevention

Error
Tolerance

Hardening

Fault
Forecasting

Figure 2.6 – Relations of the Dependability Means.
Fault prevention techniques prevent the activation of faults from becoming errors. Error tolerance
techniques come into play once a fault is activated, preventing the propagation of the fault and
thus averting a system failure. Fault forecasting facilitates the study of fault prevention and error
tolerance in systems, providing qualitative or quantitative estimates of system reliability. The
insights gained from fault forecasting play a significant role in the process of hardening, where
fault prevention and error tolerance are improved.

The primary objective of error detection and error correction techniques is to ensure that the
system never exhibits any form of misbehavior (refer to Section 2.1.2.1 on observed error trends
and occurrences). In essence, error tolerance and correction techniques can effectively break the
fault propagation chain (as outlined in Section 2.1.3) whenever an error occurs. This intervention is
crucial for preventing the fault from propagating through the system’s layers, ultimately averting a
system failure. However, this work does not consider Fault Prevention further.

Error tolerance techniques can be implemented either in hardware or software. However, ad-
justments for error tolerance techniques in hardware become impossible when the system has a
fixed hardware configuration. An alternative approach is to enhance the system’s overall reliability
by applying hardening on the software layer, mainly using techniques that fall under the SIHFT
category.

This dissertation focuses on systems with fixed hardware components and versatile software
components. It considers the effectiveness of integrated SIHFT techniques within the software layer
to enhance fault tolerance capabilities via fault forecasting.

24

2.1 Dependable Computing

EXCURSUS: Error Tolerance and Error Correction Techniques

In this excursus, I will provide an extensive overview of frequently employed error-handling
techniques, primarily derived from Schirmeier’s dissertation’s comprehensive compila-
tion [Sch16]. These techniques can be categorized into two groups: hardware-implemented
and software-implemented techniques. To fully comprehend these techniques, I will start
with the concept of redundancy and delineate the various types of redundancy.

Redundancy

Redundancy serves as a foundational principle in error-handling techniques. It generally
implies a higher resource use than the minimum necessary for a given function or objective,
as defined by Koren [KK07]. In this context, Echtle [Ech90] identified four distinct approaches
to implementing redundancy in systems:

Structural Redundancy This type of redundancy involves replicating or increasing the
number of hardware components beyond what is strictly necessary for the core system
function. For instance, an additional memory cell dedicated to a parity bit represents
structural redundancy.

Functional Redundancy When a system includes non-essential supplementary functions
that are non-essential for its regular operation, it is functional redundancy. An example
is a parity check, which is not directly related to the primary system task.

Information Redundancy A system with information redundancy has extra data in various
memory types that are not essential for the primary system task. The most common
form of information redundancy is adding extra bits like the parity bit, a copy of data
or coding, which adds check bits to the data, allowing the correctness of the data to
be verified.

Temporal Redundancy This concept is related to additional runtime that extends beyond
the time required for normal system execution. For instance, the system needs more
time to check the parity bit, or it repeats the execution of its task over time, comparing
each repetition results to identify any errors, which leads to additional CPU cycles as
the core system’s task needs.

Having redundancy alone does not inherently enhance a system’s error tolerance, and the
four types of redundancy are intricately connected. Take the example of a parity bit [Ham50];
initially, adding the bit does not offer any immediate advantages. Only when this bit is actively
calculated and checked does the system gain error tolerance through the parity bit. However,
this calculation or check comes with additional costs.
The bit needs more hardware or chip surface to store it, exemplifying structural redundancy.
Additionally, extra functions are required to verify the parity, representing functional redun-
dancy and extending the runtime (temporal redundancy). Finally, the parity bit is not essential
for the system’s core functionality, making its presence effectively redundant for the primary
function, demonstrating information redundancy.
Ultimately, implementing error-tolerant mechanisms always involves a trade-off between
cost and the desired error-tolerance level because achieving error tolerance is not without

25

2.1 Dependable Computing

expenses. Moreover, the example of the parity bit underscores the strong interplay among
the four types of redundancy.
Although it may initially seem wasteful, the redundancy principle is quite common. Here are
some examples of redundancy in nature and society:

• Numerous creatures on our planet possess multiple organs, providing a built-in redun-
dancy. Take humans, for example; we have two lungs and two kidneys. This redundancy
ensures that even if a person were to lose one lung or kidney due to an accident, the
vital functions necessary for sustaining life would still be fulfilled, albeit in a diminished
form.

• Climbing is a widely practiced hobby, and safety measures are paramount. Safety ropes
are employed to prevent climbers from falling, depending on the type of climbing.
These safety ropes typically contain with double hooks, which means that even if one
hook were to loosen during a fall, the climber would still be securely anchored by the
redundant second hook, ensuring their safety.

• In high-security facilities like prisons and banks, access points are often fortified with
multiple doors. Although technically, only one door is necessary to secure a prison
section or bank vault, redundant doors significantly increase the difficulty level for
unauthorized individuals attempting to gain access. In practice, these access doors
are never simultaneously open. Instead, they are designed to be opened one after the
other, ensuring that the next door only opens when the previous one has been securely
closed. This sequential arrangement adds an extra layer of protection to these critical
areas.

Hardware-Implemented Error Tolerance

The initial layer of implementing error-tolerance techniques is their direct integration into the
hardware. It requires extending or modifying the hardware to inherently lower the chances
of an activated fault or propagated error. Implementing these techniques at the hardware
level aims to create an illusion of error-free hardware execution.
In an ideal scenario, this approach would relieve software developers of concerns regarding
transient hardware faults, as they could safely assume the correct execution of the hardware.

Physical and Digital-Logic Layer

Over the years, various techniques have been developed to minimize the probability of
SEU occurrences. One widely adopted technique is the use of triple-wells, as introduced by
Mukherjee [Muk08]. These triple-wells divert electrons during transient effects, which might
otherwise erroneously switch a transistor.
Another method that aids in this context is the silicon-on-insulator, which helps reduce
the accumulated charge during this process. Although both triple-wells and silicon-on-
insulators contribute to increased production costs, they have become prevalent techniques
for effectively decreasing the likelihood of transient faults. It, in turn, also enhances transistor
performance [Muk08].
At the circuit layer, dependability is enhanced using memory cells containing redundant
transistors, offering more reliable compensation for transient effects [Muk08]. This technique

26

2.1 Dependable Computing

significantly reduces the probability of transient faults, albeit at the cost of increased power
consumption, requiring nearly double the chip surface. Given the associated cost increase,
implementing such memory cells system-wide may not be feasible. Instead, the focus should
be on critical areas within the hardware.

Memory Protection

In a broader system context, it is also possible to implement more cost-effective error-tolerance
techniques at the level of interconnected 1-bit memory cells, such as SRAM and DRAM. An
enduring and straightforward example is the previously mentioned parity bit [Ham50].
The parity bit stores a zero if the data contains an even number of ones and a one if it
contains an odd number, a property known as parity. The parity is periodically compared
with the parity bit, and if a mismatch is detected, it signifies a bit flip in the data, potentially
compromising further data calculations [Muk08].
Error-Correcting Code (ECC) [Muk08; Ros+11] is another widely used technique to safeguard
data, even in high-end computing. ECC detects bit flips and corrects them on the fly, allowing
uninterrupted execution, which is the case with ECC-DRAM modules or ECC-protected CPU-
cache SRAM. Typically, ECC implements protection according to the Single-Error Correct
Double-Error Detect (SECDED) scheme, enabling the detection of double-bit flips or the
correction of single bit flips immediately.
However, the SECDED scheme requires additional redundant bits per machine word, for
instance, eight bits per 64-bit machine word. This results in an additional memory requirement
of 12.5 percent, increased energy consumption, and longer memory access times [Muk08;
Ros+11]. Some protection schemes can even correct more than a single bit, increasing
overheads and intensifying the trade-off between performance and reliability [Del97; YE10;
Ros+11].

n-Modular Redundancy

Another approach to safeguarding and validating data and the execution flow of a system
is incorporating structural redundancy in the form of n-Modular Redundancy (nMR). In a
Dual-Modular Redundancy (DMR) two CPUs execute the same code synchronously. A voter
component then compares the state of the CPUs or their results. An error is detected if
a discrepancy in the results occurs between the CPUs [HHJ90; Sle+99]. This detected
discrepancy should lead to reactions such as reboots, rollbacks, complete shutdowns, or
similar actions.
The triple version, Triple-Modular Redundancy (TMR), is also widely used in safety-critical
domains, such as avionics [Yeh96] and spacecraft [Rat04], where the voter disregards the one
faulty CPU and accepts the states or results of the two remaining CPUs. However, each nMR
type leads to significant reductions in execution performance, increased chip surface, higher
complexity in implementing the voter component, and greater energy consumption [Muk08].
This results in the well-known trade-off between performance and reliability.

Hardware Multithreading

Another approach to enhancing error tolerance is to replicate execution through techniques
such as pipelining, chip-level multiprocessing, or simultaneous multithreading [TEL95].

27

2.1 Dependable Computing

Rotenberg [Rot99] implemented a CPU incorporating simultaneous multithreading and
hardware-based check mechanisms. In this system, execution occurs a second time after a
short delay, and the results are checked for equivalence, resulting in a speed overhead of
10-30 percent. Similarly, lock-stepping [Bal+03; AKL12] synchronizes multiple hardware
threads to execute exact instructions simultaneously. The thread states are compared at
predefined checkpoints, allowing them to react if the thread states are diverse.
Further developments of this principle have led to recovery techniques [VPC02]. Another
approach, known as the Simultaneous and Redundantly Threaded (SRT) processor, duplicates
executions only when memory accesses occur [RM00], which results in performance improve-
ments [Rei+05b]. In this context, Reinhardt and Mukherjee introduced the principle of the
sphere of replication [RM00], which suggests that components within the sphere of replication
receive complete fault coverage through redundant executions, whereas components outside
of it do not. Data that crosses this boundary requires replication and checking to maintain
this protective sphere, as implemented in the SRT processors.

Software-Implemented Error Tolerance

In the hardware manufacturing process, hardware-implemented error-tolerance techniques
have higher manufacturing costs, increased chip surface requirements, and greater energy
consumption, and they often exhibit reduced performance compared to their native hardware
counterparts. These reliability-enhancing drawbacks are more likely encountered in highly
dependable server systems, where techniques like ECC or CPU lock-stepping [HHJ90; Sle+99]
are used. Reliability-enhancing techniques like ECC or CPU Lockstepping [HHJ90; Sle+99]
are typically used in highly dependable server systems but can also lead to certain drawbacks.
In contrast, Software-Implemented Hardware Fault Tolerance (SIHFT) techniques offer greater
flexibility, sustainability, and cost-effectiveness compared to their hardware-implemented
counterparts, and they do not rely on specific hardware features. SIHFT leverages the
knowledge of the specific application to be executed by the system. Whereas hardware-based
techniques like ECC protect every bit, SIHFT allows for targeted and flexible protection of
specific parts of the control flow or individual data structures. Additionally, fundamental
principles like nMR can also be implemented in software, enabling specific segments of the
program flow to be executed multiple times according to nMR rather than duplicating the
entire execution through fixed physical replication in the hardware.
SIHFT techniques can be easily replaced, maintained, or further developed, which is im-
possible with pre-made hardware due to the shorter development cycles of software. If
reliability requirements for the system change, SIHFT allows for system upgrades. Despite
these advantages, SIHFT techniques are often slower and more energy-consuming than
their hardware counterparts. Some hardware parts, like shadow registers, cache-line tags, or
pipeline stages, cannot be protected at the software layer because they are not visible at the
software layer and thus cannot be protected with SIHFT, making them vulnerable to errors.
As with hardware-implemented error tolerance, a trade-off exists between performance,
flexibility, cost, level of abstraction, and reliability when implementing SIHFT techniques.

Inherently Error-Tolerant Algorithms

Some algorithms are inherently error-tolerant, eliminating the need for explicit SIHFT. Nu-
merical methods are examples of such inherent algorithms: Finding roots of continuous

28

2.1 Dependable Computing

mathematical functions (e.g., the bisection method and Newton’s method), optimization algo-
rithms for locating extremal points in nonlinear, multidimensional, continuous mathematical
functions (e.g., pattern search and partial swarm optimization), and generic algorithms for
discrete optimization.
Inherent error-tolerance mechanisms rely on the function’s properties or the approximating
algorithm’s nature. For instance, if an SEU corrupts a function value found by one of these al-
gorithms, it can often be detected based on properties of the function (e.g., exceeding function
bounds or an incorrect sign) or bypassed due to the algorithm’s inherent characteristics.
Artificial neural networks are another example of inherent error tolerance, as they can
compensate bit flips through their adaptive properties. They have been used in the spacecraft
domain for research satellite applications, which are notably vulnerable to bit flips [Vel+99].
However, the field of algorithm-based error tolerance has emerged, developing error-tolerant
variants of various algorithms, including matrix multiplication [HA84; Tyr96], number
factorization [Li+13], and sorting and searching algorithms [FI04; FGI05; FGI07; FI08;
FPFI09; FGI09].

Hardware Detectors for SIHFT

When the inherent properties of code no longer suffice, system designers must implement
explicit SIHFT techniques. One fundamental approach is using detectors that trigger under
specific conditions. Hardware detectors, such as CPU traps or exceptions, are primarily de-
signed to detect erroneous code execution, such as dividing by zero, executing malformed
instructions, or invalid memory accesses.
However, these detectors can also be employed in reverse to identify potential errors in the
hardware and trigger software-level responses. The research community has explored this
concept, in several works [Mir+92; AN97; Alk+99; Rei+05b; Hof+15]. For instance, one
approach is to populate unused memory with instructions explicitly designed to trigger traps.
An error is promptly detected if the program accidentally jumps to this memory location due
to a SEU-induced malfunction, [Mir+92; Hof+15].

Executable Assertions

Another method involving a “detector” is the use of executable assertions. These are statements
that, at runtime, check statically known, self-consistent system states at defined points within
the program [Sai77; MAM84; RBQ96]. Initially designed for identifying software bugs,
assertions have proven effective in detecting data-flow errors and can also be used to identify
hardware errors [Gol+06], thereby preventing error propagation [Sai77].
Executing executable assertions depends on a deep understanding of the program. Rabéjac
and colleagues [RBQ96] proposed an informal process for placing assertions. On the other
hand, Hiller and colleagues introduced a more systematic approach that categorizes data,
including internal variables, and identifies misbehavior through generic assertions [Hil99;
Hil00].
The effectiveness of executable assertions has been widely studied [CRA06; SK08a; Gaw+09;
LJ11; HAN12], with detection improvements ranging from 0.23 percent [CRA06] to 100
percent [HAN12] in identifying corrupted data under various configuration setups. However,
it is essential to note that using assertions comes with certain drawbacks, such as increasing

29

2.1 Dependable Computing

the static code length by 5.2 percent [SK08a] to 15 percent [Gaw+09] and extending runtime
by up to 35 percent [LJ11].

Information Redundancy

Assertions verify data-flow errors and determine if a consistent system state has been achieved
based on known system states. However, ensuring that this consistent state is error-free
requires additional logic, achievable by incorporating information redundancy.
The simplest form of information redundancy is data replication. When protected data enters
the system, it is duplicated, and if any data modifications occur, the duplicate updates as well.
The data and its copy are checked for value equivalence during data reads. An example of
automatic implementation is the source-to-source transformation tool Reliabile Code Compiler
(RECCO) for C/C++[Ben+00; Ben+01b]. RECCO selects a subset of variables, duplicates
them, and inserts checks to verify their equality. A customized error-propagation metric can
be used to select variables for duplication [XTS08].
Hardware-based encodings like ECC (see Section 2.1.5) can also be implemented at the
software layer. Shirvani and colleagues [SSM00] explored different variants of ECC and
applied them on the ARGOS satellite [SM98; Shi+00; Lov+02]. Arithmetic encoding is one
specific variant of encodings, which was initially implemented in hardware and preserved
during arithmetic operations [Avi+71; Avi71]. This encoding is applied directly to the data
without the need for decoding. In its basic form, the encoding algorithm multiplies a constant
value A with each data word N system-wide. A data word is considered uncorrupted by an
SEU if the remainder of the division of the data word N by A is zero. This encoding is also
known as AN encoding, with successors like ANB and ANBD encoding. The advantage of this
approach is that the encoding remains valid after various arithmetic operations due to the
distributivity of addition and subtraction or even in another encoding variant, multiplication,
division, and logical operations [Ulb14]. Another derivate of arithmetic encodings is the
δ-encoding [KF14], which combines AN encoding and duplicated instructions.
Various works [WF07; FSS09; Sch+10a; Sch11] have explored potential implementations
and values for A, as well as the weaknesses of arithmetic coding [Hof+14b; Hof+14a].
A notable weakness of arithmetic coding is the high overhead compared to simple data
duplication. Although duplication may require up to 177 percent [Ben+00] more memory
space and run up to 173 percent slower [PGZ08], arithmetic coding can slow down by a
factor of up to 385 [Sch+10a] but does not require extra memory space. However, the fault
coverage increases from 99.7 percent [XTS08] to 99.97 percent [Sch+10a]. The δ-encoding
exhibits a fault coverage of 99.997 percent with a performance slowdown of up to a factor
of 4.
Given the increased overhead associated with all information-redundant techniques, care-
ful consideration is necessary to determine which of the most critical data should be pro-
tected [Sch16], as complete protection using these techniques may not be feasible.

Redundant Multithreading

Another SIHFT technique that can be adapted from hardware to software is code replication,
similar to the concepts of SRT processors or nMR discussed previously. This approach, called
Redundant MultiThreading (RMT), functions at the software layer and focuses on temporal
redundancy as equivalence checks and voting logic within the software code.

30

2.1 Dependable Computing

One well-known RMT implementation is error detection by duplicated instructions
(EDDI) [OSM02]. EDDI duplicates and executes each instruction using copies of variables
stored in different registers. Before writing data back into memory or executing conditional
jumps, the duplicated executions are cross-verified for consistency. Although modern pro-
cessors can execute duplications simultaneously, RMT introduces a runtime overhead of up
to 113 percent [OSM02]. This overhead results from the functional complexity and access
delays. However, the fault coverage achieved with RMT is nearly 100 percent [OSM02;
Rei+05a; CRA06].
Coarser-grained solutions include duplicating function parameters as input for function
calls in the C programming language [LH07]. Ulbrich, Hoffmann, and their colleagues
have developed a task-level hardened voter for control applications [Ulb+12; Hof+14b;
Hof+14a]. Some microkernels, including L4/Fiasco.OC, have integrated RMT at the appli-
cation level [DHE12; DH12; DMH14; Doe14]. A variant of this approach can even handle
multithreaded applications [Doe14; DH14].
RMT should be used cautiously, regardless of the level of detail applied. Despite its high
parallelizability, RMT techniques introduce an overhead of more than 100 percent [Shy+07;
Shy+09]. This overhead comes from inherent thread overhead, input data replication, and
the voting process’s cost. Additionally, RMT consumes more resources, which could be used
for other purposes or lead to delays in subsequent executions. In some cases, RMT may not
be feasible on single-core CPUs without a multistaged pipeline [Shy+07; Shy+09].

Control-Flow Checking

In addition to SEUs causing corrupted data and erroneous results, they can also lead to
fetching a different instruction than expected [Gol+06]. This scenario results in Control-Flow
Errors (CFEs). Various factors can contribute to CFEs, including corrupted jump addresses
and their calculations, bit flips in function pointers, and the direct influence of an SEU in the
instruction pointer.
Control-Flow Monitoring (CFM) techniques monitor instruction sequences and identify CFEs.
Most CFM techniques use the Control-Flow Graph (CFG) to represent a program’s execution
structure [All70; Gol+06]. The CFG contains nodes known as Basic Blocks (BBs), each
containing a fixed sequence of instructions. Edges in the CFG represent valid jumps between
the last instruction of one BB and the first instruction of another.
A CFE occurs if a bit flip leads to the execution of a jump instruction that is either (1) not
part of the set of all edges of the CFG, (2) the program jumps to an instruction in the middle
of a BB, or (3) is a jump that is not expected at the current program state [Gol+06]. CFM
monitors the program flow based on CFG edges and instruction sequence in a BB. It reports
CFE on invalid jumps or unexpected instructions.
Miremadi and colleagues [Mir+92; MT95] describe techniques for computing a block-specific
signature at the beginning of a BB and checking whether the signature remains consistent
at the end of the BB. Ohlsson and Rim’en[OR95] use the CPU’s watchdog timer and BB
signatures to reset the CPU if a signature check does not occur within a specified time interval.
Additionally, specially designed executable assertions exist to detect CFEs [Kan+96; AN97;
Alk+99]. There is also an option for a source-to-source compiler developed by Benso and
colleagues[Ben+01a], which automatically adds check code, models valid control flow using
regular expressions, and reports a CFE if deviations are detected.

31

2.1 Dependable Computing

Depending on the specific monitored CFE and the desired fault coverage, CFM mechanisms
can increase program code by 5 percent [RBQ96] up to 175 percent [YC80] and may extend
runtime by up to 140 percent longer than without CFM [YC80].

Reliable Operating System

Existing software-based error tolerance techniques often focus solely on the application layer,
overlooking the operating system, a crucial Reliable Computing Base (RCB) [ED12; Hof16]
that forms the basis for all redundancy measures.
The C3 microkernel [SWP13] monitors system-state transitions and recovers system compo-
nents when a fault occurs. This approach assumes that faults will be immediately detected,
which is not generally the case. On the other hand, L4/Romain [DH12] uses full system-call
interceptions to achieve thread-level TMR, addressing the detection issue but still relying on
the reliability of the microkernel in use. However, these approaches depend on the early and
reliable detection of errors and their strict containment inside the RCB [Hof+15].
Conversely, the real-time operating system Dependability-Oriented Static Embedded Kernel
(dOSEK) [HDL13; Hof+15] is a reliable operating system on potentially unreliable hardware.
Unlike traditional approaches, dOSEK functions as an RCB and extends redundancy from
the application to the kernel execution phase. Through three fundamental principles, dOSEK
ensures reliable execution, preventing corrupted data: (1) By revealing a-priori application
knowledge, dOSEK allows fine-grained system tailoring, contributing to a static system
design. (2) These strategies aim to minimize the volatile part of the system state, minimizing
indirections whenever possible and thus reducing the potential for errors. (3) dOSEK employs
coarse-grained isolation and fine-grained arithmetic encoding for reliable error detection in
the remaining vulnerable state.
Applying these principles leads to a remarkable reduction in the undetected corrupted data
by four orders of magnitude compared to an off-the-shelf OSEK [Ose] operating system.
Depending on the dOSEK variant, this reliability improvement comes at the cost of increased
runtime of up to a factor of 8 and increased code size of up to a factor of 19 [Hof+15].

32

2.1 Dependable Computing

2.2 Fault Injection

As the adoption of SIHFT techniques continues to grow due to their cost-effectiveness, flexibility,
and ease of maintenance, the need to assess and compare these techniques in a controlled and
defined hardware environment is becoming more significant [Sch16]. Fault Injection (FI) is a widely
used fault-forecasting method for analyzing the reliability of systems with integrated SIHFT and is a
frequently researched topic in current studies.

Injecting a fault is possible in the actual physical hardware or a simulated hardware environment.
Afterward, the system’s resulting behavior is observed and categorized. The system’s reliability and
the effectiveness of the SIHFT techniques can be evaluated based on a predefined number of FI
experiments.

I will start by introducing the Fault Space (FS) concept. The FS provides an overarching concept
for understanding and representing potential faults in a system. It serves as a conceptual foundation
for this dissertation.

Next, I will describe the fundamental process of a FI campaign and explain how individual FI
experiments work conceptually.

After establishing this foundational knowledge, we will examine various existing FI techniques
and their advantages and disadvantages.

Finally, we will narrow the focus of this dissertation and define a fault model that characterizes
the specific type of fault under investigation.

2.2.1 Fault Space

I introduce the Fault Space (FS) concept that Goloubeva [Gol+06] proposed to provide a more
precise description of fault occurrences within the system.

Figure 2.7 shows a universal representation of the FS schematically. The FS typically consists of
two distinct dimensions:

Time The temporal axis begins at the point in time when we initiate the observation of the system,
which could be the start of the hardware system’s operation, the launch of a program, or the
beginning of a program loop. It extends until the end of the operation or loop. The resolution
of the time dimension can be defined according to specific requirements, such as CPU cycles,
individual instructions, or discrete samples within the continuous time scale, often measured
in seconds.

Location This dimension pertains to the possible parts of the hardware where a fault can occur. It
can range from individual transistors to inputs of logical gates, bits within the register file,
memory locations visible in the ISA layer, and more. The granularity can vary from single
transistors to whole machine words or bytes, depending on the context.

This concept allows for a more detailed and structured analysis of fault occurrences within the
system. It provides insights into both the spatial and temporal aspects of faults.

At each point in time along the temporal dimension, the system is in a specific system state. Here,
a state represents the configuration of all the locations within the system at that particular moment.
Each step along the temporal axis signifies a transition to the next state at the subsequent defined
time point. At all possible time points, denoted as the set T = {t0, t1, . . . }, all possible locations
define a system state, represented as the set L = {l0, l1, . . . }.

33

2.2 Fault Injection

Lo
ca
tio

n

Time

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7

l0

l1

l2

l3

t 8

Figure 2.7 – Fault Space.
The fault space is a two-dimensional concept. On one axis, the time dimension can be considered
at various resolutions, including seconds, CPU cycles, or individual instructions on the ISA layer.
This axis can define the execution time of an entire program run or for a single program loop.
On the other axis, it has the dimension of all locations within the system under consideration.
Depending on the scope, these locations can represent individual bits, bytes, entire registers,
and memory addresses. In essence, the fault space encompasses all possible combinations of
the set of time steps T and the set of all locations L It describes all possible faults F = T × L
that could occur in the system. In this figure, F contains |T | · |L|= 9 · 4= 36 points.

Let us consider the FS in the context of the ISA layer of a system, which includes components
like register files and memory. All the visible bits of the registers (e.g., r1, r2) and the memory are
withing the location dimension.

Time t0 represents the system’s initial state, as it has not yet started its operation. Assuming a
resolution of single ISA instructions, such as ADD r1, [r2], the system progresses one step forward
along the temporal dimension. The execution of the ADD instruction is the transition from t0 to t1.
These individual transitions are represented by the minor ticks along the temporal axis in Figure 2.7.

In this dissertation, I will equate the term time point (in any specific unit like instructions, CPU
cycles, seconds) with the term system state; a time point corresponds to a state, and a state exists at
one or multiple specific time points. With this understanding, the definition of the FS is the set of all
possible faults that can occur in the system, denoted as F :

F = T × L = {(t0, l0), (t0, l1), . . . , (t1, l0), . . . , (t |T |−1, l |L|−1)}

Each point in the FS is a tuple of a time point and a location and stands strictly for one possible
fault that can affect the system during its execution.

The FS depends on the specific system under evaluation, meaning that any alteration in the
system, whether in hardware or software, results in an corresponding change to the FS. For instance,
implementing an error tolerance technique (like the techniques presented in Section 2.1.5 or
Section 2.1.5) to an existing system potentially expands the FS in both dimensions. Such implemented
techniques typically lead to extended execution times and increased memory use. However, although
these techniques generally enhance system reliability, they simultaneously enlarge the FS, thereby
increasing the number of potentially occurring faults; thus, due to this fact, such techniques should
be used cautiously.

34

2.2 Fault Injection

2.2.2 Fault-Injection–Campaign Process

After defining the total number of possible injections, we can systematically explore the FS to
conclude the system’s reliability. This systematic exploration typically occurs within the context of FI
campaigns, composed of individual FI experiments.

The objective of an FI campaign is to ensure that all points within the FS are covered, resulting
in a complete assessment of the whole FS. In a naive approach, one FI experiment is conducted for
every point in the FS. We will revisit this approach later in Section 2.3.2 to explore more efficient
methods. Let us assume that one FI experiment per point in the FS exists.

In the following, I will use System Under Test (SUT) to refer to a system variant with SIHFT that
has been modified for the evaluation process, whether in the hardware or the software.

Figure 2.8 illustrates a universal process for conducting a FI campaign. This illustrated process
generalizes most of the procedures commonly used by existing FI frameworks. The following are
the individual steps of this process:

FI Results

SUT Golden
Run

FI Campaign

FI Experiment 4

FI Experiment 3

FI Experiment 2 p2

FI Experiment 1 p1

...

...

p3

p4

SUT

1.
Trace Recording

2.
Pilot

Computation3.
Campaign
Execution

FI Result 4

FI Result 3

FI Result 2

FI Result 1

...

4.
Result
Generation

Quantitative
Evaluation

5.
Evaluation

p0

Pilots

Qualitative
Evaluation

Figure 2.8 – Universal Fault-Injection–Campaign Process.
This illustration depicts a universal process for conducting FI campaigns. It begins with recording
the program trace to generate a golden run, the reference execution of the SUT, and computing
pilots. Each pilot corresponds to a single FI experiment, executed collectively in an FI campaign.
Subsequently, the results from all FIs are generated and made available for evaluating the SUT.

Trace Recoding Recording the program trace is the initial step in the FI-campaign process. To
establish a baseline for failure-free system execution, a reference, often also referred to as a
golden run, is essential. During the golden run, the FI framework executes the SUT and records
specific events of interest to generate a program trace representing the program’s execution.

Events can encompass a range of activities, including changes in gate inputs, memory accesses,
the execution of instructions, or alterations in the Instruction Pointer (IP).

35

2.2 Fault Injection

Listing 2.1 shows an exemplary program trace, as recorded by the tracing tool, which captures
IP events and memory accesses at the ISA layer. Additionally, the trace includes register values,
dereferences, and some metadata.

This reference trace is a foundation for evaluating subsequent FIs by clearly representing
expected system behavior.

Listing 2.1 – Example of a Recorded Trace on the ISA Layer.
This snippet is from a recorded trace obtained while executing a qsort algorithm using a tracing tool for the
ISA layer. The trace encompasses all IP and memory events that occurred throughout the execution of the qsort
algorithm. To facilitate further analysis, additional details such as timestamps, access types, register values,
and dereferences are also captured (note that “??” signifies that the memory is inaccessible with the provided
register value).

IP 100052 t=76859622 REG 0 = 2101220 REG 3 = 2101500 REG 1 = 3223538018 REG 2 = 64733 REG 6 = 2101232 REG 7 = 0
REG 4 = 2101052 REG 5 = 2101240 REG 17 = 2,→

MEM W 200f38 width 4 IP 100052 t=76859622 DATA 200ff8 REG 0 = 200fe4 -> fcdd REG 3 = 2010fc -> 0 REG 1 =
c0234962 -> ?? REG 2 = fcdd -> 10000cd REG 6 = 200ff0 -> 10000 REG 7 = 0 -> f000ff53 REG 4 = 200f3c ->
1003f0 REG 5 = 200ff8 -> 0 REG 11 = 2 -> ff53f000

,→

,→

IP 100053 t=76859623 REG 0 = 2101220 REG 3 = 2101500 REG 1 = 3223538018 REG 2 = 64733 REG 6 = 2101232 REG 7 = 0
REG 4 = 2101048 REG 5 = 2101240 REG 17 = 2,→

IP 100055 t=76859624 REG 0 = 2101220 REG 3 = 2101500 REG 1 = 3223538018 REG 2 = 64733 REG 6 = 2101232 REG 7 = 0
REG 4 = 2101048 REG 5 = 2101048 REG 17 = 2,→

MEM W 200f34 width 4 IP 100055 t=76859624 DATA 10005a REG 0 = 200fe4 -> fcdd REG 3 = 2010fc -> 0 REG 1 =
c0234962 -> ?? REG 2 = fcdd -> 10000cd REG 6 = 200ff0 -> 10000 REG 7 = 0 -> f000ff53 REG 4 = 200f38 ->
200ff8 REG 5 = 200f38 -> 200ff8 REG 11 = 2 -> ff53f000

,→

,→

IP 1004b0 t=76859625 REG 0 = 2101220 REG 3 = 2101500 REG 1 = 3223538018 REG 2 = 64733 REG 6 = 2101232 REG 7 = 0
REG 4 = 2101044 REG 5 = 2101048 REG 17 = 2,→

MEM R 200f34 width 4 IP 1004b0 t=76859625 DATA 10005a REG 0 = 200fe4 -> fcdd REG 3 = 2010fc -> 0 REG 1 =
c0234962 -> ?? REG 2 = fcdd -> 10000cd REG 6 = 200ff0 -> 10000 REG 7 = 0 -> f000ff53 REG 4 = 200f34 ->
10005a REG 5 = 200f38 -> 200ff8 REG 11 = 2 -> ff53f000

,→

,→

Pilot Computation Computing pilots plays a crucial role in the FI-campaign process by aiming to
identify all necessary pilots, essentially tuples of time and location in the FS of the SUT. These
pilots represent individual FI experiments, and the goal is to ensure complete coverage of the
FS. Covering the complete FS guarantees a corresponding statement regarding any faults in
every situation in the SUT.

The golden run is essential in making the entire FS visible because the number of recorded
events in the golden run determines the temporal axis’s length in the FS. In contrast to a naive
approach, which defines a pilot for each point in the FS, the golden run provides insights into
which points require FI and which do not.

After the pilot computation, a set of pilots exists, ensuring complete coverage of the FS. This
set of pilots is the foundation for executing FI experiments to evaluate the SUT’s reliability.

Campaign Execution Individual pilots are employed to initiate single FI experiments in this step.
The pilot specifies the time and location for executing the FI within the SUT. The SUT may
incorporate additional elements like breakpoints, macros, or hardware evaluation boards to
make FIs possible.8

The FI experiment commences by starting the SUT and continues until the execution reaches
a predefined time point specified by the pilot. The experiment toggles the logical value at the

8The system is generally adjusted to enable tracing, often contingent on the tool used. For instance, it may employ redundant,
application-independent function symbols within a C program to initiate and conclude tracing, thereby delineating the
tracing’s scope. Typically, the adaptations made for tracing or the SUT do not alter the system’s semantics compared to its
original behavior.

36

2.2 Fault Injection

specified location when the SUT reaches this point (e.g., through a breakpoint). After this
toggle, the FI framework monitors the SUT’s behavior. The resulting behavior of the SUT
post-FI constitutes the outcome of the FI experiment.

The collective sum of all experiments forms the complete FI campaign. Each experiment is
performed independently, without data dependencies, allowing for a highly parallelizable
process.

Result Generation In the result generation step, each experiment reports the SUT’s observed behav-
ior after the FI. The FI framework evaluates the observed behavior as equivalent to the golden
run or divergent. More detailed classifications of deviations from the golden run are also feasi-
ble, such as identifying erroneous outputs, timeouts, or traps. FI frameworks typically store
the results in a suitable data structure like a database. This campaign process is designable as
a client-server architecture, where the individual FI experiments act as clients, and a server is
responsible for managing the campaign’s workload and storing the results.

Evaluation The final step in the process is the evaluation. For each pilot, there is a corresponding
result that describes how the SUT behaved during the corresponding FI experiment. These
results collectively provide a comprehensive understanding of the SUT behavior for every
individual point in the FS. This complete assessment is a fundamental prerequisite for further
analyses [BCS69].

One commonly used metric to gauge the reliability of a system is the fault-coverage fac-
tor [BCS69; Lev+09]. This metric is calculated by contrasting the number of failed experiments,
denoted as f (i.e., those that deviate from the system behavior recorded in the golden run),
with the cardinality of the FS, denoted as |F |. The fault-coverage factor is defined by the
formula c = 1− f

|F | . Consequently, fault coverage quantifies the probability of an SUT’s ability
to recover from a fault [BP03].

Additionally, related to fault coverage, the Architectural Vulnerability Factor (AVF) [Muk+03a;
Muk+03b] measures the vulnerability of a specific hardware component of a system regarding
a fault to be activated, which potentially leads to an error [Muk+03a]. Similarly, the Program
Vulnerability Factor (PVF) [SK08b; SK09] defines the vulnerability of “any architecturally-visible
resource” on the ISA layer, encompassing components like the CPU, registers, and memory.

Another approach is using the trace and the resulting system behavior to qualitatively analyze
where the fault is activated and trace it back in the executed code. Additional metrics can be
calculated to enhance this analysis, such as fault latency, which represents the time from when
the fault occurs to its activation, or detection latency, which signifies the activated error to the
observable system failure [BP03].

Indeed, the metrics mentioned previously in Section 2.1.4 are also applicable in this evaluation
step.

The results of the FI-campaign process are eventually used to implement new SIHFT techniques
or hardware mechanisms at suitable locations, thereby strengthening the system’s reliability.

The FI-campaign process ultimately leads to implementing new SIHFT techniques or hardware
mechanisms in appropriate locations to enhance the system’s reliability. The resulting hardened
system can undergo the described process repeatedly, potentially creating an iterative cycle that
progressively enhances the system’s reliability with each iteration.

As previously mentioned in Section 2.2.1, any modification to the system results in a potential
FS alteration of the SUT. Consequently, the new FS must be used throughout the new iteration of

37

2.2 Fault Injection

the FI-campaign process, which needs repeating tracing and pilot computation after each alteration
to the SUT.

2.2.3 Types of Fault-Injection Techniques

The most straightforward approach is to run and test the system in its actual environment, using the
real hardware configuration and software. However, field experiments in the natural environment
are impractical due to the improbable and challenging nature of reproducing transient hardware
faults [Hof16]. Consequently, various FI techniques have been developed to simulate the behavior
of transient hardware faults. These techniques enable the evaluation of software execution on a
hardware system regarding reliability, employing an FI-campaign process described in Section 2.2.2.

To thoroughly evaluate these techniques, I will introduce specific criteria and then categorize and
assess individual FI techniques based on these criteria. The FI techniques presented in this section
are primarily based on Schirmeier’s dissertation [Sch16]; refer to this dissertation for more details.

I will present categories in which FI techniques can be classified [BP03], discuss the FI techniques
within each, and evaluate them based on the established criteria. If I do not mention a criterion in the
subsequent sections, the corresponding FI technique neither excels nor performs poorly concerning
that criterion.

2.2.3.1 Criteria of Fault-Injection Techniques

Skarin defined criteria for assessing FI techniques [SBK10]:

Repeatability A fundamental requirement for obtaining accurate results in an FI experiment and,
consequently, in the entire FI campaign is repeatability. This criterion implies that the results
should consistently be the same when the experiment is repeated. Achieving repeatability
requires a deterministic evaluation environment to ensure that the experiment’s outcomes are
consistently reproducible.

Controllability Controllability is the ability to execute a single FI experiment with precision. It
involves manipulating a specific location in the SUT at a defined time, making it mutable.
Additionally, executing a program on the SUT should be easily interruptible and resumable for
full controllability, allowing precise control over the experiment.

Observability This criterion is crucial for obtaining accurate insights into the impact of individual FIs
on the SUT. The more observable, traceable, and measurable the effects of individual FI events
are, the more precise the conclusions regarding their influence on the SUT. This criterion
emphasizes the importance of having detailed and comprehensive information about the
behavior of the SUT during and after FIs.

Intrusiveness Due to requirements imposed by the FI technique, it is intrusive if the SUT deviates
from the original system, either semantically or in terms of the codebase. Intrusiveness refers
to the extent to which an FI technique must alter the properties or semantics of the system to
enable FI. Intrusiveness can occur for technical reasons, even if they are unintentional, and
are necessary to make the FI process possible. Examples of intrusive actions are modifying the
program code or adjusting the memory.

38

2.2 Fault Injection

Reachability That criterion refers to the accessibility of the individual FI locations planned in the FI
campaign within the SUT at specific times. Access to these locations might not be possible due
to factors such as restricted permissions in the SUT, abstractions between layers (e.g., shadow
registers not being visible in the ISA layer), or technical limitations, such as missing pins in
hardware.

In addition to Skarin’s criteria, Schirmeier [Sch16] also considers the following criteria:

Cost The costs include both the end-to-end runtime of the evaluation and the initial setup costs of
the evaluation environment. Additionally, it encompasses the ongoing expenses associated
with maintenance and potential expansion or upgrades of the evaluation environment.

Scalability Scalability is close to costs. It refers to the evaluation process’s ability to handle an
increasing workload while maintaining feasibility. Scalability assesses whether the duration of
the FI campaign remains manageable as the workload grows.

Realism Realism expresses how accurately the SUT and its environment represent the system under
evaluation. It also considers how an FI technique models a fault and whether it realistically
simulates it, aiming to reflect the actual system and its behavior accurately.

2.2.3.2 Hardware-Based Fault Injection

Evaluating a system directly in the field provides the closest representation of reality. However, in
specific environments, faults are highly improbable, making practical evaluation challenging. To
increase the probability of faults, techniques such as direct particle radiation [GKT89; San+14],
explicit electromagnetic interference [Kar+94], or voltage fluctuations [Kar+91] can be employed.
These methods align with reality, especially when the SUT remains unchanged. However, due
to the non-deterministic nature of environmental influences, results from such experiments are
neither deterministically repeatable nor easily controllable. Additionally, these experiments are
time-consuming for achieving statistically significant reliability statements. Moreover, experiments
with techniques like ray guns can be prohibitively expensive and potentially hazardous in the case
of radioactive target environments [Kar+94].

Another method of injecting faults into hardware is setting bit patterns on the processor pins of
the system [Mad+94]. Although the results of this technique are reproducible, ensuring repeatability,
it suffers from poor controllability over the exact injection time. Additionally, changing the internal
state of the SUT is possible only indirectly, and the alterations caused by the FI are challenging to
observe. Observability and controllability have improved with debugging interfaces [Fid+06], but
these experiments still face scalability issues.

Hardware-based FI techniques require fewer modifications in the SUT to represent the real
system or apply the fault. However, these methods are often time-consuming and expensive, posing
scalability, repeatability, and controllability challenges.

2.2.3.3 Software-Implemented Fault Injection

Software-Implemented Fault Injection (SWIFI) techniques offer a more cost-effective and scalable
alternative in the context of FI. In SWIFI, program code, including the code or data segment,
undergoes deliberate modifications to mimic faults. These code modifications occur either before the
compilation or execution of the program or during the program execution itself. SWIFI exist in two
variants pre-runtime SWIFI and runtime SWIFI.

39

2.2 Fault Injection

Pre-runtime SWIFI injects faults before the SUT begins its execution. Initial pre-runtime SWIFI
approaches used tools injecting bit flips directly into machine instructions [KKA95] or data and code
segments [Fuc96; Aid+01; SBK10]. Modern techniques leverage the intermediate code of LLVM
Intermediate Representation [LA04] for injecting bit flips into the program [Sch+10b; Sch11; TP13;
Lu+15], ensuring independence from the underlying system.

Pre-runtime SWIFI offers cost-effectiveness compared to hardware-based techniques, enhancing
scalability, repeatability, and controllability. However, it fails to mimic realistic transient fault effects,
presenting activated faults primarily as bit flips. As injection occurs before execution, the entire
temporal dimension of an FS condenses to a single pre-runtime time point. Consequently, the
implementable FS becomes one-dimensional, emphasizing only the location. Hence, pre-runtime
SWIFI techniques exhibit limitations in achieving high realism [Sch16].

SWIFI techniques operating at runtime exhibit greater realism and flexibility [Bar+90; KKA95;
Car+95; SBK10]. For instance, controlled pauses in the SUT enable precise FI regarding location
and time during runtime. Executing generic FI code empowers the technique to inject faults into the
executing code, software interfaces [Koo+97; MBC10; Win+13; Win+15], or the kernel [KIT93;
KI94] of the SUT with SEUs at runtime.

Runtime SWIFI achieves a higher level of reachability and a more realistic representation of
behavior than pre-runtime SWIFI. However, it leads to a greater degree of intrusiveness, enlarging
the considered FS unnecessarily due to additional workload. Despite this, runtime SWIFI remains a
popular FI technique due to its lower cost than other FI techniques [Sch16].

2.2.3.4 Simulation-based Fault Injection

In contrast to SWIFI techniques, simulation-based FI techniques execute the program in a simulated
hardware environment,9 preserving the program’s integrity to avoid increased intrusiveness [Koo+14].
The controlled simulation of hardware provides optimal controllability and observability over the
SUT [STB97; Arl+02].

The heightened controllability and observability enable the extraction and, if necessary, restora-
tion of system states. This capability helps conserve execution time for individual FI experiments and,
consequently, for the entire FI campaign. This deterministic controlled simulation ensures that eval-
uations are consistently reproducible. However, the realism and accuracy of the simulation depend
on the underlying hardware model, and simulations generally run slower than actual hardware.

The execution speed of simulations decreases as the hardware model becomes more low-level,
involving more components and making it challenging to scale. Typically, SUTs are simulated at the
ISA layer balance between accuracy and execution speed [Sch16]. The unavailability of lower-level
hardware models may also dictate this choice. The technique is highly parallelizable due to the
isolated execution of individual experiments in the simulation, providing a cost-effective alternative
to running the entire FI campaign on costly prototypes.

2.2.3.5 Summary of the Fault-Injection Techniques

Field experiments are desirable for evaluating an SUT as they closely replicate real-world conditions.
However, collecting results from these experiments can be laborious, and their reproducibility is
challenging. The three categories of FI techniques aim to emulate the real-world behavior of SEUs,
each with its own set of advantages and disadvantages.

9Alternatively, a virtual machine can execute the program. FI techniques based on virtual machines are also termed
simulation-based FI techniques in the context of this dissertation, as the distinction between the two is marginal.

40

2.2 Fault Injection

Among these categories, simulation-based FI is the preferred choice across various criteria (refer
to Section 2.2.3.1). Table 2.1 summarizes the strengths and weaknesses of different FI-technique
categories based on Schirmeier’s appraisal [Sch16].10

I use a simulation-based FI framework In my dissertation, to capitalize on its numerous advan-
tages.

Hardware-Based Software-Implemented Simulation-Based

Repeatability ◦ + +
Controllability ◦ + +
Observability ◦ + +
Intrusiveness + ◦ +
Reachability ◦ - +
Cost - + +
Scalability - + +
Realism ◦ - ◦

Table 2.1 – Overview of the Fault-Injection Techniques and its Assessed Criteria.
The table presents one FI technique category per column and one criterion per row. A plus sign
(+) indicates that a technique category excels in the specified criterion. In contrast, a minus sign
(-) suggests otherwise, and the circle (◦) represents neither a real advantage nor a disadvantage.
The degree of realism for simulation-based techniques depends on the implementation of
the hardware model. Despite this, simulation-based technologies generally outperform other
categories in various aspects.

2.2.4 Fault Model

After outlining a basic understanding of FI techniques overall, the next step is defining a Fault Model
(FM) that accurately represents the influence and nature of the faults on the SUT using a specific FI
technique. The primary objective is to establish a complete set of potential faults that could manifest
within the SUT. Firstly, I describe the components of the FM used in this dissertation and conclude
with a concrete FM summary.

2.2.4.1 Components of the Fault Model

An FM specifies how a fault could impact the entire system, when a fault might occur, where the fault
could be activated, and how many faults could affect the overall system.

The uncontrolled acceleration of the Toyota Lexus ES 350 in Section 2.1.3 exemplifies how
a fault could affect a system. A fault in the physical layer can propagate and lead to unexpected
behavior observed at the application layer. Error-tolerance mechanisms on the hardware or SIHFT
can prevent this, as explained in Section 2.1.5.

The definition of where and when a fault occurs is related to each other and dependable on
the hardware model complexity of the targeted system layer. Regrettably, due to its intricacy, it is
impractical to create a simulation that encompasses an entire hardware system capable of tracking
a fault from the physical layer up to the failure of the application layer. It is common to focus

10As Schirmeier’s dissertation [Sch16] delves into the development of his own FI framework, it provides a more extensive
description of FI techniques. For a more in-depth exploration, I recommend his work as a valuable source of additional
insights in the domain of existing FI techniques.

41

2.2 Fault Injection

exclusively on one layer to manage complexity and reduce simulation time [Cho+13]. Therefore,
the initial step is selecting a specific layer for the FM.11

Employing low-level layer hardware models and corresponding simulations proves excessively
intricate for FI techniques [Cho+13]. This approach is deemed impractical and unsuitable as a base for
an FM. An additional drawback of using a low-level layer for the FM is the absence of comprehensive
descriptions of available hardware technologies on the market. Conversely, considering higher layers
leads to the abstraction of more parts or information about the system. Consequently, simulations
become progressively less accurate the higher the selected system layer is. For instance, accessing
individual memory cells at the microarchitecture layer is not possible, and on the ISA layer, shadow
registers remain inaccessible. Figure 2.9 illustrates this trade-off.

Digital Logic

Microarchitecture

Instruction-Set
Architecture

higher
simulation time

higher
model complexity

more
accurate results

less
simulation time

lower
model complexity

less
accurate results

Physical Layer

Application

Figure 2.9 – System-Layers Evaluation Trade-Off.
Faults inherently occur on the physical layer. Although analyzing all conceivable faults at this
layer would represent reality, it proves impractical due to the substantial time investment
involved. Opting for higher levels of abstraction maintains a lower hardware model complexity
and simulation time. Nonetheless, each subsequent abstraction diminishes information about
a system layer, leading to higher inaccuracy. The choice of the considered layer leads to the
trade-off between the required simulation time, hardware model complexity, and the accuracy
of the simulated hardware.

High-level system models, such as the ISA layer, are commonly employed in simulation-based
FI [Sch16]. The ISA layer serves as an interface bridging the low-level hardware layers and the
system’s executed software. Errors in structures visible on the ISA layer emulate the propagation of
faults in the abstracted lower-level layers. For instance, a fault on the physical layer propagates to a
bit flip visible in the ISA layer in registers or memory (representing the location dimension of the FS).
The execution of an instruction triggers each step in the SEU’s propagation (representing the temporal
dimension of the FS). The ISA layer provides a fixed hardware configuration, including hardware-
based error-tolerance mechanisms. Consequently, the ISA layer proves suitable for evaluating software
and its SIHFT on fixed hardware, facilitating the analysis of the overall system reliability in a
simulation-based FI-campaign process. Additionally, executed software only reads out or alters
system states in the ISA layer, not typically in any lower system layers. Furthermore, several ISA-
layer models and simulators are well-known in the research community, often subject to ongoing
development and maintenance, and frequently available as open-source tools. Examples for such
tools are the open-standard ISA RISC-V [WA19; WAH21], the x86 ISA simulator Bochs [Law96;
Pro23a], and the gem5 computer architecture research project [Bin+11; LP+20; Pro22].

11Additionally, it is possible to formulate cross-layer fault models to examine the impact and propagation of SEUs across
multiple layers. Whereas cross-layer approaches represent a research focus within the academic community [XL12; Ent+12;
Gla+15; Val+15; Bar+17; Fle+17; Che+18], these are not within the scope of the current discussion.

42

2.2 Fault Injection

The caused behavior specified for transient faults is non-deterministic, capable of occurring at any
time and anywhere in the system. The research community has validated this assumption, observing a
uniformly distributed probability of occurrence for SEUs in memory, such as SRAM [DW11; Hen+13]
and DRAM [Sri+13]. This phenomenon is quite common in systems [Hen+13; Mez+15]. Therefore,
it is a widely accepted assumption for FMs in the FI research community, particularly for ISA layer
FI.

In contrast to memory faults, modeling CPU faults is more complex [CS90; Kan+96; Kal+98;
Kar+08; Man+11; Kor12; Cho+13]. Faults in sequential circuits of the CPU manifest as SEUs in
registers but also lead to more complex effects, such as multi-bit flips [Cho+13], interrupts [Kor12],
or deadlocks [Kor12]. As a simple approximation, FI frameworks often emulate CPU faults with
bit flips in CPU registers [HSR95; TI95; Ben+98a; Cin+09; SBK10; DeB+12; LT13; TP13; DC+14;
Sch+15; Sch16], assuming a uniform distribution of occurring faults [HSR95; PRSR98], as it is in
this dissertation.

In the context of the general FI-campaign process (refer to Section 2.2.2), I assume that there
is precisely one FI per FI experiment based on the set of points in the considered FS (refer to
Section 2.2.1). Lastly, I address the single-fault assumption of this FM, which implies that exactly
one fault will occur at a time. This assumption remains valid since even a single flip of a specific bit
between two instructions is highly improbable in reality [Li+10; SL12; Sri+13].

The probability of a fault occurring in a single system execution is well approximable by a Poisson
distribution [Tri08], assuming the occurrence of faults follows a Poisson process [MW79; Nor96b;
Li+07]. According to the Poisson distribution, the probability of a fault occurring in a single system
execution is only 1.328 · 10−11 percent. The probability of two faults co-occurring is 8.821 · 10−25

percent, and three or more faults co-occurring is much lower. Thus, whereas the dominant case
is that no fault occurs, with a probability of more than 99.9999 percent, the probability of two or
more faults occurring is negligible due to the extremely low probability. Therefore, the single-fault
assumption is sufficient for the FM.

However, single faults occurring at the physical layer can result in a bit flip through propagation
to the ISA layer, as previously highlighted. Due to the structure of the system hardware and its
layers, a single fault at the physical layer can induce a Multiple-Bit Upset (MBU) observable on the
ISA layer through propagation (i.e., more than one flipped bits become visible on the ISA layer due
one single fault).

Systematically traversing through the ISA layer FS (refer to Section 2.2.1) covers all potential bits
of any MBU pattern within the single FIs campaign. Consequently, the influence of the individually
flipped bits within each bit of the MBU on the SUT is known. According to the research of Li and
colleagues [Li+10], flipped bits of MBUs tend to occur adjacently, often in a word-wise manner.
Therefore, single bit flips can potentially cover resultant failure classes that might occur with multiple
adjacent flipped bits. For instance, flipping bits in a pointer can lead to erroneous, invalid memory
accesses, potentially irrespective of their number.

In the context of this dissertation, the examination is focused solely on individual bit flips,
which serve as representatives of bit flips and MBUs. The limitation of this assumption is that when
individual bit flips in FI experiments are benign, multiple bit flips simultaneously lead to non-benign
behavior. However, the criticality of this scenario will be elaborated upon in detail in a later part of
this dissertation (Chapter 7).

43

2.2 Fault Injection

2.2.4.2 Fault-Model Summary

In conclusion, I provide the following list of all the specific components of the FM considered in this
dissertation:

• Faults manifest at the physical layer and propagate through various layers, eventually leading
to externally observable behavior at the application layer (refer to the fault propagation chain
in Section 2.1.3) when not benign.

• The system layer under consideration is the ISA layer, acting as the interface between hardware
with fixed configurations or manufacturing and software that includes implemented and
adaptable SIHFT.

– Executing the next instruction may propagate an error between two instructions. Each
instruction alters the system’s state, advancing the system temporally by one step.

– Possible locations where a bit flip can occur are a system’s main memory and CPU registers.
These locations are observable and changeable in the ISA layer, which is crucial for
software development with SIHFT.

– The probability of fault occurrences is uniformly distributed over time (instructions) and
location (memory and register bits).

– An error at the ISA layer emulates the propagation of a fault from the physical layer to
the ISA layer, manifesting as a single bit flip in the system.

• The probability of two or more faults co-occurring and arbitrary MBU patterns occurring is
extremely low.

– To evaluate the reliability of a system exposed to transient hardware faults, it is reasonable
to assume that only single faults occur.

– An MBU’s bit flips are mainly neighboring [Li+10]. Systematically traversing the FS
within an FI campaign, explicitly targeting the ISA layer FS, comprehensively covers the
impact of individual bits within MBUs. Consequently, the FI campaign exclusively focuses
on considering single bit flips per FI experiment, which emulates the influence of single
SEUs on the physical layer.

The choice of FI technique determines the specific FM and implicitly establishes the FS. In the
context of this dissertation, the FS outlined in Section 2.2.1 is designed for simulation-based FI,
guided by the FM presented here. Planning and executing an FI campaign becomes possible with
a well-defined FM and corresponding FS for the system under evaluation and the employed FI
technique.

Conclusively, clarifying the term fault injection in that context is essential. In injecting on the
ISA layer, a “fault” technically is an error visible on the ISA layer within the fault propagation chain
(refer to Section 2.1.3 on page 19). However, “Fault Injection” is commonly used universally across
all layers in the research community, . For consistency within this dissertation, “fault injection”
consistently refers to a bit flip specifically occurring on the ISA layer.

44

2.2 Fault Injection

2.3 Accelerating Fault-Injection Campaigns

The primary objective of this dissertation is to enhance the overall runtime of FI campaigns, (ap-
proximately) denoted as tcpn = n · texp, where n is the number of pilots and texp is the FI-experiment
runtime. Whereas the main focus is on the acceleration of FI campaigns, it is worth noting that the
improvement and evaluation of the SUT reliability is not directly the focus of this work. However, a
more rapid FI campaign has the potential to run through additional iterations of the assessment
cycle within the same time frame compared to an FI campaign without any acceleration methods.

When opting for a specific FI technique, the implementation of a corresponding FS corresponding
to the FM allows for the execution of an FI campaign. However, issues arise when processing the FS
naively, as signified in the FI-campaign process in Section 2.2.2, without incorporating additional
logic. The naive approach treats each point in the FS as a separate FI experiment. In the case of most
benchmarks and realistic programs, the native approach becomes impractical, leading to what I
term an FI-campaign runtime explosion. This section addresses the challenge and discusses methods
available to mitigate the total runtime of FI campaigns. These methods can be applied either before
initiating the FI campaign or during the execution of individual FI experiments to counteract the
runtime explosion effectively.

2.3.1 Fault-Injection–Campaign Runtime Explosion

I discussed the purpose of FMs (refer to Section 2.2.4), the corresponding FSs (see Section 2.2.1),
and various FI techniques that ultimately generate pilots from an FS to create FI experiments. Once
the appropriate FI technique is selected, the FI campaign can be prepared and executed.

Every single point in the FS could be a pilot. However, adopting such a naive approach is practically
unfeasible. For instance, assume a scenario with an ARM Cortex-M33FU5 processor [Armb] executing
one loop of an ABS routine in a car that takes tprg = 10ms. The resulting FI-campaign runtime
tcpn when injection in every single cycle would be at least 1.2 years. Even if this calculation is
extrapolated to instructions,12 it is not practically feasible to examine every point in the FS using FI
experiments (more than a month FI-campaign runtime).

The exemplary necessary FI-campaign runtime of approximately 1.2 years includes no temporal
overhead tov. It represents the pure summed-up runtime of all possible program executions in the FI
campaign, serving as a lower bound. The actual runtime of the average FI-experiment, denoted as
texp = tprg+ tov, is even higher. Consequently, the overall FI-campaign runtime will exceed 1.2 years.

Even with small processors and short program runtimes, the FS can quickly become impractically
large, making it unfeasible to evaluate in a naive way. Injecting at each cycle or the instruction level
(as defined in the FM of this dissertation) is a minor factor. It does not alleviate the problem of the
fault-injection–campaign runtime explosion in practice.

When calculating the total FI-campaign runtime tcpn = n · texp with n pilots, two factors influence
the campaign’s runtime [Gol+06] (without considering additional overheads): (1) the number of
pilots required to cover the FS completely, denoted as n, and (2) the average runtime for a single FI
experiment in the campaign, denoted as texp.

The extensive size of the FS makes it impractical and resource-intensive to execute FI experiments
for every individual point. Consequently, strategies to minimize the number of experiments or
optimize the FI-experiment runtime become imperative. The following sections explore methods to

12The ARM architecture specifications do not specify for every processor how many cycles each instruction should take to
execute because it is implementation defined [Armb]. Refering to a manual from ARM [Arma], instructions with a lower
complexity need 1 to 2 cycles per instruction. Assuming a high average number of 10 cycles per instruction, the potential
lower bound for the campaign duration with instructions on the FS’s temporal dimension would still be more than a month.

45

2.3 Accelerating Fault-Injection Campaigns

reduce these two factors, n and texp, aiming to lower tcpn and make FI campaigns more feasible and
efficient.

EXAMPLE: Lower-Bound Calculation of an FI-Campaign Runtime

The ARM Cortex-M33FU5 operates with a maximum clock frequency of f = 160MHz and
possesses a total memory size of smem = 2048+ 768KiByte= 2816KiByte= 23068672bit
(combining flash and SRAM).
The ABS in the car must efficiently process all signals required for decision-making within
a response time that does not exceed a given threshold. Let us assume a 10ms threshold,
establishes an upper bound for the program, specifically its loop, at tprg = 10 ms.

With a cycle time of tcycle =
1
f = 62.5µs, the ARM requires c =

tprg

tcycle
= 160 cycles to execute

one program loop entirely. Considering the number of cycles needed for one execution (c)
and the number of bits (smem), the complete two-dimensional FS size is |F | = c · smem =
160 · 23068672≈ 3.691 · 109 possible injections.
However, without any further logic, the number of pilots n equals the FS size |F | to ensure
complete coverage of the FS.
Every program execution must conclude to observe the system’s behavior after an FI. There-
fore, with |F | = n injections and the average runtime of a program loop tprg, the cumulative
program execution time for the FI campaign is (at least)

tprg · n= 36 909875.2 s≈ 1.2 years

In this calculation example, the temporal resolution is the level of individual cycles.

2.3.2 Pre-Injection Analysis

In this section, we explore strategies to reduce the number of FI experiments, aiming to decrease
the overall runtime of the FI campaign. As outlined in Section 2.2.1, it is essential to analyze the
effect of each potential FI within the entire FS. To completely address the FS while minimizing the
number of pilots required and overall FI-campaign runtime, acceleration methods exist that can
precisely or approximately handle the FS.

In evaluating the methods employed to minimize the number of pilots, this work emphasizes
two fundamental properties:

Fault-Space Completeness A method is FS-complete if it allows for a statement about the impact
of bit flips for every point in the FS, indicating full coverage of the FS.

Precision of the Results The precision characterizes a method as precise if the resulting observable
behavior of the SUT is deterministically reproducible or if there is no approximation of results.
When heuristic methods are employed, the results of one FI experiment are approximated to
another FI experiment based on the specific method, leading to a reduction in precision.

The central idea is grouping FIs into Fault-Equivalence Sets (FESs) that result in the same externally
observable behavior of the SUT after the FI.13 From these FESs, a single representative FI is selected

13As outlined in Section 2.2.4, the term “Fault-Equivalence Set” technically denotes an error equivalence (regarding the
fault propagation chain, refer to Section 2.1.3), given that bit flips on the ISA layer represent manifested errors, which serve
as an emulation of faults propagating from lower system layer up to the ISA layer. To maintain terminology consistency,
when I refer to “Fault-Equivalence Sets”, akin to the term “Fault Injection”, I specifically denote a set of bit flips that share an
equivalent influence on the SUT resulting behavior.

46

2.3 Accelerating Fault-Injection Campaigns

and executed. Once the outcome of this FI is determined, the result is extrapolated to all other
potential FIs within the corresponding FES. Consequently, in a FI campaign, only as many FIs need
to be executed as there are FESs; in other words, the number of pilots n equals the number of FESs.

2.3.2.1 Def/Use Pruning

Def/Use Pruning (DUP) is one of the most widely adopted methods. It stands out as a precise approach
that ensures complete coverage of the FS. This well-known and foundational method was initially
introduced by Smith and colleagues [Smi+95] and later revisited by Güthoff and colleagues [GS95].
Over time, it has been adapted to various system layers and FMs, with contributions from researchers
such as Benso and colleagues [Ben+98b; BP03], Barbosa [Bar+05], and Grinschgl [Gri+12].

The DUP method only requires the information from the golden run to calculate the FESs based
on the instructions’ write accesses (write→ define a data) and read accesses (read→ use a data).
Figure 2.10 shows the original FS from Figure 2.7 extended by data accesses from the golden run and
the DUP. The x-axis represents nine system states due to eight executed instructions. The program
run executes eight instructions until it terminates and reaches the final system state at t8. The y-axis
represents the total of four bits available and used by the program.

4

1 1 3

2 1 1 2

2

Read Access Write Access Effective FES Ineffective FES

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8

l0

l1

l2

l3

Figure 2.10 – Def/Use Pruning to Reduce the Number of Fault-Injection Experiments.
DUP analyzes the golden run to determine between which of the nine system states (t0 to t8)
the executed instructions perform write and read accesses on the four available bits (l0 to l3).
Points of the FS are grouped into FESs considering this information. If an FES concludes with
a write access, all FIs within the FES are considered benign. If an FES concludes with a read
access, DUP selects a single pilot for the FES, and it maps the FI result to all other injections
within the FES. The pilot is weighted based on the size of the FES to provide a statement about
the complete FS.

With nine injectable system states over time and 4 bits, the total number of possible injections is
9× 4= 36. As previously mentioned, DUP considers both write and read accesses from the golden
run. For instance, in the first instruction (the transition from t0 to t1), the execution reads bit 1
and writes the result of the instruction to bit 2, which is analogous to other instructions.14 Data
leaving the program scope (after t8 at bit 3), such as when read by another process or via the IO
port, is considered read access in DUP, which makes errors visible outside the SUT as unexpected,
erroneous system behavior.

14For specific instructions, such as those from t5 to t6 or from t7 to t8, no explicit write or read accesses exist because they
represent stalls or no-operations, for instance.

47

2.3 Accelerating Fault-Injection Campaigns

The basic principle of DUP is straightforward:

• All potential FIs of the entire FS are grouped into FESs on the temporal dimension (x-axis).
The program start, program end, and each write or read access define FES boundaries.

• If an FES ends with a write access, it represents a part of the ineffective FS.

• If an FES ends with a read access, it represents a part of the effective FS.

The term ineffective FS means that FIs does not affect the SUT behavior. These FI are either
overwritten by write access or not read again after reaching the final system state. Therefore, all
FESs ending with a write access or the final system state are considered ineffective. These FESs
represent the entire ineffective FS I . This FS is ineffective, and all resulting FIs are benign. In the
example in Figure 2.10, 18 FIs are ineffective. This simple consideration easily saves half of the FIs.

The effective FESs must be considered individually and cannot be grouped without further analysis.
For each effective FES, designating a single representative pilot for the FI campaign is sufficient
since the same read access handles all potential FIs, and it is irrelevant which of the FIs within the
FES becomes the representative pilot. In this dissertation, the representative pilot designation is
inject-on-read [Bar+05], meaning that the temporally latest possible FI is the pilot of the FES. Thus,
the number of pilots equals the number of effective FESs, reducing the total number of FIs.

Since each pilot pi of the n pilots overall is a representative whose FI result is mapped to all
other FIs within the FESi, the pilots must be weighted to guarantee a complete statement about
the considered FS. The weight function w determines the size of the respective FESi for the pilot’s
weight w(pi). DUP creates pilots that make a complete statement regarding its set of all possible FIs
or, instead, the whole FS F (see Section 2.2.1). The number of all potential FIs |F | compared to the
sum of all weights of the pilots w(p0), . . . , w(pn−1) and the number of benign FIs of the ineffective FS
|I | is the same:

|F |=
n−1
∑

i=0

w(pi) + |I |

After applying DUP in the example shown in Figure 2.10, the FI campaign only needs 9 FIs,
a significant reduction compared to the 18 FIs required for the effective FS and an even more
significant reduction from the 36 FIs required in the naive way, which means a 75 percent reduction
of the FIs to make a complete statement about the FS. Barbosa and colleagues reported in their
work [Bar+05] that in their real-world example of a jet-engine controller, the number of FIs in
registers was reduced by two orders of magnitude, and for FIs in memory, up to five orders of
magnitude reduction. Furthermore, the golden run processing, consideration of write and read
accesses, and the determination of the DUP pilots are deterministic. Therefore, the subsequent
FI-campaign results after pruning with DUP are always precise.

2.3.2.2 Heuristical Fault-Space Pruning

Although DUP significantly reduces the number of FIs required for complete coverage of the FS, the
number can still be high, leading to a long runtime for the FI campaign. Several papers explore the
further reduction of FIs using heuristics. I introduce an overview of some existing selected heuristic
methods.

For example, Hari and colleagues developed the tool Relyzer [Har+12a; Har+12b; Har+13], and
Venkatagiri and coworkers extended it for approximate computing, calling it Approxilyzer [Ven+16;
Ven+19]. These tools employ heuristics based on complex considerations of control and data flows.

48

2.3 Accelerating Fault-Injection Campaigns

Their objective is to group existing FESs (e.g., FESs resulting from the DUP would be possible) into
sets of FESs. One pilot represents the set of FESs, and its FI result is then applied to the entire set.
Although Hari and colleagues report an accuracy of up to 94 percent, they do not address what to do if
the accuracy is too low. If the FIs needed for the entire FI campaign are still too high, they recommend
sampling the FI, which no longer covers the complete FS. Additionally, Relyzer focuses only on FI
results classified as benign and SDC, neglecting other types of results like traps or invalid memory
accesses that are becoming more relevant [DSE13; TP13]. Another tool, SmartInjector [LT13], uses
similar heuristics to form sets of FESs, managing to reduce the number of FIs even further than
Relyzer but with a focus solely on SDC. Schirmeier and colleagues provide another way to form
sets of FESs based on the current system state at the time of the FI. However, instead of creating
equivalences between FIs, the authors introduce the concept of fault similarity and pass FIs if a
similar system state was injected before, achieving an accuracy of up to 99.84 percent [SBS14].

Lastly, statistical fault injection [Ram+08; Lev+09] involves randomly selecting a sample of FIs
from the entire FS. This set of FIs is executed and assumed to be representative of the entire FS.
The sample size depends on the result distribution and when this distribution meets a predefined
confidence interval. This approach provides only a rough indication of the system’s reliability. Sampling
a handful of FIs from the entire FS and evaluating them to a specific confidence interval does not
completely or precisely cover the FS.

2.3.3 Dynamic Fault-Injection–Experiment Acceleration

Another approach to accelerate an FI campaign is to accelerate individual FI experiments dynamically
during their execution. The runtime of an FI experiment consists of two phases:

Pre-FI Phase This phase spans from the FI experiment’s start until the actual FI performed.

Post-FI Phase This phase begins immediately after the FI and continues until the end of the FI
experiment when the FI result becomes externally observable.

By targeting these two phases, it may be possible to reduce the overall runtime of the FI campaign.
This dynamic acceleration can be applied per experiment, allowing for flexibility and efficiency in
resource utilization.

Fast-forwarding techniques [FSK98; RSR99; Bar+05; Fid+06; SBK10; HK12] accelerate the
system’s execution by skipping portions of code until it reaches a specific dynamic instance of
a static instruction, which means in the context of FI until the FI experiment reaches the pilot’s
injection time; in general, fast-forwarding techniques are not FI-specific. Schirmeier and colleagues
developed a FI-specific fast-forward method, smart-hopping [SRS14], to accelerate the execution
of FI experiments by utilizing the anyway extracted golden run and improving the FI experiment
throughput by up to several magnitudes compared to similar approaches.

Checkpointing is a widely used technique to reduce the time from the start of an experiment to
the injection [Par+00a; Par+00b; Ber+02; SH+14; Par+14]. This method involves storing system
states at specific or equidistant time intervals. These stored states serve as checkpoints and are
loadable anytime during an experiment. The pilot specifies the injection time, and if checkpointing
is employed, the system loads the checkpoint closest to the injection time. Consequently, the time
between the experiment’s start and the checkpoint does not need to be executed since the system
state is already available. However, it is essential to consider that loading and saving checkpoints
incur additional time and memory costs [Ber+02]. Therefore, the decision to use checkpoints should
be made judiciously, considering the associated overheads.

49

2.3 Accelerating Fault-Injection Campaigns

Another approach to accelerate result generation is to monitor the experiment post-FI and
predict the impact of the FI on the SUT’s behavior. This strategy can lead to early termination of
the experiment, thereby saving overall runtime. One developed approach for lower system layers
is dynamic fault collapsing [Ber+02]. After injection, this method regularly compares the system
state of the SUT with that of the golden run. This method maps differences detected to the original
fault. If the resulting system behavior of the differing bit is known, the FI experiment terminates,
and the method uses the result of the differing bit. If the result is not yet known, the experiment is
completed regularly, and one more differing bit is known for the next experiment.

The SmartInjector [LT13] operates on a similar principle at the ISA layer, focusing on benign
faults or that lead to an SDC. Instead of comparing the whole system state, this method compares
system outputs or the behavior of statically determined masking, outputs, or branch instructions to
the golden run.

The approach GangES [SH+14] also groups FI experiments into “gangs”, resulting in the same
intermediate machine state, so that only one gang simulation is necessary. It leverages program
structures to determine when and which states to compare with the golden run, building on a
concept similar to dynamic fault collapsing.

2.3.4 Summary of Accelerating Fault-Injection Campaigns

In order to make a comprehensive statement about the susceptibility of faults across the entire FS,
it is not feasible to naively execute each FI in the FS one by one without any optimizations. The
example involving the ARM Cortex-M33FU5 and the anti-lock braking system illustrates the potential
fault-injection–campaign runtime explosion, indicating that it would take at least 1.2 years to cover
the FS cycle-wise completely. To address this challenge, two primary approaches to accelerate an FI
campaign are reducing the required FIs and decreasing the average FI-experiment runtime.

Several pruning methods exist to reduce the number of FI experiments. Def/Use Pruning (DUP)
is a precise method that groups FIs into FESs, requiring only one FI (the representative pilot) per FES.
Additionally, heuristic pruning methods use program execution knowledge to decrease the number
of FIs needed further, often resulting in sets of FES with a single pilot. Although these methods are
generally imprecise, their deviation is acceptable or context-dependent.

To save time during the execution of a single FI experiment, techniques such as checkpointing can
be employed, allowing the system to revert to a specific point before injection. Another approach to
expedite FI experiments is to predict results early in the post-injection runtime.

This dissertation introduces three contributions for accelerating FI campaigns: Two new pruning
methods for further reducing the number of FI experiments in a campaign and one dynamic outcome
predictor for reducing the FI experiment runtime during execution.

• In Chapter 4, I present Data-Flow–Sensitive Fault-Space Pruning [�PDL21], which consider not
only the temporal aspect but also the semantics of individual instructions to form precise sets
of FES and cover the FS completely.

• In Chapter 5, I introduce Program-Structure–Guided Fault-Space Pruning [�Pus+19], which
utilize program structures determined from the golden trace to calculate Fault-Space Regions
within the FS, which again determine sets of FES, with only one FI executed. Although this
method is heuristic, it exhibits a slight deviation, making it practical and still complete.

• Finally, in Chapter 6, I present ACTOR [�Tho+22], a dynamic outcome prediction method
that deals with predicting timeouts during a running FI experiment. This heuristic method
dynamically examines jump sequence correlation at runtime to improve prediction accuracy.

50

3
Implementation and

Evaluation Process

If you feel safe in the area you’re working in, you’re not working in the right
area. Always go a little further into the water than you feel you’re capable of
being in. Go a little bit out of your depth. And when you don’t feel that your
feet are quite touching the bottom, you’re just about in the right place to do
something exciting.

DAVID ROBERT JONES, BETTER KNOWN AS “DAVID BOWIE” (1947–2016)

This chapter provides an overview of the tools used and implemented within this dissertation,
mainly focusing on the technical implementation of the FI-campaign process (refer to Section 2.2.2
on page 35). One of the primary components is the simulation-based FI framework, FAIL*, a central
framework used throughout this dissertation. As highlighted in the preceding chapter, the primary
emphasis lies on FIs targeting the ISA layer, which aligns with the principal focus of FAIL*’s FI
capabilities. This framework specializes in injecting bit flips on the ISA layer, tracing error propagation,
and simulating resulting behavior or, more specifically, generating a failure classification derived
from a bit flip.

The contributions of this dissertation expand the functionality of the existing FI framework FAIL*,
aiming to accelerate the execution of FI campaigns conducted with FAIL*. I introduce an essential
concept to comprehensively evaluate and quantify the quality of these FI campaign acceleration
methods: the notion of the effectiveness of FI-campaign acceleration. To facilitate a quantitative
assessment of the effectiveness of the contributions made in this dissertation, I outline the process of
determining an FI campaign reference execution – the ground truth and elaborate on the evaluation

51

3 Implementation and Evaluation Process

methodology for assessing these contributions against the established ground truth. Lastly, I introduce
the benchmark portfolio used in this work and the technical setup adopted for conducting the research.

52

3.1 The Fault-Injection Framework FAIL*

3.1 The Fault-Injection Framework FAIL*

The simulation-based FI framework FAIL* plays a central role in the research conducted in this
work. This section provides an overview of FAIL*, outlining its general workflow and highlighting
the specific components employed in this dissertation.

FAIL* operates by executing simulations of the SUT and intentionally injecting faults to observe
the system’s response. The workflow involves distinct stages, from initializing the simulation to
injecting faults and subsequent recording of the outcomes.

One crucial aspect of FAIL* is its ability to generate diverse FI-experiments results. These results
are categorized into different classes of failures, each representing a distinct manifestation of system
vulnerability.

A essential contribution of this dissertation is the integration of novel methodologies within the
FAIL* framework. Specific enhancements and optimizations are implemented at strategic points in
the workflow to improve the efficiency and effectiveness of FI experiments. The upcoming chapters
4 - 6 will provide a detailed account of these contributions and their integration within the FAIL*
framework.

3.1.1 FAIL* Procedure

FAIL*15 [Sch+15; Sch16] is designed to inject faults during the runtime of an executed program
on simulated fixed hardware. It leverages various backend simulators, enabling the simulation of
diverse hardware models. This flexibility allows FAIL* to execute programs on simulated hardware
and dynamically inject faults at runtime, facilitating a comprehensive evaluation of the system’s
reliability.

The FAIL* supports the simulation and injection of faults on different processors, including an
x86 processor using the Bochs simulator,16 an ARM A9 processor with the Gem5 simulation,17 and
QEMU.18 Additionally, it works with the OpenOCD debugging interface,19 enhancing its versatility
and applicability across various hardware architectures.

FAIL* adopts a client-server architecture for its implementation. The job server is essential, housing
essential information for FI campaign execution. This server delegates individual FI experiments from
the campaign to diverse clients, transmitting corresponding pilots. Each client executes an individual
FI experiment using the provided pilot information in the simulated hardware. Subsequently, the
client reports the observed SUT behavior back to the server.

At the core of FAIL* lies a database that encompasses all requisite data for running an FI campaign
and recording its results. FAIL* is flexible, allowing users to craft customized FI campaigns and
integrate specific tools and plugins to enhance and tailor the campaigns according to their needs.

Executing a campaign and obtaining results about the reliability of the evaluated system using
FAIL* involves completing the four FAIL* assessment cycle steps, as depicted in Figure 3.1 [Sch+15;
Sch16]. This assessment cycle is a specific realization of the FI-campaign process outlined in Sec-
tion 2.2.2 on page 35. The individual steps of the assessment cycle are as follows:

15 “FAIL*- short for FAult Injection Leveraged, with the asterisk highlighting its variability regarding target backends” [Sch16].
FAIL*’s source code is available on GitHub at the following link: https://github.com/danceos/fail.

16 “Bochs is a highly portable open source IA-32 (x86) PC emulator written in C++, that runs on most popular platforms. It
includes emulation of the Intel x86 CPU, common I/O devices, and a custom BIOS.” – https://bochs.sourceforgie.io/

17 “The gem5 simulator is a modular platform for computer-system architecture research, encompassing system-level architecture
and processor microarchitecture. gem5 is a community-led project with an open governance model.” – https://www.gem5.org/

18 “A generic and open source machine emulator and virtualizer” – https://www.qemu.org/
19 “OpenOCD, the Open On-Chip Debugger has been created by Dominic Rath as part of a diploma thesis at the University of

Applied Sciences, FH-Augsburg.” – https://openocd.org/

53

https://github.com/danceos/fail
https://bochs.sourceforgie.io/
https://www.gem5.org/
https://www.qemu.org/
https://openocd.org/

3.1 The Fault-Injection Framework FAIL*

Figure 3.1 – FAIL* Assessment Cycle.
Following the (A) initial definition, the (B) SUT undergoes analysis using the golden run,
supplying essential information to the central database regarding the SUT and the intended
FIs. Subsequently, (C) the campaign is executed, and (D) the results are subject to analysis.
This iterative process allows for extracting new insights from the SUT’s resulting behaviors,
contributing to the refinement of subsequent FI campaigns. The SUT undergoes iterations
until it achieves the desired level of understanding or system hardening. The figure is taken
from [Sch+15].

Step A - Initial Campaign Definition To conduct an FI campaign, the initial step is to define a
FAIL* campaign.20 This step specifies the campaign type and its parameters through predefined
or self-developed FAIL* templates. In this phase, FAIL* does not execute any FIs. I limit the use
of FAIL* to the following two generic FAIL* campaign templates, applied in the listed order:

1. To analyze the effects of bit flips in the SUT, the framework requires a reference execution
of the program, known as the golden run (see Section 2.2.2 on page 35). The FAIL*
template generic tracing creates the golden run using the built-in plugin tracing. Upon
completion, the golden run is prepared for use in the subsequent FAIL* step.

2. The generic (FAIL*) experiment generates the pilots for the planned FI campaign. This
step operates through the job server and is executed within the client-server architecture
using the golden run. This server coordinates the distribution of pilots to numerous
clients for parallel execution and subsequently records the results in the central database.

Step B - Pre-Injection Analysis Following the definition of the campaign, the pre-injection–analysis
step is initiated. Depending on the FAIL* campaign definition, this phase involves creating or
analyzing the golden run. When analyzing the golden run, IP and memory events are read (as
shown in Listing 2.1 on page 36), and FAIL* writes the data to its central database. Importing
the objdump of the compiled programs of the SUT can enhance the human interpretability of
individual IPs if desired. Subsequently, FAIL* calculates the pilots for the upcoming FIs based
on the golden run, incorporating acceleration techniques like DUP (see Section 2.3.2.1 on

20A FAIL* campaign is termed by Schirmeier [Sch+15] a FAIL* experiment, which includes both the definition and execution
of an FI campaign, which comprises individual FI experiments. In the context of this dissertation and my contributed papers,
the terms FAIL* experiment, FAIL* campaign, and FI campaign are used interchangeably to especially separate the overall FI
campaign and single FI experiments on the SUT.

54

3.1 The Fault-Injection Framework FAIL*

page 47), the default pilot calculation technique in FAIL*. As this step concludes, the pilots
are readily available in the database for the job server in the subsequent step.

This step will be the recurring focus throughout the dissertation; in this pre-injection step, I
implemented the first two of my three contributions to reducing the number of FI experiments
in the FAIL* campaign.

Step C - Fault Injection In this step, the planned FI campaign is executed. The job server retrieves
the pilots from the database and assigns the associated workload to the clients. Each pilot
triggers the creation of a breakpoint when executing the SUT on the client, specifying the time
of the break and the bit to be flipped. At this breakpoint, the client executes the code depicted in
Listing 3.1. The breakpoint predetermines the injection time, and the injection location is passed
through the code in the function with the signature DatabaseExperiment::injectionFault.
Using the parameters data_address and bit_position, the client precisely identifies the bit
to be flipped. Accessing the registers in the SUT requires a separate disassembler. Currently,
FAIL* supports the LLVM21 and Capstone22 disassemblers; I use Capstone in the context of
this dissertation.

Listing 3.1 – FAIL*’s Code of a Fault Injection.
DatabaseExperiment::injectionFault accepts the parameters data_address and bit_position, defining
the bit in the SUT to be flipped in the FI experiment. Due to Bochs-related considerations, byte data ad-
dresses below address 2048 serve as a mapping for the general-purpose register. FAIL* employs a disassembler
(XtoFailTranslator) for register injections that reads and writes values from and to specific registers. FAIL*
uses an internal memory manager (variable m_mm) in the case of FI into memory. This listing contains the original
FAIL* code from the src/core/ewf/DatabaseExperiment.cpp file, albeit simplified for clarity in explanation.
The highlighted lines show the actual bit flip.

1 unsigned DatabaseExperiment::injectFault(
2 address_t data_address, unsigned bitpos, bool inject_burst,
3 bool inject_registers, bool force_registers, bool randomjump) {
4

5 unsigned value, injected_value;
6 // FI into a general purpose register
7 if (data_address < 2048 && inject_registers) {
8 // decode the related register and get its value
9 XtoFailTranslator::reginfo_t reginfo =

10 XtoFailTranslator::reginfo_t::fromDataAddress(data_address, 1);
11 value = XtoFailTranslator::getRegisterContent(simulator.getCPU(0), reginfo);
12

13 // inject the fault into the value
14 injected_value = value ^ (1 << bitpos);
15 // write the injected value back to the register
16 XtoFailTranslator::setRegisterContent(simulator.getCPU(0), reginfo, injected_value);
17

18 // FI into memory
19 } else {
20 // get the value via FAIL*'s MemoryManager
21 // from the memory at 'data_address'
22 value = m_mm.getByte(data_address);
23

24 // inject the fault into the value
25 injected_value = value ^ (1 << bitpos);
26 // write the injected value back to the memory
27 m_mm.setByte(data_address, injected_value);
28 }
29 }

21 “The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.” – https://llvm.org/
22 “Capstone is a lightweight multi-platform, multi-architecture disassembly framework. Our target is to make Capstone the

ultimate disassembly engine for binary analysis and reversing in the security community.” – https://capstone-engine.org/

55

https://llvm.org/
https://capstone-engine.org/

3.1 The Fault-Injection Framework FAIL*

Lines 14 and 25 illustrate the concrete bit flips in the code using the XOR (^) operation. Due
to the isolated execution of an FI experiment within the backend simulation of a client and
the independence of all FI experiments, this process is amenable to parallelization. Upon
completion, the client reports the resulting system behavior after the FI to the job server. After
this stage, a result table will be placed in the database, encompassing outcomes for each pilot
in the entire FI campaign.

In this step, I have implemented the last of my three contributions. During the campaign
runtime, this improvement in FAIL* accelerates the execution of individual and specific FI
experiments.

Step D - Post-Injection Analysis Following the completion of the FI campaign and the retrieval
of the trace data and result table, the subsequent step is the post-injection analysis of the
entire campaign results. Leveraging the imported trace data and the database structure of
FAIL* enables the quantification and analysis of the SUT’s reliability. Precisely tracing back
the FI behavior in the executed code of the SUT allows for informed conclusions regarding
potential improvements and opportunities for hardening the SUT. Armed with this enhanced
understanding or an improved, fortified version of the SUT, the cycle can recommence at step
B. This iterative process, the FAIL* assessment cycle, spans multiple FI campaigns, continuously
refining and enhancing the SUT.

Regarding the eight criteria for evaluating FI techniques (refer to Table 2.1 on page 41), FAIL*,
being a simulation-based FI framework, excels in several aspects: (1) repeatable, ensuring deter-
ministically reproducible results, (2) providing complete controllability through the simulation, (3)
offering observability over the SUT execution and the effects of FIs, (4) being non-intrusive as FAIL*
injects the program semantically unchanged, (5) ensuring reachability at every point in the ISA layer
FS, (6) enabling scalability through arbitrary parallelization, and (7) being cost-effective by avoiding
the need for expensive hardware prototypes. The accuracy of FI campaign results depends on the
chosen backend simulator and its implemented (8) degree of realism.

Throughout this dissertation, I employ FAIL* for all FIs and enhance its functionality with new
features implemented as FAIL* plugins and FAIL* tools. Given that the Bochs simulator is a well-
established x86 processor simulator, my work consistently refers to the Bochs simulator and the
simulated x86 processor in the backend simulation for FAIL*.

3.1.2 Failure Classification

FAIL* observes various types of system behaviors following the execution of an FI as the injected fault
propagates and traverses the system boundary of the SUT (refer to Section 2.1.3 on page 19). If the
SUT’s behavior after an FI matches the behavior without an FI (i.e., the golden run), the fault is
labeled benign; otherwise, FAIL* recognizes it as an observable system failure.

The crucial aspect is not whether the execution or system states of the SUT align with the
golden run in any manner but rather the observable behavior outside the system boundary after the
completion of the execution. As I focus on classifying system failures rather than individual errors
within the system, the system state itself is not a decisive factor. Only the resulting system behavior
after the termination of the SUT is pertinent.

To this end, the following (system) failure classes are defined and considered within the context
of FAIL* and this dissertation:

56

3.1 The Fault-Injection Framework FAIL*

Benign This class refers to cases where the execution of the SUT terminates, and it behaves as
anticipated, yielding the expected result. Injected executions free of failures can occur by
implementing error detection methods with appropriate responses or successful error correction
methods. The possibility of masking bit flips (as seen in the binary AND instruction, where a bit
flip at one input becomes benign due to the other input bit being a constant zero) could also
result in externally observed failure-free SUT execution. As emphasized earlier, the system
state is inconsequential for this failure class; the focus lies solely on the externally observable
failure-free system behavior.

Silent Data Corruption Silent Data Corruption (SDC) signifies a failure class wherein the SUT
terminates its execution and appears to behave as anticipated following an FI. However, if
the expected result is known, the result returned after termination is incorrect, leading to a
potentially observable erroneous output. The severity of this failure class becomes critical,
especially when it is challenging to determine an expected result (e.g., calculations based on
sensor data in a non-reproducible real-world environment like radiation). Thus, SDC is the
most dangerous failure class because, in the worst case, this type of system failure allows the
system to continue its execution as if it would process correctly.

Timeout A timeout refers to an execution of the SUT that does not terminate within a specified
time. If injected data alter the control flow, deviations from the golden-run’s control flow
are possible. In principle, this is not serious, as the system can still produce the correct and
expected result. However, a timeout occurs if the control flow does not exit for an extended
period.

For instance, if an FI flips a bit of a loop variable, it can lead to an infinite loop, preventing the
system from terminating. It may also be unclear whether the SUT will ever terminate, known
as the Halting Problem [Gö31; Chu36; Tur37]. Therefore, a very high threshold is usually
used as an approximation, which is a multiple of the execution time of the golden run. If the
SUT runs longer than this threshold, it is a timeout with a high probability. For safety-critical
systems, typically real-time systems, if the execution exceeds the specified threshold, it violates
the specification and is considered insufficiently safe.

Trap A trap describes a (software-side) synchronous interrupt.23 This failure class does not address
any hardware-side or asynchronous interrupts. A prominent example of a trap is dividing a
value by zero. This failure class also includes invalid memory accesses, such as writing outside
the allocated memory space or writing to the text segment of the program, which can lead to
loading corrupted instructions.24

The framework can identify additional system failures or more nuanced failure classes beyond
those mentioned above, which proves helpful in specific specialized experiments. However, the
specified failure classes suffice for the contributions in this dissertation. This selection of failure
classes enables a precise classification of all FIs across the entire FS.

23As mentioned in Section 3.1, I use the Bochs simulator as the FAIL* backend hardware model in the context of this
dissertation. Throughout the dissertation, the term trap is potentially used for any software-side interrupt, which, in the
x86 ISA, is generally referred to as an exception [Cor22]. However, distinguishing the terms of different interrupts is not
straightforward because “no clear consensus as to the exact meaning of these terms” exists over several different ISAs [Hyd10].
Therefore, I will use the term trap to refer to any software-side interrupt.

24In the context of Bochs in FAIL*, serving as an x86 simulator, I assume that, similar to the x86 architecture, a memory
management unit detects invalid memory accesses and triggers a trap in the system.

57

3.1 The Fault-Injection Framework FAIL*

3.1.3 FAIL* Plugins and Tools

FAIL* offers extensibility by incorporating FAIL* plugins and FAIL* tools. During the initial campaign
definition in step A of the assessment cycle, FI campaign designers can configure the necessary
compilation steps, allowing pre-configuration of FAIL* plugins.

FAIL* plugins provide modular functionality typically required during the execution of a single FI
experiment. For example, the Tracing plugin, used by FAIL*’s generic tracing, records the instruction
and memory-access trace of the workload in a compressed file. This trace file serves as the golden run
for calculating pilots in the pre-injection–analysis step of FAIL*’s generic (FAIL*) experiment [Sch+15;
Sch16]. Notably, the development of the autocorrelation plugin, which collects runtime data during
a single FI to determine potential timeouts using an autocorrelation algorithm, contributed to this
work. I will explain this approach in more detail in Chapter 6.

The second option for extending FAIL* is implementing or enhancing FAIL* tools. These tools
operate independently of the FI campaign and serve diverse purposes. For example, after successfully
creating the golden run, the dump-trace tool makes it more human-readable. The import-trace
tool facilitates the import of the golden run into the FAIL* database, supporting various formats.
Additionally, the prune-trace tool, extended in the context of this dissertation, offers options to use
Data-Flow Pruning (more in detail in Chapter 4) or Fault-Space Regions (more in detail in Chapter 5).
These FAIL* tools, though related to FI-campaign definitions, can be used independently for analyses
without executing any FIs.

FAIL* tools primarily play a role in the pre- and post-injection analysis steps, although FAIL*
plugins are more involved in the fault-injection step, except for tracing. However, both may be present
in every phase of the assessment cycle to some extent. Figure 3.2 illustrates the FAIL* assessment
cycle, as seen in Figure 3.1, with highlighted sections representing the implemented contributions of
this dissertation. These implementations aim to enhance the feasibility of FI campaigns by providing
a complete assessment of the FS and the system’s reliability when executing software on fault-prone,
fixed hardware.

Figure 3.2 – Focus of this Dissertation Regarding the FAIL*’s Assessment Cycle.
This dissertation centers on diminishing the overall execution time of FI campaigns. To attain
this objective, two pruning methods and one monitoring method within FAIL* are developed
and implemented. Subsequent chapters detail the enhancements made to FAIL* by integrating
new FAIL* plugins and tools. The figure is adapted from [Sch+15].

58

3.1 The Fault-Injection Framework FAIL*

The code developed during this dissertation is publicly accessible in the FAIL* GitHub repository
and available on Zenodo.25

3.2 Evaluating Fault-Injection–Campaign Improvements

As the primary objective of this dissertation is to enhance the overall runtime of FI campaigns, I
outlined in Section 2.3.2 on page 46 and Section 2.3.3 on page 49 specific methods to decrease
either the number of pilots n or the FI-experiment runtime texp. To evaluate the effectiveness of
these FI-campaign accelerating methods, I define the notions of effectiveness and efficiency within the
context of FI acceleration methods and describe the evaluation process using FAIL*. Following this,
I elaborate on the benchmarks used in this work to measure the effectiveness of the contributed
FI-campaign acceleration methods and the technical setup employed to collect these results.

3.2.1 Fault-Injection–Campaign Acceleration Effectiveness and Efficiency

The precise definitions of effectiveness and efficiency are crucial to understanding the contributions
of this work. In general, the definitions of these terms are as follows:

Effectiveness Effectiveness is a goal-dependent criterion that assesses the difference between the
desired and the achieved goals. A more comprehensive understanding of effectiveness always
relates to outcome measures [Nul98]. The nearer the desired and archived goals are, the
higher the effectiveness.

Efficiency Efficiency is an explicitly goal-independent criterion based on the quantitative correlation
between the achieved goal and the resources expended to accomplish it [Nul98]. It is a higher
level of efficiency when fewer resources are required.

The goal of an FI framework is to provide comprehensive results of all individual FIs of a campaign
to assess the SUT’s reliability; in the context of this dissertation, the goal also concludes, aiming for
FS-completeness. Regarding accelerating FI campaigns, it is essential to differentiate between the FI
framework in use and the independent FI-campaign acceleration methods in terms of efficiency and
effectiveness. A more detailed explanation of these distinctions will follow in the next two sections.

3.2.1.1 Ground Truth

A reference for comparison is needed to assess the performance of an acceleration method. This
reference – the ground truth – serves as a basis and must represent a particular standard of execution
of an FI campaign, the golden run.

Acceleration methods influence the number of experiments n or the individual experiment
runtimes texp,i to improve the overall campaign runtime tcpn. These values for both need to be
determined to assess the performance of the acceleration methods. Additionally, in the case of
evaluating approximative methods that approximate observed system behavior for specific points in
the FS or predict system behavior during experiment execution, the observed and recorded system
behaviors from a non-approximative reference execution are necessary to determine the correctness
of the acceleration methods under evaluation.

The ground truth in the context of this dissertation consequently contains three major parts:

25 “Zenodo is a research data repository and publishing platform that enables researchers to store, share, and preserve their
research outputs. It provides a persistent and citable digital identifier for datasets, software, publications, and other research
artifacts, making them easily discoverable and accessible to the wider scientific community.” – https://zenodo.org/

59

https://zenodo.org/

3.2 Evaluating Fault-Injection–Campaign Improvements

Number of Pilots The naive approach to determining pilots for a campaign entails defining a pilot
for every accessed time point and location captured in the golden run, which is the total
number of potential FIs in the entire FS nnaive = |F |. However, employing this vast number of
pilots in the FI campaign proves infeasible (refer to Section 2.3.1 on page 45).

The Def/Use Pruning (DUP) (see Section 2.3.2.1 on page 47) is a well-known and popular
standard method because of its fast computation speed, precision, FS-completeness, and
relative ease of implementation [Smi+95; GS95; Ben+98b; Ber+02; BP03; Bar+05; Gri+12],
that reduces the number of pilots significantly [Bar+05]. Since DUP is a fundamental method
and today’s basis for novel acceleration methods in the research community (as it is also in
two of my three contributions), I consider the results of this method as the ground truth for
measuring the performance of newly developed acceleration methods optimizing the number
of pilots.

ground truthn := nDUP = |PDUP|

Accordingly, the set of DUP pilots PDUP or its number of pilots nDUP represents this part of the
ground truth. The pilots from PDUP are also the basis for this list’s two subsequent parts.

Individual Experiment Runtimes In its simplest form, the FI-experiment runtime is the duration
from the execution of the first instruction in the experiment to the final report of the observed
system behavior post-FI. The ground truth must contain the recorded runtimes of all exper-
iments texp,i to accurately measure the impact of acceleration methods on campaign time
during experiment execution. Here, as the set of the ground truth’s pilots is PDUP, only the
experiment runtimes considering these pilots belong to the determination of all experiment
runtimes T PDUP

. Thus, this part of the ground truth is as follows:

ground truthmin texp
:= T PDUP

=
nDUP−1
⋃

i=0

texp,i

No (non-default) acceleration methods must be active during every experiment execution,
ensuring that individual runtimes remain primarily unaffected and comparable. The sum of
all elements in T PDUP

equals the overall campaign runtime tcpn.

Campaign Results After concluding the campaign, all FI-induced system behaviors are observed
and recorded. For every FI experiment i with the pilot pi , the injected SUT results in a specific
classified failure c i , thereby defining a single FI-experiment result denoted as r i = (pi , c i). The
collection of all FI-experiment results defines the overall FI-campaign results as the set RDUP:

ground truthR := RDUP =
nDUP−1
⋃

i=0

r i

Although RDUP might not be directly relevant for measuring the campaign runtime, it is crucial
to assess the precision of the approximative acceleration method using heuristic approaches.

60

3.2 Evaluating Fault-Injection–Campaign Improvements

3.2.1.2 Fault-Injection Framework Effectiveness and Efficiency

As an FI campaign aims to provide FI results for every point in the FS, FAIL* by default achieves max-
imal effectiveness in this regard and addresses every potential FI in the FS. However, the effectiveness
is compromised if sampling or heuristic methods either incompletely or inaccurately determine FI
results regarding the FS.

The efficiency of executing an FI campaign depends on two key factors: (1) Firstly, it depends
on the implementation of the FI framework itself and its resulting framework overhead. I use FAIL*
as the FI framework, and I consider the implementation details of the FI process and individual FI
executions to be sufficiently efficient. Thus, this factor is different from the focus in this dissertation.
(2) Secondly, the efficiency of the FI-framework execution is influenced by reducing the pure FI-
campaign runtime tcpn of the FI campaign. Consequently, the shorter tcpn is, the more efficiently the
framework’s goal is reached. The reduction in tcpn could make previously infeasible workloads of FI
campaigns feasible, as discussed in the context of campaign runtime explosion in Section 2.3.1 on
page 45.

I primarily focus on optimizing the FI-campaign runtime tcpn to complete FS coverage more
efficiently.

3.2.1.3 Fault-Injection Campaign Acceleration Effectiveness and Efficiency

FI-Campaign–runtime acceleration methods address one of two factors of optimizing tcpn = n · texp:
either the reduction of FI experiments n in the pre-injection step or the reduction of texp during the
FI-experiment execution. The theoretically ideal goal of both acceleration method types is to achieve
tcpn, ideal = 0. However, this ideal scenario is practically unrealistic, but acceleration methods aim to
bring the actual campaign runtime tcpn as close as possible to this ideal value tcpn, ideal.

Therefore, the effectiveness of a specific acceleration method is determined by how much it
reduces the runtime tcpn, essentially minimizing n or minimizing texp to bring tcpn closer to tcpn, ideal.
Conversely, the efficiency of acceleration methods refers to the resources needed to reduce either n
or texp.

Effectiveness of Reducing the Number of Pilots

To evaluate the effectiveness of acceleration methods in reducing n, a ground truth must be defined
to compare the resulting n.

The value nDUP is the ground truth concerning the number of pilots required for full FS coverage.
The effectiveness regarding min n is quantifiable with DUP’s pilots as the ground truth.

Let us assume a new acceleration method that calculates nmethod pilots, covering the FS entirely.
The calculation of the new method’s effectiveness compared to DUP is as follows:

Effectivenessmin n :=
nDUP − nmethod

nDUP
(3.1)

This formula represents the ratio reduction of the new method’s number of pilots compared to
DUP, providing a way to gauge the new method’s effectiveness.26 Throughout this work, I will refer
to this definition of effectiveness and the reduction in the percentage of experiments.

26Theoretically, if the number of the new method’s pilots exceeds that of the DUP, the effectiveness becomes negative by
definition. The negative result implies that the new method is useless in every sense, which should already be apparent when
solely comparing the absolute numbers of pilots; a new acceleration method should always guarantee nmethod ≤ nDUP.

61

3.2 Evaluating Fault-Injection–Campaign Improvements

Effectiveness of Reducing the Experiment Runtime

To evaluate the effectiveness of acceleration methods that target min texp, we need to focus on
specific parts of the entire FI-campaign runtime. For the evaluation, the pilots must be the same for
each assessment.

Let P represent the set of pilots determined in the pre-injection–analysis step (e.g., using DUP).
Each pilot pi ∈ P denotes an FI at a specific time and location in the SUT, requiring a corresponding
time texp,i ∈ T P . Here, T P contains all runtimes of individual FI experiments initiated by each pilot
pi .

The overall campaign duration tcpn is as follows:

tcpn =
|T P |−1
∑

i=0

texp,i + tovframework

Whereas the framework overhead tovframework
is an inherent part of the FI-campaign runtime, its

optimization is beyond the scope of this dissertation. This work focuses on optimizing FI campaigns
through acceleration methods rather than directly refining the existing FI framework (in my case
FAIL*).27

The runtime of the i-th individual FI experiment texp,i comprises two primary components: (1)
Firstly, it includes the pure program runtime tprg,i which signifies the duration an FI experiment runs
on the SUT until its completion. This runtime extends until the FI framework adequately classifies
the FI’s impact, assigning it to one of the failure classes, as discussed in Section 3.1.2. (2) Secondly,
the overhead associated with each experiment has two distinct parts. The first part is the overhead
induced by the FI framework. The framework overhead summarizes the necessary computational
resources required by the FI framework to execute and manage all individual FI experiments of the
campaign. As mentioned before, this work does not focus on optimizing the framework overhead.
The second part is any overhead conditioned by the new acceleration method, denoted as tovmethod,i .

By combining these parts, the overall FI-experiment runtime is:

texp,i = tprg,i + tovmethod,i

Similar to the FI-campaign runtime, the framework-induced overhead per experiment is disre-
garded in this evaluation, as the primary focus is not to optimize the framework’s overhead in any
sense and, thus, will always be considered constant.

Nonetheless, reducing individual FI-experiment runtimes impacts the overall FI-campaign runtime
directly, which involves minimizing the program runtime up to failure classification tprg and the
overhead caused by the acceleration method tovmethod

. Consequently, the considered FI-campaign
runtime is defined as follows:

tcpn =
|T P |−1
∑

i=0

texp,i =
|T P |−1
∑

i=0

(tprg,i + tovmethod,i) (3.2)

Defining a ground truth becomes essential once again to determine the effectiveness of an
acceleration method considering min texp. In this context, an FI framework operates by reducing the
FI-experiment runtime by utilizing its implemented optimizations during the execution of the SUT.

27In the case of FAIL* and its client-server architecture, the evaluation environment’s infrastructure overhead might be a
factor in determining its technical implementation. However, this aspect does not significantly impact the core contributions
of this dissertation. Therefore, the contributions of this work do not explicitly delve into optimizing or focusing on this specific
infrastructure overhead within this work.

62

3.2 Evaluating Fault-Injection–Campaign Improvements

The FI framework executes the campaign plainly to establish the ground truth and avoid affecting
the SUT’s execution.

Assuming the development of a new acceleration method designed to optimize min texp, the
assessment of this method’s effectiveness is a direct comparison between its FI-campaign runtime
tcpnmethod and the standard execution of the unaffected and plain FI-experiment setup:

Effectivenessmin texp
:=

tcpnplain
− tcpnmethod

tcpnplain

=

∑

i texpplain,i −
∑

i texpmethod,i
∑

i texpplain,i

The reduction in individual experiment runtimes texp,i ∈ T P compared to the plain setup (i.e., the
ground truth) directly determines the effectiveness. Even reducing a single experiment’s runtime
influences the effectiveness of the acceleration method. However, this reduction spans multiple or
all n experiments, decreasing total FI-campaign runtime tcpn. In that case, it implies a significant
increase in the effectiveness of the acceleration method for optimizing min texp.

Acceleration Method’s Efficiency

The efficiency of any acceleration method describes how many resources (e.g., CPU time, memory)
it requires to perform the method computation regarding min n or min texp compared to a process
without any applied acceleration methods. The efficiency of the acceleration method depends on
its concept and implementation. However, when assessing efficiency, it is essential to distinguish
between min n and min texp and their impact on tcpn.

The optimization of min n happens during the pre-injection–analysis step (i.e., before the actual
execution of the FI campaign). The efficiency of such a method reflects how resource-intensive it is in
calculating the pilots (e.g., CPU time needed, memory space). In practice, the resources used during
the execution of these methods are not directly relevant for tcpn. It would become relevant only if
the method computes pilots for longer than the reduction through the pilots, which provides an
advantage of the overall campaign runtime tcpn. However, if the FS under evaluation is sufficiently
large and the average experiment duration is long enough, the efficiency of a method computation
minn would not significantly affect the overall runtime savings from the very start of the FI process
to the end of the last FI experiment.

Conversely, the efficiency of methods considering min texp directly influences the experiment’s
runtime and usually has an additional overhead tov (as seen in Equation 3.2); high overhead impacts
texp and, consequently, directly affects tcpn. Unlike min n calculations in the pre-injection–analysis
step, efficiency, in that case, influences texp directly and is significantly crucial for each experiment.
That means when the method’s additional calculation time exceeds the runtime savings, the method
is highly inefficient.

Consider the example of predicting the system behavior during the experiment’s execution at a
predefined time for early failure classification and consequent experiment termination. The method
is inefficient if the time taken to calculate predictions exceeds the time saved by early termination.
This example also illustrates the need to separate effectiveness and efficiency: the method is effective
if the prediction of the resulting failure is correct (i.e., the goal of the method), and the method is
efficient if the calculation time of this prediction does not exceed the runtime savings from early
termination – however, both impact tcpn.

63

3.2 Evaluating Fault-Injection–Campaign Improvements

3.2.1.4 Summary of Effectiveness and Efficiency

In summary, the more effective an FI-campaign acceleration method is, the more efficiently the FI
framework produces the desired results for evaluating the SUT’s reliability.

The primary focus of this dissertation is to minimize tcpn; effective FI-campaign acceleration
methods make the FI-campaign execution more efficient by optimizing min n and min texp.

Throughout this dissertation, I will introduce and discuss three FI-campaign acceleration methods,
primarily optimized for their effectiveness. The efficiency of each implemented method is considered
and evaluated in different ways, as will be shown in detail in the respective Chapters 4, 5, and 6).

3.2.2 Estimating the Ground Truth with FAIL*

As FAIL* serves as the FI framework used in this work, which generates the desired SUT’s reliability
evaluation data, FAIL* determines all the parts of the ground truth (refer to Section 3.2.1.1) essential
for evaluating FI-campaign acceleration methods.

Figure 3.3 illustrates estimating the ground truth using FAIL*. Consider the code snippet in
Listing 3.2 (non-highlighted lines), which produces the 10th Fibonacci number. This exemplary
program is subjected to reliability evaluation using FAIL* with the x86 processor-simulator Bochs.

FAIL*
Ground
Truth

Ground
Truth

Compiling Program outside of FAIL*

1.
Adjust Program

Program
Code

Program
Code SUT

Golden
RunELF

CPU
State

ISO

2.
Compile Program

3.
Generic Tracing

nDUP T PDUP

5.
Generic Experiment

Fault-Injection
Campaign

4. Generic
Experiment

Pre-Injection
Analysis +

Ground
Truth

RDUP FI Results
FI Result 4

FI Result 3

FI Result 2

FI Result 1

...

Figure 3.3 – Determining the Ground Truth with FAIL*.
Determining the ground truth with FAIL* encompasses five fundamental steps: (1) The program
under evaluation undergoes adjustments to ensure compatibility with FAIL*, creating the SUT
code. Next, (2) the SUT code is compiled into an ELF file and an ISO image. Subsequently, (3)
the ELF and ISO files serve as inputs for the FAIL* task generic tracing. This step generates the
golden run or trace and records the initial state of the CPU. Following the tracing, FAIL* executes
its generic experiment, comprising a (4) pre-injection analysis that applies DUP to determine
the number of pilots (nDUP) for the FI campaign. Finally, (5) FAIL* proceeds to execute the FI
campaign. Throughout this step, FAIL* records the individual runtimes of FI experiments (T PDUP

)
and the resulting outcomes (RDUP). Thus, the determined parts of the ground truth are nDUP,
T PDUP

, and RDUP.

Adjust Program Adjusting the SUT’s program code is the initial step for any FI campaign using
FAIL*.28 Modifications to the code are necessary to enable compatibility with FAIL*, starting
with any program, such as the one demonstrated in Listing 3.2.

28Most of the simulation-based FI frameworks need adjusted program code. However, these modifications do not impact
the pure semantics of the Fibonacci number calculation.

64

3.2 Evaluating Fault-Injection–Campaign Improvements

Inserting dummy functions, as highlighted in lines 1 to 20, creates explicit Executable and
Linkable Format (ELF) symbols in the resulting ELF file. FAIL* uses these ELF symbols to control
its execution flow, and the symbols serve two primary purposes:

1. For the generic tracing, the tracing scope is defined using the functions start_trace
(line 33) and stop_trace (line 37). These ELF symbols have no semantic significance
within the code execution and are solely for tracing purposes without being considered
in the trace.

2. Another purpose is to determine the system-failure class (refer to Section 3.1.2) at the
end of a generic experiment. For this, an if statement, as shown in lines 39 to 45, adjusts
the control flow.29

These ELF symbols are crucial in subsequent steps for determining the ground truth and do
not alter the pure semantics of the program under evaluation.

Listing 3.2 – Exemplary Fibonacci SUT Program Code for FAIL*.
This C++ code computes the n-th Fibonacci number fn recursively. In this specific example, it calculates the
10th Fibonacci number (f10 = 55), storing the result in the variable result. This final assignment is the output
of the specific code segment. The highlighted code is essential for integrating with FAIL*. This extra code adds
ELF symbols in the binary file during compilation, making the control flow more controllable. start_trace and
stop_trace define the tracing scope of the function fib(10) with the assignment to result. ok_marker and
fail_marker are representative failure classifications. The if statement then verifies the result of fib(10). If
the result matches 55, the control flow proceeds to ok_marker (failure class benign); otherwise, to fail_marker
(failure class SDC). The functions are explicitly defined with __dummy = 1 to ensure these symbols persist
despite compiler optimizations.

1 volatile int __dummy;
2 void __attribute__ ((noinline)) ok_marker();
3 void __attribute__ ((noinline)) ok_marker() {
4 __dummy = 1;
5 }
6

7 void __attribute__ ((noinline)) fail_marker();
8 void __attribute__ ((noinline)) fail_marker() {
9 __dummy = 1;

10 }
11

12 void __attribute__ ((noinline)) stop_trace();
13 void __attribute__ ((noinline)) stop_trace() {
14 __dummy = 1;
15 }
16

17 void __attribute__ ((noinline)) start_trace();
18 void __attribute__ ((noinline)) start_trace() {
19 __dummy = 1;
20 }
21

22 unsigned int fib(unsigned int num) {
23 if (num == 0) {
24 return 0;
25 }
26 if (num == 1) {
27 return 1;
28 }
29 return fib(num - 1) + fib(num - 2);
30 }

31 void main() {
32 unsigned int result;
33 start_trace();
34 // trace each instruction behind this line
35 result = fib(10);
36 // stop tracing before this line
37 stop_trace();
38 // compare result of the function fibonacci(10)
39 if (result != 55) {
40 // in case of an incorrect/unexpected result
41 fail_marker();
42 } else {
43 // in case of the correct/expected result 55
44 ok_marker();
45 }
46 }

29The added code changes the compiled ELF file for technical reasons only, making it traceable and injectable with FAIL*.
Listing 3.2 additionally shows the potential level of intrusion discussed in Section 2.2.3.1 on page 38.

65

3.2 Evaluating Fault-Injection–Campaign Improvements

Compile Program After preparing the SUT’s code, this step involves the conversion of the created
SUT code into binary files using the GCC compiler, resulting in an ELF file and an Optical Disc
Image (ISO) file. The execution of the SUT code in FAIL* is bare metal, meaning that it runs
without an operating system. The ELF file – containing the SUT code to execute – needs to be
made bootable for the x86 emulator Bochs; the compilation process generates an ISO file to
enable Bochs to boot and run the resulting ELF on the emulated x86 processor.

FAIL*’s Generic Tracing This predefined FAIL* task requires an ELF and the corresponding ISO
files as input. Using these files, FAIL* generates an output – the golden run or program trace –
derived from code like those in Listing 3.2.

While adjusting the code, specific positions were designated as the trace scope for this FAIL*
task using ELF symbols such as start_trace and stop_trace. FAIL* records each executed ISA
instruction after reaching the start_trace symbol until it reaches stop_trace. FAIL* captures
each instruction’s IP and memory event, including the corresponding memory addresses.

FAIL* can perform a full trace in addition to the regular trace, which also records the values
of general-purpose registers and their memory dereferences. FAIL* saves these recorded
instructions into a packed file. Listing 2.1 on page 36 illustrates an example of such a recorded
golden run.

Additionally, FAIL* records the initial CPU state at the start of execution. This recorded state is
essential for the FI campaign as each FAIL* client’s emulation (i.e., an FI experiment) begins
in this initial CPU state.

FAIL*’s Generic Experiment30 The core of an FI campaign with FAIL* is importing the previously
generated trace into the FAIL* database. This process captures the sequence of IPs, general-
purpose–register values, memory information, and access details, which FAIL* stores in its
database. Additionally the import step saves an objdump from the ELF file, puts it into the
database for better readability and maps it to the imported data. This mapping associates an
ISA instruction with each imported IP. With the complete trace imported, FAIL* is ready for
pre-injection analyses using all potential time points and available locations within the SUT.

Pre-Injection Analysis The pre-injection analysis step analyses the imported information and
produces the pilots for the FI campaign. The default method in FAIL* is the DUP. The
DUP method calculates and stores its resulting pilots PDUP in the database by processing
the trace data. The count of entries in the pilot database table represents the number
of pilots nDUP using DUP, which determines the part of the ground truth (i.e., nDUP) for
evaluating pre-injection acceleration methods, as described in Equation 3.1.

Fault-Injection Campaign The FI campaign execution is the conclusive step. Once the set of
pilots PDUP for the FI campaign is determined, FAIL* executes the campaign.

Initially in this step, FAIL* launches the job server to manage the pilot executions.

Subsequently, FAIL* clients start their operation. Each client handles the Bochs emulation,
the ELF file with the SUT code (along with the requisite ISO for booting), and the initial
CPU state. The client initiates the experiment by sending a request to the job server. The
job server transmits a job i ∈ {0, . . . , nDUP−1} to the client, containing a pilot pi = (t i , l i)
from the pilot database table.

30As a reminder of the terms used: The term FAIL* experiment means a complete FI campaign consisting of all individual
FI experiments.

66

3.2 Evaluating Fault-Injection–Campaign Improvements

The client launches the emulation via Bochs, loads the ELF file, and sets a breakpoint at
the pilot’s designated time point t i . Until the emulation reaches the breakpoint, it pauses
execution, flips the bit at location l i (refer to Listing 3.1), and resumes executing the
SUT. After that, the client reports the observed system behavior to the job server (i.e., the
resulting failure classification; refer to Section 3.1.2).

After that, the experiment concludes, and the client requests the job server for a new
job. The FI campaign is complete if the job server has no jobs left. The client-server
structure allows simultaneous initiation of multiple clients that request jobs from the
server and terminate once all jobs are done. The FI campaign duration spans from the
start of the job server and the creation of FAIL* clients to the conclusion of the very last
FI experiment from the job server.

Each client reports the first and last executed dynamic instruction as well as the start and
finish of the experiment . However, this determines the individual pure program duration
tprg and the experiment runtime texp. Without any additional acceleration methods (and
additional overhead), all determined experiment durations represent T PDUP

of the ground
truth.

After each FI experiment, the SUT’s behavior leads to a distinct failure category c ∈ C of
the predefined failure classes under observation detailed in Section 3.1.2. When all FAIL* clients
terminate after the job server allocates the last job, the FAIL* database creates a result table. This
table contains details regarding the outcome of every individual FI experiment, representing the last
part of the ground truth RDUP.

3.2.3 Experimental Setup

Following the description of the FI-campaign process and the determination of the ground truth
with FAIL*, I describe the benchmarks portfolio and the technical setup used in this dissertation.

3.2.3.1 Benchmark Portfolio

Benchmarks especially sensitive to bit manipulation are advantageous in effectively evaluating
enhancements in FI-campaign runtimes. Bit-sensitive benchmarks are characterized by instruction
semantics directly impacting subsequent bit-wise operations computations. Additionally, these
instructions possess the potential to mask errors, making the resulting bit flip benign. The benchmark
portfolio in this dissertation is the following:

MiBench Benchmark Suite The MiBench benchmark suite is a comprehensive collection of em-
bedded benchmarks known for its alignment with commercial applications [Gut+01]. This
suite contains diverse categories of benchmarks, including automotive, format encoding,
document-specific, networking, security, and telecommunication algorithms.

From the MiBench suite, I selected seven benchmarks from the automotive and security branch.
I chose the automotive branch since FIs are recommended to be performed for safety analyses
and certifications in the automotive sector [ISO18]. For this branch, I omitted the benchmarks
the masicmath, since FAIL* does not yet support FIs into floating-point registers, and the
benchmark susan (image processing), since failure behavior of image recognition is relatively
gradual, due to the amount of redundancy within the image than classifiable with a few failure
classes. From the security branch, I choose a bundle of different encoding and hash algorithms;
these benchmarks are interesting because every single bit is vital for the correct execution

67

3.2 Evaluating Fault-Injection–Campaign Improvements

of the algorithm and is thus challenging for FI. I omitted the pgp benchmark of this branch
because it has properties similar to those of other security benchmarks.

I adjusted the input sizes of these benchmarks to execute about 50000 instructions, achieving
a feasible campaign size while ensuring substantial potential for FI-campaign acceleration
methods.

The seven selected MiBench benchmarks are as follows:

MiBench Bitcount (miBC) Bitcount assesses a processor’s bit manipulation capabilities by
computing the bitcount in an array of integers. It consists of five distinct methods to
estimate the bitcount. The input data is an array of integers with an equal number of
ones and zeros.

MiBench Blowfish (miBFD/miBFE) Blowfish is a symmetric block cipher featuring a variable-
length key. Initially developed in 1993 by Bruce Schneier, its key length ranges from 32 to
448 bits, making it suitable for domestic and exportable encryption. For this benchmark,
the input data set is an ASCII text file. The Blowfish benchmark is divided into two
separate ones: the decoding algorithm miBFD, and the encoding algorithm miBFE.

MiBench Quicksort (miQS) This quick sort implementation sorts an array of strings in ascend-
ing order. Sorting data is crucial for system organization, prioritization, and optimizing
program runtimes [Gut+01]. The input for this benchmark is a list of words.

MiBench Rijndael (miRDD/miRDE) The Rijndael encryption is also known as the National
Institute of Standards and Technologies Advanced Encryption Standard (commonly AES).
It is a block cipher with 128-, 192-, and 256-bit key and block options. The Rijndael
benchmark includes decoding (miRDD) and encoding (miRDE) algorithms. The input
data set for this benchmarks, similar to miBFD and miBFE, is an ASCII text file.

MiBench SHA1 Checksum (miSHA) SHA1 generates a 160-bit message digest for a given
input, commonly used to exchange cryptographic keys and create signatures securely.
Like miBFD or miBFE, the input data set for SHA is an ASCII text file.

Micro Benchmarks This collection of benchmarks is self-implemented with algorithms to cover
specific algorithm characteristics:

Micro Recursive Fibonacci (µFIB) This benchmark performs the Fibonacci sequence calcula-
tion of the n-th Fibonacci number: fn = fn−1 + fn−2 with f0 = 0 and f1 = 1 recursively.
This implementation primarily consists of memory-indirect control-flow instructions. The
input required for this algorithm is an integer n.

Micro Iterative Looped Sum (µLSUM) This benchmark calculates an iterative summation
of an array of integers. It obtains each item i j in this sequence through an arithmetic
calculation with a constant c and a value v j retrieved from an array: i j = v j ·c+1. Notably,
this benchmark produces almost no intermediate results. Its input is an array of integers.

Micro Mixed Bit-Wise Operations (µMIX) µLSUM is the basis for this benchmark, and µMIX
consists of both the calculation and the array referenced of the µLSUM benchmark. In
addition to these elements, µMIX contains numerous bit-wise logical operations, the
outcomes of which are susceptible to individual bit flips. These operations are ADD, AND,
OR, and XOR instructions; the benchmark applies them to items i j . Like µLSUM, the input
data for µMIX is an array of integers.

68

3.2 Evaluating Fault-Injection–Campaign Improvements

Micro Quicksort (µQSI/µQSR)31 These quick sorts compute the distances of n three-dimen-
sional vectors of integers from the coordinate origin and then sort these vectors in ascend-
ing order based on these calculated distances. The 2-norm32 determine the distance d of
a vector x⃗ i = (x i,0, x i,1, x i,2) among the n vectors. equation d(x⃗ i) =

q

x2
i,0 + x2

i,1 + x2
i,2.

The quick sort algorithm exist in two variants: Iteratively (µQSI) and recursively (µQSR).
The input data for this benchmark is an array containing 3n integers, which represent n
three-dimensional vectors.

Table 3.1 shows the central characteristic and specific attributes of the mentioned benchmarks,
which include details such as the count of instructions in the golden run (|T | − 1), the size of the FS
denoted as |F |= |T × L|, the number of DUP pilots denoted as nDUP,33 as well as the effective FS E
relating to the application of the DUP.

Benchmark Central Characteristic
Fault Space DUP

Instructions |F | [106] |E | [106] nDUP [103]

miBC mostly bit-wise operators 54434 80.04 70.33 2521.85
miBFD mostly bit-wise operators 55647 2 173.23 1 894.80 3 501.60
miBFE mostly bit-wise operators 54951 2 155.18 1 880.81 3 457.00
miQS data-controlled CFs 45774 1 776.21 1 623.90 2 931.66
miRDD mostly bit-wise operators 70824 3 851.64 3 506.16 4 172.74
miRDE mostly bit-wise operators 70450 3 808.26 3 457.58 4 169.90
miSHA mostly bit-wise operators 40647 342.43 242.63 2672.68

µFIB memory-indirect CFs 2093 2.33 1.13 100.49
µLSUM sparse intermediate results 54 0.02 0.02 3.50
µMIX mostly bit-wise instructions 90 0.05 0.03 5.45
µQSI data-controlled CFs 800 1.59 1.20 46.79
µQSR data-controlled CFs 804 1.35 0.91 46.70

Table 3.1 – Overview of the Benchmark Portfolio Characteristics.
The table summarizes attributes of the benchmarks outlined in Section 3.2.3.1 with their central
characteristic (CF stands for control flow). Each benchmark’s entry includes the instructions
count, corresponding to the number of time points |T | − 1 in the whole FS F = T × L = nnaive.
The subset of the FS E corresponds to the part of the FS that is effective. Lastly, the column on
the very right shows the count of pilots nDUP after applying the DUP acceleration method.

3.2.3.2 Technical Setup

FAIL* can be used with various technical setups and hardware configurations. Given the potentially
high computational demands of an FI campaign (refer to Section 2.3.1 on page 45 for an under-
standing of the infeasible upper bound), it is advantageous to use a robust computing system or
even a cluster, particularly for step C in Figure 3.1 for both the determination of the ground truth
and the calculation of SUT reliability evaluation data.

31These Micro benchmarks are inspired by a MiBench quick sort variant.
32In the context of the 2-norm calculation, the integer square root uses a modified version of Newton’s method for

approximating roots for discrete ranges of numbers since FAIL* yet does not support FIs in float numbers.
33The table in Table 3.1 shows the substantial reduction in the number of pilots by two orders of magnitude [Bar+05]

as discussed in Section 2.3.2.1. This reduction is evident when comparing the result obtained from the naive approach,
nnaive = |F |, which is significantly larger than the count after applying the DUP method, nDUP.

69

3.2 Evaluating Fault-Injection–Campaign Improvements

The client-server structure of FAIL*, combined with the data independence of the FIs, allows
for a highly parallelized execution of FI campaigns through FAIL*. For this work, FAIL* executed
the required FIs on several systems. For instance, the clients operated on a cluster equipped with
17 Intel X5650 @ 2.67 GHz (12 cores each), enabling the simultaneous execution of 204 FIs, and
additionally on systems with Intel Xeon Gold 5320 @ 2.2 GHz (26 cores) or Intel Xeon Gold 6252
@ 2.1 GHz (24 cores).

Moreover, configuration, FAIL*’s compilation, pre-injection, and post-injection analyses are less
computationally intensive. For these operations, FAIL* executed these computations single-threaded
on an Intel i5-7400 @ 3 GHz (4 cores) or on an Intel i5-6400 @ 2.7 GHz (4 cores).

3.3 Summary of Implementation and Evaluation Process

This chapter described the crucial aspects for comprehending my contributions and their evaluation.
Initially, I described the single steps of the FI framework FAIL*, a C++ implementation of the

FI-campaign process (refer to Section 2.2.2 on page 35). The essential steps for this work are the
pre-injection analysis (step B in Figure 3.1) and the execution of the campaign’s FI experiments (step
C in Figure 3.1). These steps are technically extendable using FAIL* plugins and FAIL* tools, aiming
to make FI campaigns more efficient. I integrated my contributions as FAIL* plugins and FAIL* tools,
allowing for assessing their effectiveness and efficiency. Additionally, I presented the failure classes
considered in the context of this work using FAIL*.

I outlined the meaning of effectiveness and efficiency in the context of FI-campaign acceleration
methods, a comprehension that needs a solid foundation – the ground truth. Following the conceptual
exploration of effectiveness, efficiency, and ground truth, I delved into determining this work’s
ground truth using FAIL*. The ground truth encompassed three parts in the pre-injection step: (1)
the determination of DUP pilots or rather their quantity nDUP; during the execution of the resulting
individual FI experiments, (2) the recording of all pure experiment runtimes texp,i; and after the
completion of the campaign, (3) the set of all classified system failures post-FI RDUP. These three
parts are indispensable for assessing the effectiveness of my contributions.

Additionally, I provided insights into this work’s overall evaluation setup, outlining the selected
benchmarks from MiBench and some self-constructed Micro benchmarks and describing the technical
setup for the evaluations.

70

4
Data-Flow–Sensitive
Fault-Space Pruning

Give me something to assemble, I won’t look at the directions, I’ll try to figure
it out by myself. It’s why I love Ikea furniture.

DAVID ERIC “DAVE” GROHL (BORN 1969)

This chapter delves into the primary extension of the FI framework FAIL* within the context of
this dissertation: the Data-Flow–Sensitive Fault-Space Pruning. Unlike the DUP, the Data-Flow Pruning
(DFP) takes a more comprehensive approach by considering not only read and write accesses in
the golden run but also incorporating the program’s data flow. This combination involves exploring
the propagation and masking effects on instructions and analyzing the data- flow graph and its
instructions.

The inspiration behind the Data-Flow–Sensitive Fault Space Pruning method stems from my
prior collaboration on the publication by Dietrich et al. [�Die+18]. This research explored masking
effects in a cross-layered context, devising efficient injection optimizations. In alignment with FAIL*’s
focus on the ISA layer, DFP not only considers masking effects but also investigates the potential
propagation of a bit flip from an input value to an output value of an ISA instruction, leading to the
identification of new extended equivalence sets. These individual propagations can be examined
across the data flow, facilitating a comprehensive assessment of propagation and masking effects
throughout the entire program’s data flow.

By globally analyzing these effects, we gain deeper insights into how bit flips can propagate
and be masked within the data flow, ultimately resulting in more efficient fault space pruning. To
accomplish this, I developed the DFP method and will detail it in this chapter.

71

4 Data-Flow–Sensitive Fault-Space Pruning

The research thoroughly examined propagation and masking effects for a select set of instructions.
Insights from this analysis were integrated into a developed DFP process and implemented as a tool
within the FAIL* framework. Additionally, the corresponding evaluation results allow one to assess
the effectiveness of DFP, demonstrating significant advantages such as a notable reduction in the FI
campaign duration with minimal overhead.

DFP combines the strengths of the DUP’s fault equivalence sets, making it an enhanced version
of the DUP.

I presented the DFP at the LCTES conference in 2021 [�PDL21] and am the paper’s primary
author. I conceptualized and implemented the DFP, designed benchmarks, conducted experiments,
and contributed to the paper’s writing.

72

4.1 Data-Flow–Aware Fault-Equivalence Set

4.1 Data-Flow–Aware Fault-Equivalence Set

The widely used DUP (see Section 2.3.2.1 on page 47) combines potential FIs from the FS into
FESs, with only one representative pilot of each FES for full FS coverage. However, DUP uses only
the information from read and write accesses of individual instructions in the trace, which results
in one-dimensional FESs (temporal dimension). As a result, DUP cannot form two-dimensional
FESs (temporal and location dimensions) that span over various locations without the data-flow
information. Whereas the time and location of each value read or written by an instruction are
known, the information about the data flow, including the semantics of the instructions and the
concrete values used, is missing. Both factors have a decisive influence on the propagation of faults
in the system. Therefore, it is helpful to consider these factors when adjusting the FESs, rather than
relying solely on read and write accesses of the instructions, as in the well-known DUP.

4.1.1 Instruction Awareness

Suppose we are dealing with a system having two 4-bit registers, and the program executed consists
only of the MOV instruction. The MOV instruction transfers data from one register to another, from R1

to R0. The data in R0 is the program’s output.
Figure 4.1a illustrates this system’s FS when DUP is applied. The system is injectable both

before and after the MOV instruction in all eight bits of both registers. This results in an FS of size
|F |= 2 · 8= 16, corresponding to 16 potential FIs.

The MOV instruction reads data from R1, which is then available in R0 as the system output.
Applying DUP allows us to determine the effective FS and its corresponding FESs and weights,
resulting in eight FESs for this example. As a result, the number of required FIs is 8.

However, this reduction is only one-dimensional. By knowing the semantics of the MOV instruction,
which copies data from one location to another unchanged, we can unify the FESs obtained through
DUP. Figure 4.1b visualizes this unification, including the register bit values. For instance, a bit flip
in bit 0 of register R1 is equivalent to a bit flip in bit 0 of register R0 after executing MOV. As a result,
the number of FESs and the corresponding FIs required for this FS is reduced to now 4. The resulting
FESs in this example now consider multiple locations in the FS. and thus become two-dimensional.

4.1.2 Value Sensitivity

Another essential aspect that needs to be considered in the DUP is the effect of concrete data
values. The examples in Figure 4.2 illustrate how to consider data values when executing a 1-bit OR
instruction. The figure shows all possible inputs and the corresponding output of the OR instruction.
This consideration determines fault equivalences in the input and output, depending on the input
data values and the OR instruction semantics.

For example, in the first case shown in Figure 4.2, if any bit in the input flips, the output value
changes from zero to one, the same result as if the output bit flips. Therefore, both zero inputs and
the output are equivalent in the occurrence of bit flips. In the second example, a flip in the one
in the input directly influences the output, so the input with the one and the output is considered
equivalent regarding bit flips. On the other hand, a flip in the zero in the input in the second example
does not affect on the output and is considered ineffective or benign. The other two examples follow
a similar pattern.

By taking data values and the semantics of the instruction into account, it is possible to create a
mapping for instruction-local FES between inputs and outputs of the instruction.

73

4.1 Data-Flow–Aware Fault-Equivalence Set

1

1

1

R0
Bit 0

1

1

1

1

R0
Bit 1

R0
Bit 2

R0
Bit 3

R1
Bit 0

R1
Bit 1

R1
Bit 2

R1
Bit 3

1

MOV

Read
Access

Write
Access

Effective
FES

Ineffective
FES

X FES
Weight

(a) Def/Use Pruning

2

2

2

2

MOV

X

FESs

FES
Weight

(b) Instruction-Aware FESs

Figure 4.1 – Instruction-Aware Fault-Equivalence Sets.
In Figure 4.1a, after applying the DUP technique, we see the FS of a system with two 4-bit
registers executing a MOV instruction that copies data from R1 to R0. This results in 8 effective
FESs with weight 1 and thus 8 FIs. Figure 4.1b shows the same FS but with the semantics of the
MOV instruction and the concrete bit values considered. As a result, only 4 effective FESs with
weight 2 are determined; thus, the number of necessary FIs is reduced to 4.

0

0 0

1

0 1

1

1 0

∨ ∨ ∨

1

1 1

∨

Input

Output

Ineffective/
Benign

FES

0,1 Bit Value

Figure 4.2 – Value-Aware Failure Equivalence Sets.
The figure shows all possible input variations and their corresponding output bits for a bit-wise OR
instruction. If a bit in the input or output flips, certain input bits or the output bit are considered
equivalent to an occurring bit flip. In the first example, flipping a bit in the input results in a one
in the output, as if the output bit flips directly. Therefore, in the first example, all existing bits
are combined into one FES. In the second example, the output bit is not affected by flipping the
first input bit due to the semantics of the OR instruction; this bit flip is benign.

4.1.3 Exemplary Data-Flow–Aware Fault-Equivalence Sets

To demonstrate the benefits of incorporating instruction awareness and value sensitivity into DUP,
I present the example code from Listing 4.3b, which includes four instructions and results in five
distinct system states, t0 to t4. The system contains two 4-bit registers again. Applying DUP generates
the FS shown in Figure 4.3a, which contains the resulting ineffective FS I and the resulting FESs.
The original FS size is |F | = 5 · 8 = 40 possible FIs, and only 24 FIs are required after applying DUP.

74

4.1 Data-Flow–Aware Fault-Equivalence Set

1

1

1 2 1

R0
Bit 0

2 1 1

2 1 1

2 1 1

2 1 1

R0
Bit 1

R0
Bit 2

R0
Bit 3

R1
Bit 0

R1
Bit 1

R1
Bit 2

R1
Bit 3

1

1

1

1 2

2

2

SHL XOR AND MOV

Read
Access

Write
Access

Effective
FES

Ineffective
FES

X DUP Pilot +
Weight

t 0 t 1 t 2 t 3 t 4

(a) Def/Use Pruning

1 # t_0: R0=5, R1=11
2

3 # shift-left by 1
4 R0 := SHL R0, 1
5

6 # t_1: R0=10, R1=11
7

8 # bit-wise XOR with 7
9 R1 := XOR R1, 7

10

11 # t_2: R0=10, R1=12
12

13 # bit-wise AND
14 R1 := AND R0, R1
15

16 # t_3: R0=10, R1=8
17

18 # move result to R0
19 R0 := MOV R1
20

21 # t_4: R0=8, R1=8
22

23 # result in R0

(b) Example Code

Figure 4.3 – Application of Def/Use Pruning to Example Code with Multiple Instructions.
Figure 4.3a shows the FS and the result of applying DUP with the executable code presented in
Listing 4.3b. The comments in the code show the values of the registers between each instruction.

As outlined in the previous sections (4.1.1 and 4.1.2), incorporating instruction semantics
and data values can enhance the construction of FESs. The example pseudo-code in Listing 4.3b
includes the instructions SHL (shift left), XOR (bit-wise exclusive-OR), AND (bit-wise AND), and MOV

(move data). Instructions such as SHL and MOV, which move bits between locations, can unify FIs
by leveraging knowledge of instruction semantics across locations, as explained in Section 4.1.1.
Information about the data values is unnecessary for such instructions, as their semantics are value-
insensitive. The XOR instruction is another example of a value-insensitive instruction, as its semantics
allow all input bits, as well as the output bit, to be combined into a single FES regardless of the
input bit values because any change in the input bits, regardless of their value, has a direct effect on
the output bits. For instructions like AND, knowledge of the used data, as described in section 4.1.2,
is necessary in addition to the instruction semantics, which is indeed value-sensitive.

By knowing the individual additional instruction-local FES constructing rules, it becomes feasible
to combine them across the instructions of the entire program. Figure 4.4 demonstrates such
combinations, which exhibit the FS depicted in Figure 4.3a, along with the data bits of the registers
and the enhanced FESs across all instructions; the edges between the bits represent the unified bits
of the enhances FESs. The construction of the FESs for each program instruction in Listing 4.3b for
the FESs is as follows (I will revisit the topic of instruction-local FESs in detail later in Section 4.2.2):

75

4.1 Data-Flow–Aware Fault-Equivalence Set

0 0

1 0

0

0 1 1 1 1

R0
Bit 0

R0
Bit 1

R0
Bit 2

R0
Bit 3

0

00

1

1

0

1 0

1

0

SHL XOR AND MOV

1 0

0 0

0

1 1 1 1 1

R1
Bit 0

R1
Bit 1

R1
Bit 2

R1
Bit 3

0

00

1

1

1

0 1

0

0 DFESs

0,1 Bit
Value

t 0 t 1 t 2 t 3 t 4

Ineffective/
Benign

Figure 4.4 – Visualizing Fault Space with Data-Flow–Aware Fault-Equivalence Sets.
This figure illustrates the same FS as in Figure 4.3a. It shows the values of each bit at all times and
locations of the two registers. The connections between the bits represent the instruction-local
FESs, which indicate the propagation flow of a bit flip. All points in the FS that are reachable
from the output (at time t4 and register R0) by the instruction-local FESs are combined into
higher-level DFESs. The remaining points in the FS belong to the ineffective FS I , as compared
to Figure 4.3a, which applied the DUP technique, the number of required FIs is significantly
reduced from 24 to 4.

r0 := SHL r0, 1 shifts the bits within the data word of the register R0 to the left by one position.
For instance, it shifts bit 0 to bit position 1 after executing the SHL instruction. Therefore, any
bit flip at time t0 in bit 0 will appear at time t1 in bit 1. Similar to the MOV instruction, it is
possible to construct FESs across two different locations. In this case, the FES includes both
bit 0 at time t0 and bit 1 at t1.

r1 := XOR r1, 7 performs an immediate exclusive-or instruction with the value 710 = 01112 on
the data stored in register R1. This results in the computation 10112 ⊕ 01112 = 11002 (on
the left side of the ⊕ is the input value of R1). The XOR instruction immediately reflects any
alteration at its input, whether caused by switching the input value or by a bit flip due to
transient effects. Therefore, it is possible to combine each bit of the input register R1 with
the corresponding bit of the output to form an FES. If the second input of the XOR instruction
were another register instead of an immediate value, each bit of the second register could also
be combined bit-wise with the corresponding FESs.

r1 := AND r0, r1 is analogous to the OR instruction presented in Section 4.1.2, and the corre-
sponding FESs are constructed similarly. Combining the respective bits at position 3 of the
input and output is possible since any changes in the bits of the equation 1∧ 1 = 1 lead to
the outcome zero. The masking effects in the input bit combinations 1∧ 0 or 0∧ 1 can also
be mapped into FESs similarly to the OR case from Section 4.1.2. Moreover, for the input bit
combination 0∧0, a bit flip at the inputs is considered benign, as the output bit will not change.
Planning for injections at these bits 0∧ 0 is still necessary when applying DUP. However, it is
unnecessary since bit flips can be classified as inside the ineffective FS I by the instruction
semantics and the input values at the point.

76

4.1 Data-Flow–Aware Fault-Equivalence Set

r0 := MOV r1 represents the same pattern as already described in Section 4.1.1. Since this instruc-
tion is value-insensitive and only moves data, constructing location-crossing FESs is relatively
straightforward.

The rules that construct instruction-local FESs link propagations of bit flips across all program
instructions up to the output at time t4. When considering all instruction semantics, input and
output values of the instructions, and concatenations with each other globally over the program,
this corresponds effectively to considering the data flow of a program. With knowledge of the
data flow, one can trace the global propagation of bit flips and group them into Data-Flow–Aware
Fault-Equivalence Sets (DFESs). In the example of Listing 4.3b, we see the DFESs shown in Figure 4.4
using the abovementioned scheme. Each bit, which could propagate a bit flip to the output, belongs
to a DFES, considering instruction semantics or value sensitivity. Therefore, all other points in the
FS are deemed ineffective and do not require consideration by FIs. In the case of Listing 4.3b, the
number of FIs required to cover the effective FS entirely drops significantly from 24 to just 4.

This brief introduction provides insight into the Data-Flow Pruning (DFP) [�PDL21], which is one
of the contributions of this work. DFP follows the deterministic rules of the instruction semantics, so
it is a precise technique that completely covers the FS.

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

The Data-Flow–Sensitive Fault-Space Pruning is a precise technique that prunes the number of
necessary FIs to cover the FS by using the program’s data flow and the instructional semantics with
concrete values, as presented in Section 4.1. Since DFP follows the deterministic semantics of the
instructions, the resulting DFESs are also determined deterministically. The DFP involves several
steps, which are detailed in this section and have been implemented as a FAIL* tool. This section
aims to gain a more profound comprehension of the DFP technique’s functionality and explore
possibilities for further optimization by thoroughly examining the data flow to construct DFESs.

4.2.1 Data-Flow Graph

During program execution, instructions process data, with each instruction requiring input data
and producing output data that depends on the instruction’s semantics. Instructions manipulate or
transfer this data as it flows through the program, such as through arithmetic or logical computation
or data movement via the instructions.

A directed graph called the Data-Flow Graph (DFG) represents the program’s data flow, with
nodes representing data values and instructions and directed edges indicating the direction of data
movement. Figure 4.5 shows the DFG for the program from Listing 4.3b, where input data nodes
connect to instruction nodes, and all directed edges show the flow of data through the DFG. Some
instructions have a fixed immediate value hard-coded to the instruction by an opcode, like the SHL

instruction in Listing 4.3b. Once the program finishes executing, a data node at the output, here at
t4 register R0, represents the program’s output. The horizontal length of the data nodes in the DFG
represents the lifetime of the data (i.e., how long the data remains in the program without being
overwritten by instructions).

4.2.2 Instruction-Local Fault-Equivalence Set

Each instruction in the DFG has the potential to propagate bit flips from its input to its output.
Instruction-specific mappings capture this behavior that generates instruction-specific FESs, intro-

77

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

InstructionValue Immediate Output Value

0001

0111

R0

R1

1000

1000

10100101

1011 1100

SHL XOR AND MOV

SHL

XOR AND

MOV

t 0 t 1 t 2 t 3 t 4

Figure 4.5 – Data-Flow Graph.
This figure illustrates the data-flow graph for the program from Listing 4.3b, consisting of data
and instruction nodes and directed edges representing the data flow. Data nodes serve as input
for instruction nodes, which point to other data nodes. Some instructions, such as SHL, have a
hard-coded immediate value. The program’s output is represented by a data node, in this case
the data node at register R0 in time step t4. The horizontal length of the data nodes corresponds
to the time in the program during which instructions have not overwritten the data.

duced as Instruction-Local Fault-Equivalence Sets (IFESs) in this thesis, based on the instruction
semantics and input data. In this subsection, I will first introduce the mapping notation used to con-
struct IFESs in general. Then, I will present specific mappings developed for five different instructions
used in the implemented FAIL* tool DFP.

4.2.2.1 Instruction-Local Fault-Equivalence Set Mapping

With knowledge of the instruction and its semantics, a suitable instruction and input configuration
mapping generates an IFES. The general format of such a mapping is as follows:

i1□i2→ o⇒ s1 ◦ s2→ s3

An arbitrary instruction represented by the □ with input bits i1 and i2 produces the output bit
o. Examining all possible input bit permutations is necessary to identify all potential IFESs for this
instruction. With two input bits, there are 22 = 4 possible input configurations. Thus, it is necessary
to construct four mappings for the instruction □.

After constructing the four mappings for the instruction □, each mapping leads to corresponding
IFESs, represented by unique symbols si . The ◦ acts as a separator between the input symbol, usually
non-commutative unless the instruction □ is commutative. The term s1 ◦ s2→ s3 initially represents
the creation of three different IFESs. To identify equivalent IFESs, the instruction semantics of □ are
analyzed to determine whether bit flips on the input lead to the same output. For instance, the term
0∧ 1→ 0 shows that changing the first input bit i1 is equivalent to changing the output o, whereas
changing the second input bit i2 has no effect and is considered benign. Therefore, in this case, s1

and s3 can be equated, resulting in s3 ◦ s2→ s3. Thus, two IFESs occur: The IFES containing i1 and o
symbolized with s1 and the other IFES named with s3, which contains only i2. Since flipping i1 leads
to flipping the output bit o, and o is also in the IFES, I refer to this kind of IFES as effective. The other
IFESs are ineffective or benign since they do not contain o since the flipped bit does not propagate to
the output by the instruction. Since the input bits indeed can only have two possible values (zero or
one), and each input bit can either be flipped or not flipped, there can only be a maximum of two

78

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

possible IFESs per mapping, one for the case where the output bit is flipped (effective) and one for
the case where it is not flipped (benign).

If an input to the function □ is an immediate value, the value is used to calculate the output, but
the mapping does not equate the corresponding symbols. They are left untouched because, on the
ISA layer, immediate values are not subject to FIs, and thus, it is not necessary to investigate how a
bit flip propagates on such an input.

4.2.2.2 Instruction-Local Fault-Equivalence Set Mappings in this Thesis

In the context of this thesis, I have selected five instructions to implement in the DFP. These
instructions are either the most basic, such as MOV and ADD, or additionally bit-sensitive logical
instructions, such as XOR, AND, and OR. The chosen instructions occur in 26 to 68 percent of the
executed instructions within my benchmark portfolio (I will revisit this in Section 4.3.1). This
percentage is adequate for the initial assessment of the DFP’s effectiveness.

I will present the IFES mappings for these five instructions in the following. In this section, α
stands for symbols in a effective IFES and β for symbols in a benign IFES.

MOV

As mentioned in Section 4.1.1, the instruction MOV simply copies bits from one location to another.
From a bit-wise perspective, MOV has only one input that is directly is use. Therefore, a bit flip in
the copied bit affects the target register as if a bit in the target register had been flipped directly.
Therefore, each bit involved in the instruction belongs to an effective IFES from a bit-wise perspective.

b→ b⇒ α→ α | b ∈ {0,1}

Instructions like SHL in Listing 4.3b, which shift data, work similarly. In the case of SHL, only
the bit overwritten by the shift in the register must be ignored since the bit flip does not propagate;
Figure 4.4 at t0 in bit 3 of R0 illustrates this.

XOR

The XOR instruction is a logical operation that takes two input values and produces a single output
value based on the following rule: If the inputs differ, the output is one; if the inputs are equal, the
output is zero.

0⊕ 0→ 0⇒ α ◦α→ α
0⊕ 1→ 1⇒ α ◦α→ α
1⊕ 0→ 1⇒ α ◦α→ α
1⊕ 1→ 0⇒ α ◦α→ α

Since each input bit can take only two values, any change in their values will necessarily result
in a toggled output. Therefore, any configuration of the input results in both input bits being in the
effective IFES with the output bit.

79

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

AND

Bit flips in the inputs of the AND instruction may have varying effects depending on the input
configuration.

0∧ 0→ 0⇒ β ◦ β → α
0∧ 1→ 0⇒ α ◦ β → α
1∧ 0→ 0⇒ β ◦α→ α
1∧ 1→ 1⇒ α ◦α→ α

Flipping the inputs in 0 ∧ 0→ 0 will not affect the output, as both input bits must be one to
propagate a bit flip to the output. As a result, only the output bit is in an effective IFES, and the
symbols are ineffective β . Thus, in this instruction and input configuration, no propagation of bit
flips occurs. In configurations 0∧ 1→ 0 and 1∧ 0→ 0, a bit flip in an input with the value zero
propagates to the output, causing it to toggle (i.e., bit flips at this input bits are effective). The other
output with the value one remains unaffected and, therefore, is benign, marked with β . However, in
the last input configuration, 1∧ 1→ 1, all bits involved belong to an effective IFES, meaning that
any bit flip in any input will cause a toggle at the output.

OR

The OR instruction is the logical opposite of the AND instruction, and the mappings of the previous
section are transferable accordingly.

0∨ 0→ 0⇒ α ◦α→ α
0∨ 1→ 1⇒ β ◦α→ α
1∨ 0→ 1⇒ α ◦ β → α
1∨ 1→ 1⇒ β ◦ β → α

Figure 4.2 visualizes the effective IFES for the OR instruction.

ADD

The ADD instruction is as essential arithmetic operation that is fundamentally a bit-wise logical XOR
operation. In the case of a bit-wise addition of 12 + 12, the number of bits is insufficient to represent
the tow-bit result 102. On the circuit layer, half-adders use a carry signal set if there is a value carry
over from the addition. Figure 4.6a illustrates the 1-bit addition with a carry. The resulting bit is
zero, as it is also output from the XOR instruction, and a carry is set to make the arithmetic result
102 representable.

However, the typical use case of ADD is adding entire data words that represent numbers, addresses,
or other values. Figure 4.6b presents an example of adding 4-bit words. Bit-wise addition from the
least significant bit to the most significant bit can result in a carry from one bit position to the next; at
the circuit layer, the concatenation of half-adders creates full adders. If a carry occurs after the most
significant bit position, a flag is set in the arithmetic logical unit to make the result representable.

Carry signals between bits are not directly accessible at the ISA layer and thus cannot be
intentionally targeted for FIs at that layer. However, carries between bits exist virtually and are
still crucial when constructing IFESs. In other words, any bit flip that occurs in a position where a
carry occurs during addition can affect the final result of the addition, even if that bit is not directly
involved in the addition operation itself.

80

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

1

1
1

0

+
+c

1+1+c

(a) Bit-wise ADD

0
0

1

1
0

0

1
1

1

1
1

0

+
+c+c+c

1+11+1+c1+0+c0+0+c

(b) 4-Bit Word-Wise ADD

Figure 4.6 – Visualizing the Carry of Exemplary ADD Instruction.
During a bit-wise addition, the addition of 12 + 12 = 102 results in a carry bit, representing a
higher-order bit semantically, as demonstrated in Figure 4.6a. In a word-wise addition like in
Figure 4.6b, single carries (+ c) are transferred to the next higher-order bit and used to calculate
the corresponding bit value until reaching the most significant bit.

The mapping considers the virtual carries to construct IFESs for the ADD instruction, as they hold
semantic meaning for the result of a bit-wise addition within a word-wise addition. In the case of
the bit-wise addition 12 + 12 = 102 shown in Figure 4.6a, a carry occurs, which is relevant for the
following bit. If one of the inputs flips, the carry is dropped, and the output bit flips analogous to
the XOR instruction. If the output flips, a one is also created but still with the carry. However, the
determination of IFESs differs from the XOR instruction in that it considers the carries additionally.
All bits at inputs and outputs of a bit-wise ADD instruction belong to effective IFESs but must be
distinguished by the resulting carry when a bit flip occurs. To represent this distinction in the symbols
for this instruction, I introduce κ, which indicates that after the bit flip, a carry exists, independent
of whether the bit flip caused this carry. Otherwise, it is α as usual. For bits marked with α, a regular
carry may be dropped after the bit flip.

When creating IFESs, it is imperative to consider the presence of any carry from the previous
bit-wise addition in the calculation. The initial mappings of Equation 4.1 are relevant for the least
significant bit.

0+ 0→ 0 ⇒ α ◦α→ α
0+ 1→ 1 ⇒ κ ◦α→ α
1+ 0→ 1 ⇒ α ◦κ→ α
1+ 1→ 0 + c ⇒ α ◦α→ κ

(4.1)

If a carry arises from the calculation, regardless of whether it resulted from a bit flip or not,
the mappings of Equation 4.2 remain applicable. Notably, the creation of mappings also hinges
on the outcome of the preceding calculation, similar to the carry semantic itself. In summary, if
a carry results from the calculation and bit flip, or rather κ represents the IFES, the mappings of
Equation 4.2 are relevant; otherwise, the mappings from Equation 4.1 are applied.

c + 0+ 0→ 1 ⇒ κ ◦κ→ α
c + 0+ 1→ 0 + c ⇒ κ ◦α→ κ
c + 1+ 0→ 0 + c ⇒ α ◦κ→ κ
c + 1+ 1→ 1 + c ⇒ κ ◦κ→ κ

(4.2)

81

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

4.2.2.3 Generic Algorithm for Determining Instruction-Local Fault-Equivalence Sets

Effective IFESs can be determined algorithmically. Listing 4.1 presents a Python-like pseudo-code
for determining the effective IFES for any function □.

The objective is to identify all possible IFESs for the bit-wise function implemented in the
square_function (represents □) starting from line 47; this code implements the OR instruction in
this exemplary code. The ifes function is called in compute_all_ifes from line 29, considering all
22 = 4 potential input configurations to determine the complete set of all IFESs. The ifes function
sets unique values for the symbols s1, s2, and s3. The IFES initially contains the output symbol s3.
The goal is to determine if and which input symbols, s1 and s2, belong to the IFES. The function ifes

calculates the correct result of the square_function based on the given input bits i1 and i2. When an
if statement in line 16 or 22 is True and the corresponding flipped input is not an immediate value,
the algorithm adds the corresponding symbol to the effective IFES eff. After compute_all_ifes
considers all bit configurations, all IFESs are calculated, and a mapping exists, as displayed in line
52.

For instance, the mapping ((0,1), {2, 3}) represents 0∨ 1→ 1⇒ s1 ◦ s3→ s3, which means
that s2 and s3 (second input and output) are in an effective IFES, and a bit flip at the first input bit
is ineffective, thus s1 is not in the set of the effective IFES. The output from line 52 is equivalent to
the equivalences already visualized in Figure 4.2 on page 74.

Listing 4.1 – Determining Instruction-Local Fault-Equivalence Sets for an Arbitrary Function.
This listing shows a Python-like pseudo-code for determining local IFESs. After defining the square_function
with the operation under consideration, compute_all_ifes starts the determination. This function calls the
ifes function four times, with each possible input bit combination and determines the effective IFES for a
given input bit configuration. After considering all input combinations, the code displays a complete IFES
mapping. The highlighted parts (func, square_function) the segments where the code passes or calls the
square_function.

1 def ifes(func: BoolFunction, i1: bool, i2: bool) ->
set:,→

2 # init three different symbols
3 s1 = SYMBOL_I1
4 s2 = SYMBOL_I2
5 s3 = SYMBOL_O
6

7 # init effective IFES
8 eff = set(s3)
9

10 # compute the output bit
11 o = func(i1, i2)
12

13 # check if flipping the first input bit
14 # leads to the same result
15 # as flipping the output bit
16 if func(not i1, i2) == not o
17 and not is_immediate(func, i1):
18 # equate the symbols
19 eff.add(s1)
20

21 # same check for the second input bit
22 if func(i1, not i2) == not o
23 and not is_immediate(func, i2):
24 # equate the symbols
25 eff.add(s2)
26

27 # returns an effective IFES
28 return eff

29 def compute_all_ifes(func: BoolFunction) -> list:
30 input1 = [0,1]
31 input2 = [0,1]
32 mappings = []
33

34 # all possible input permutations
35 for i1 in input1:
36 for i2 in input2:
37 eff = ifes(func, i1, i2)
38 mappings = mappings + [((i1, i2), eff)]
39

40 # mappings contains a list of all mappings
41 # with entries like
42 # (i1 , i2), {symbols}
43 return mappings
44

45 # arbitrary function to be analyzed
46 # for the purpose of finding its IFESs
47 def square_func(i1: bool, i2: bool) -> bool:
48 # example with OR
49 return i1 or i2
50

51 print(compute_all_ifes(square_func))
52 # [((0, 0), {1, 2, 3}), ((0, 1), {2, 3}), ((1, 0), {1,

3}), ((1, 1), {3})],→

82

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

4.2.3 Injection-Symbol Propagation

Every output bit of an instruction may become an input bit of a subsequent instruction. Considering
the IFESs of individual instructions, an IFES symbol like α or β set at an instruction output is again
an IFES symbol at an instruction input of a subsequent instruction. Therefore, IFESs are combinable
across instructions to describe the propagation of bit flips, not only within the instruction but also
globally across the instructions of the whole data flow. The IFES mappings, like those presented in
Section 4.2.2, are transitive due to the direct semantic connection between the output and input bits
of subsequent instructions.

Figure 4.7 visualizes an example of such a transitive concatenation of IFES mappings, demon-
strated by the bit 1 of the two registers R0 and R1 at the end of Listing 4.3b, a DFG segment in
Figure 4.5.

0
1

0
MOV

αα

AND

β

α
α

X Bit Value IFES Mapping

0

α Part of Effective IFES
β Part of Benign IFES

Figure 4.7 – Concatenation of Instruction-Local Fault-Equivalence Sets.
Figure 4.5 shows a segment of the DFG and the IFES mappings for the AND (β ◦α→ α) and MOV
(α→ α) instructions, connected according to the data flow of the program from Listing 4.3b.
A bit flip occurring from the zero at the AND input to the program’s final output value has an
equivalent effect. A bit flip of the one at the AND input is benign.

In the following instructions, the AND instruction executes at bit position 1, the calculation
1∧ 0→ 0, and its corresponding IFES mapping is β ◦α→ α. The output bit 1 of the AND instruction
is then carried forward in the MOV instruction, resulting in the mapping α→ α. By concatenating
both IFES mappings, the mapping for this bit becomes

1∧ 0
AND
−→ 0

MOV
−→ 0 ⇒ β ◦α

AND
−→ α

MOV
−→ α

Any bit position marked with α will result in the same corrupted output when one of the bits
experiences a bit flip. Consequently, all such bits in this example represent a transitive concatenation
of IFES mappings, which I call Data-Flow–Aware Fault-Equivalence Set (DFES).

To plan FI pilots in an FI campaign, only one FI is required for any position marked with α (R1
bit 1 in t2 and t3, as well as R0 bit 1 in t4) in the FS. However, with DUP, the two read operations of
the two instructions and using the final value in the system output result in three separate FESs,
which must be injected separately in this short example, resulting in three necessary FI pilots.
Section 4.3.2.1 will provide further details on the comparison between DFP and DUP and their
relation to each other.

4.2.3.1 Initiation

The first step is introducing unique identifiers for each DFES to construct DFESs using the IFES
mappings in the system’s global scope. In the context of this dissertation, I refer to these identifiers
as injection symbols. These symbols are potential identifiers for FI pilots executed in an FI campaign.
Henceforth, when referring to symbols, it should be understood that I am explicitly referring to
injection symbols.

83

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

A separate symbol is introduced for each bit that is reachable in the data flow. Figure 4.8 visualize
this for the example with the instructions AND and MOV from the previous section. The upper bound for
the maximum number of symbols in this example corresponds to the number of potentially necessary
FIs in the naive approach nnaive = 2 · 4 · 3 = 24 to completely cover the FS, which corresponds to
the size of the FS |F | (see Section 2.2.1 on page 33). Since the register R0 and R1 after MOV are not
read or written after AND, they do not appear in the data flow. Thus, for this example, initially, there
are 16 symbols a,. . . ,p, one for each bit.

1000

1000

1010 1100

AN
D

α3 α2 β α3 α1

α3 α2 α1 α0

β β β

MO
V

α3 α2 α1 α0

α3 α2 α1 α0

hgfedcba

lkji

ponm

R0 R1

1010

1000

XXXX Bit Values

IFES Mapping

αi
Part of i-th
Effective IFES

β Part of
Benign IFES

X Final Value

IFES Symbolx

Figure 4.8 – Initialization of the Fault-Injection–Symbol Propagation.
This segment of the DFG illustrates the AND and MOV instructions along with their corresponding
value nodes. Each instruction shows the various effective IFESs α3, . . . ,α0, as well as the benign
IFES β . The edges within the instruction nodes represent the IFES mappings. Additionally, each
value node contains the register values at a specific time and an injection symbol for every
individual bit within the DFG. The DFP assigns a unique symbol to each bit in the DFG. In this
particular segment, the DFG encompasses 16 symbols ranging from a to p. The concealed value
nodes do not appear in the DFG itself but are part of the FS; thus, the bits associated with these
nodes belong to the ineffective FS I when applying DFP.

4.2.3.2 Symbol Equalization

Now that all mapped symbols exist, the DFP equalize the symbols across the instructions. For now, let
us examine the instructions separately. Equation 4.3 shows the IFES mappings for the AND instruction.
The calculation process used IFES and equates injection symbols, which correspond to bits that can
be assigned the same symbol. For instance, the symbol i overwrites the symbols a and e.

84

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

1∧ 1→ 1⇒ α3 ◦α3→ α3 ⇒ a = e = i

0∧ 1→ 0⇒ α2 ◦ β → α2 ⇒ b = j (̸= f)

1∧ 0→ 0⇒ β ◦α1→ α1 ⇒ g = k (̸= c)

0∧ 0→ 0⇒ β ◦ β → α0 ⇒ l (̸= d ̸= h)

(4.3)

Similarly, in Equation 4.4, it is also done for the MOV instruction.

1→ 1⇒ α3→ α3 ⇒ l = p

0→ 0⇒ α2→ α2 ⇒ k = o

0→ 0⇒ α1→ α1 ⇒ j = h

0→ 0⇒ α0→ α0 ⇒ i = m

(4.4)

Equations can span across connected instructions, thus, the group of bits in the DFG that share the
same symbol is considered part of a DFES:

a = e = i = m

b = j = h

g = k = o

l = p

In the current implementation, the DFP performs a backward breadth-first analysis on the DFG
in this step. In the beginning, for each value node in the DFG that does not have a successor node
(meaning the value is no longer read), the IFES mappings are applied based on the instruction that
produced this value. This process is repeated for the input value nodes of that instruction node until
all value nodes are visited. Listing 4.2 provides the algorithmic sketch of this step, and Figure 4.9
visualizes the different states of the DFG. In the end, symbol equalization effectively reduces the
number of symbols from 16 to just 4.

4.2.3.3 Conditions for Symbol Equalization

As demonstrated thus far, the propagation of symbols relies solely on the IFES mappings. However,
two additional conditions determine whether the IFES mapping propagates a symbol. The first
condition prevents establishing false equivalences where, for instance, a fault can interact with
itself. Thus, it must be verified if another instruction is not reading the input value. Secondly, it is
essential to ensure that a value becomes inaccessible before it can be used in subsequent instructions
following a propagated fault. During this process, the DFP estimates the lifetime of the value, and
based on this estimation, the symbols are either propagated or not.

Multiple Readers of a Value

Let us examine an example, which Figure 4.10 illustrates. Figure 4.10a shows the DFG, where a
unique injection symbol is initially assigned to each bit. The IFES mapping for XOR is α ◦ α→ α,
resulting in the equivalence of symbols to b = c = d. Similarly, the IFES mapping for MOV leads to
the equivalence of symbols a = c. By concatenating the mappings shown in Section 4.2.3.2, the DFP
infers that all symbols are equivalent: a = b = c = d.

To check this inference, let us examine Table 4.10b, where the bit values are displayed line by line
at the corresponding symbol positions. Each column represents either the bit values in the absence
of bit flips or the bit flips at the respective symbol positions, along with the resulting affected bits.

85

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

Listing 4.2 – Data-Flow Graph Backward Breadth-First Analysis with Instruction-Local Fault-Equivalence
Set Mapping Application.
The function apply_mapping transfers symbols from output to input values based on the determined IFESs.
The DFP computes these IFESs using the ifes function, an adapted version from Listing 4.1. This ifes function
inputs value nodes with their corresponding values and symbols. It then checks each bit individually against
the input bits of the instruction to determine if the corresponding input symbols exist within the corresponding
IFES. Otherwise, the symbol belongs to a benign IFES and is None. The propagate_symbols function performs
a backward breadth-first analysis. Initially, a queue gets all value nodes of the DFG that do not have an outgoing
edge. For each of these value nodes, the apply_mapping function executes. Afterward, the input nodes of the
instruction are added to the queue. This process repeats until the queue becomes empty, meaning the entire
DFG has been traversed.

1 def apply_mapping(i_node: InstructionNode) -> list:
2 in_1, in_2, out = i_node.all
3

4 for out_bit in range(0, WORD_SIZE):
5 ifes = ifes(i_node.func, in_1, in_2)
6 out_symbol = out.symbol[out_bit]
7

8 # equalize when IFES contains symbol
9 for in_bit in range(0, WORD_SIZE):

10 if in_1.symbol[in_bit] in ifes[out_bit]:
11 in_1.symbol[in_bit] = out_symbol
12 else:
13 in_1.symbol[in_bit] = None # is

benign,→
14 if in_2.symbol[in_bit] in ifes[out_bit]:
15 in_2.symbol[in_bit] = out_symbol
16 else:
17 in_2.symbol[in_bit] = None # is

benign,→
18 return instruction.inputs

19 def propagate_symbols(dfg: DataFlowGraph):
20 # queue initialization
21 queue = Queue()
22 for value_node in dfg._all_values:
23 if value_node.num_output == 0:
24 queue.put(value_node)
25

26 # traverse the whole DFG
27 while not queue.empty():
28 value_node = queue.get()
29 # apply mappings for predecessor instruction
30 inputs = apply_mapping(value_node.input)
31 # add input nodes of instruction to queue
32 queue.put(inputs)

The DFP assigns the symbol d to the output bit of the graph. The equation a = b = c = d implies
that bit flips at the bits of all symbols in the graph should yield the same final result. However,
Table 4.10b shows that flipping the bit represented by a does not produce the same result at the end
as flipping the other symbols. Therefore, the assumption a = b = c = d is incorrect.

When the bit represented by a flips, the MOV instruction copies it to another location, and the
bit flip remains in its original location. The XOR instruction semantically reads the same bit flip in
both inputs, thus interacting with itself. The symbol a cannot be equalized with b = c = d since this
violate of the single-fault assumption of the FM (see Section 2.2.4 on page 41). If the bit at a flips
from zero to one, the result bit remains zero, whereas an injection in a bit with one of the remaining
symbols provokes a result of one, which highlights the first condition for symbol equalization:

A symbol of a bit must only be propagated if the current instruction
is the only (interpreting) reader of this bit.

To account for multiple reads of a value in the data structure of the DFG, I introduce the epsilon
transition. The epsilon transition is a virtual instruction node that does not propagate symbols. An
epsilon transition is added whenever an instruction reads a value, duplicating the corresponding
value node. From now on, this node represents the most recent instance of the value in the system.

Figure 4.11 shows the creation of chains of epsilon transitions. These chains capture different
instances of reading a value and the varied propagation behaviors of the bit flips. This distinction is
crucial for understanding the propagation of a bit flip, as it can affect different instructions without
propagating the associated symbols.

86

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

1000

1000

1010 1100

AN
D

α3 α2 β α3 α1

α3 α2 α1 α0

β β β

MO
V

α3 α2 α1 α0

α3 α2 α1 α0

hgfedcba

lkji

ponm

R0 R1

(a) Initialitation

1000

1000

1010 1100

AN
D

α3 α2 β α3 α1

α3 α2 α1 α0

β β

MO
V

α3 α2 α1 α0

α3 α2 α1 α0

-o-m--nm

ponm

ponm

R0 R1

β

(b) Symbol Equalization

Figure 4.9 – Fault-Injection–Symbol Propagation.
The meaning of the illustration’s individual components is the same as that of Figure 4.8.
Figure 4.9a represents the initial state of the DFG. Using the IFES mappings, symbol equalizations
are performed, as depicted in Equation 4.3 and Equation 4.4, and applied to the DFG, as seen
in Figure 4.9b. This process effectively reduces the number of distinct symbols required for full
coverage of the DFG from 16 to only 4 necessary FIs.

Figure 4.12 illustrates the expansion of the initial DFG (from Figure 4.5) by epsilon transitions.
In this particular case, no chains of epsilon transitions exist. However, such chains can be present
when dealing with global constants in the code, for instance. Including epsilon transitions allows
for a more comprehensive representation of the data flow and facilitates the analysis of different
propagation behaviors in the presence of bit flips.

Value Lifetime

Another crucial condition for symbol equalization is the consideration of the lifetime of values, which
involves dead values that are only read in diverging execution flows after the occurrence of a bit flip.
The code example presented in Listing 4.3 is a simple yet comprehensive illustration, highlighting
the necessity of accounting for value lifetimes in symbol equalization.

In the correct execution of this code, the dereference instruction in line 4 is not executed, meaning
there is no corresponding instruction in the data flow that acts as a second reader for the ptr variable.

87

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

0

1MOV

XOR

0

a

c

db
1 1

1

(a) Data-Flow Graph with Multiple Readers of Bit at a

none a b c d

a 1 0 1 1 1
b 1 0 0 1 1
c 1 0 1 0 1
d 0 0 1 1 1

(b) Bits’ Final Values Under Various Bit Flips Scenarios

Figure 4.10 – Mismatch of Symbol Equalization: Impact of Multiple Value Readers.
When a bit in Figure 4.10a flips at symbol a, the flipped bit is copied to symbol c’s location
while also remaining at its original location, which leads to an interaction of the bit flip with
itself, as it affects the inputs of the XOR instruction.
Table 4.10b represents five different bit flip scenarios in each column: no bit flip, bit flip at
symbol a, . . . , bit flip at symbol d. Each row represents the final bit values resulting from these
scenarios. Based on the IFES mapping rules outlined in Section 4.2.2, the symbol equivalence
a = b = c = d holds. However, in this example, the bit flips lead to different final bit values
(highlighted cells in Table 4.10b), indicating an incorrect assumption of symbol equivalence.

valuevalue ε valueε valueε ε value

Figure 4.11 – Epsilon-Transition Chain.
When a value is read multiple times, a bit flip in that value can have different effects at different
points in time between these read accesses. To differentiate the value at different instruction
interpretations, the DFG includes epsilon transitions (ε), creating a chain of transitions. In this
particular example, the value is used four times as an input for arbitrary instructions, leading to
the creation of this chain.

Listing 4.3 – Exemplary Code for Highlighting the Impact of a Value’s Lifetime.
The code assigns a null pointer stored in ptr to tmp, resulting in a subsequent operation that makes the if
condition in line 3 false. However, if bit flips occur in either ptr or tmp at the beginning of this code, the if
statement becomes true, and a different failure class arises, depending on bit flips in ptr or tmp. A bit flip in
ptr results in dereferencing ptr, whereas a bit flip in tmp leads to a trap since ptr remains a null pointer and
cannot be dereferenced.

1 void *ptr = NULL;
2 void *tmp = ptr;
3 if (tmp != NULL) {
4 *ptr;
5 }

However, it is essential to note that bit flips in ptr and tmp are not equivalent, as they can result in
different failure classes. For instance, if a bit flip occurs in ptr at the beginning and coincidentally
transforms it into a valid pointer, the subsequent dereference operation will not cause a trap, and
the program will terminate successfully. Therefore, even though the assignment operation in line 2
is the only reader in the data flow, symbol equalization cannot be applied.

88

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

0001

1010

1000

0111

R0

R1

1000

1000

10100101

1011 1100

SHL XOR AND MOV

SHL

XOR AND

MOV

ε

ε

ε Epsilon TransitionInstructionValue Immediate Output Value

t 0 t 1 t 2 t 3 t 4

Figure 4.12 – Data-Flow Graph with Epsilon Transitions.
This DFG is the same as in Figure 4.5 but includes epsilon transitions additionally. Each epsilon
transition represents a new value instance after an instruction reads it. These transitions help to
differentiate the value at different points in time between read accesses within the data flow
graph.

Referring to this example and as a result of it, I introduce the second condition that must apply
to the propagation of symbols:

A symbol of a bit must only be propagated if the current input value bit
of the (interpreting) instruction has become globally inaccessible.

To do this, I check that the lifetime of the input value is smaller (or equal) to the end time of the
output value node. This condition guarantees that the input value is no longer read or used in any
instruction after its lifetime.

It must be ensured that even if the bit flip results in a deviating control- or data flow, it cannot
interact with itself and violate the single-fault assumption. To implement this condition, I use the
overwrite time of the value after the last epsilon node as a conservative estimation of its lifetime.
Regarding the epsilon chains in a DFG, as shown in Figure 4.11, it is always the last value node in
that epsilon chain. By comparing the overwrite time of the input value with the end time of the
output value node, it is possible to determine if the input value has indeed become inaccessible
before the symbol propagates. This approach provides a reliable means of preventing potential
interactions or conflicts between multiple faults.

However, in some situations, it is possible to use a shorter lifetime approximation if it is possible
to demonstrate that a value becomes inaccessible earlier. Values stored in registers end their lifetime
if no instruction is issued after the output value node reads the value before it is overwritten. For
example, in Figure 4.4, the value 1000 in register R1 is present until after time t4, but it becomes
inaccessible after t3 since no instruction in between uses R0 as an input.

4.2.4 Fault-Injection–Campaign Planning

At this stage, let me summarize what we have archived so far:

1. A DFG was created to represent the data flow of the analyzed program (see Section 4.2.1).

2. IFESs were determined, which are derived based on their specific IFES mappings regarding
the appropriate instruction (see Section 4.2.2).

89

4.2 Data-Flow–Sensitive Fault-Space Pruning Process

3. To obtain a global perspective, the IFESs were concatenated to propagate injection symbols
across instructions (see Section 4.2.3).

4. The propagation of symbols was carried out based on the corresponding IFES mappings,
subject to two conditions (see Section 4.2.3.3): (a) the input values must not be interpreted by
any other instruction (represented by extending the DFG with epsilon transitions), and (b) it
should be determined whether the value becomes inaccessible (determined by the lifetime of
the most recent value instance).

After completing all these steps, we reach the state of the DFG illustrated in Figure 4.9b.34 These
steps provide a comprehensive understanding of the analyzed program’s data flow and symbol
propagation, setting the foundation for the last step of the DFP: Fault-Injection–Campaign Planning.
In this final step, the DFP uses the DFG with propagated symbols to determine pilots for an FI
campaign to ensure that the generated pilots cover the entire FS and produce results to make a
statement about the system’s reliability precisely.

Initially, each symbol represents a point in the FS and serves as a potential pilot for the FI
campaign. The symbols are propagated through symbol equalization by concatenating IFES mappings,
ensuring equivalent system behavior in the presence of a bit flip. As a result, each distinct symbol
corresponds to a single Data-Flow–Aware Fault-Equivalence Set (DFES). Equal to the FES from DUP
(see Section 2.3.2.1 on page 47), a single representative or pilot is chosen for each DFES. Therefore,
the number of pilots is the number of DFES or unique symbols in the DFG.

However, the DFP performs a backward breadth-first analysis through the DFG a second time to
determine the pilots. The DFP needs to perform two complete traversals because the queue’s last
instruction node conclusively determines the symbols’ propagation with the final symbol equalization
check. It is unclear when propagation should stop or continue during the first run. Therefore, the
second run must ensure that all necessary symbol equalizations occur accurately.

Listing 4.4 shows the exemplary code for determining the pilots. This planning step performs
a breadth-first search analysis, similar to the analysis in Listing 4.2. This code keeps track of the
distinct symbols already read in the DFG to create only one pilot per unique symbol, represented
by the structure symbol_to_pilot. Additionally, it records the set of pilots in the variable pilots

during the traverse of the DFG. The current value node is an instruction’s output node, and the
instruction’s input values are added to the queue. This process continues until the queue is empty
(i.e., the algorithm traversed the entire DFG).

The number of covered bits of the corresponding DFES represents the pilot’s weight. To determine
the pilot’s weight, the DFP counts how often each symbol appears in the DFG, which is the weight
w(pi) of each corresponding pilot pi with the help of the mapping si → pi , which keeps track which
symbol si is represented by which pilot pi .

With the resulting set of pilots PDFP with nDFP pilots and its corresponding weights, the FI
campaign is ready for conduction.

4.3 Evaluation

This section presents the evaluation results of the implemented Data-Flow–Sensitive Fault-Space
Pruning in FAIL*. To begin, I present the distributions of the instructions in my benchmark portfolio,

34The two conditions mentioned from Section 4.2.3.3 are also included in Figure 4.9b. The value in register R1, before the
MOV instruction, is not interpreted by any other instruction besides this MOV. Additionally, this value is not interpreted at any
other time, indicating that it is outside its value lifetime. The conditions mentioned earlier also hold for all other instances in
Figure 4.9b.

90

4.3 Evaluation

Listing 4.4 – Examplary Code for the Fault-Injection–Planning Step of the Data-Flow Pruning.
This code represents the DFP’s planning step. During this second traverse through the DFG, the DFP identifies
the pilots set by recognizing unique symbols and defining a pilot for each. The structure pilots records these
pilots as well as the map of symbols to pilots symbol_to_pilot. Additionally, the DFP computes the weights of
the pilots in the structure weights, corresponding to the counts of each symbol.

1 def planning(dfg: DataFlowGraph) -> set, dict, dict:
2 # queue initialization
3 queue = Queue()
4 for value_node in dfg._all_values:
5 if value_node.num_output == 0:
6 queue.put(value_node)
7

8 pilots = set()
9 symbol_to_pilot = dict()

10 weights = dict()
11 # traverse whole DFG
12 while not queue.empty():
13 value_node = queue.get()
14 for bit in range(0, WORD_SIZE):
15 # check if symbol is not benign and is not already used for pilot determination
16 # then create pilot, recods pilot's symbol and initalize weight
17 # else increase weight for that symbol
18 symbol = value_node.symbol[bit]
19 if symbol is not None and symbol not in symbol_to_pilot:
20 # creates a pilot as a tuple (time, location bit)
21 pilot = (value_node.time, value_node.data_address + bit)
22 pilots.add(pilot)
23 symbol_to_pilot[symbol] = pilot
24 weights[symbol] = 1
25 else:
26 weights[symbol] = weights[symbol] + 1
27

28 # get the instruction node of the value
29 instr_node = value_node.input
30 # get the input values of the instruction
31 inputs = instr_node.inputs
32 # add input nodes of instruction to queue
33 queue.put(inputs)
34

35 return pilots, symbol_to_pilot, weights

focusing on the instructions selected for the IFES mappings (see Section 4.2.2.2 in this dissertation.
Next, I discuss the validation of the DFP and its relationship to the DUP. Finally, I present the
evaluation results, divided into two aspects: the overhead of the approach and the effectiveness of
the outcomes regarding the number of determined pilots.

4.3.1 Distribution of Instructions in the Benchmarks

To understand the instruction patterns in the benchmarks portfolio (see Section 3.2.3.1), I analyzed
the distributions of instructions using the program’s golden run and its objdumps. I focused on
instructions for which I have implemented IFES mappings in FAIL*.

Table 4.1 provides an overview of the instruction counts (#Instr.) and their distributions across
the benchmarks, expressed in percentages.

Figure 4.13 visualizes this information as a stacked bar plot. Since the DFP relies on instruction-
local equivalences, the distribution of instruction types is an vital characteristic of the benchmarks.
The handled instruction types (MOV, ADD, AND, OR, XOR) are categorized, and the label other captures
all instructions that the DFP treats as opaque.

The analysis reveals that the DFP considers between 26 percent (µLSUM) and 68 percent (miSHA)
of the instructions for propagation. MOV instructions are the most prevalent among the instruction

91

4.3 Evaluation

Per Instruction Type [%]

#Instr. AND ADD MOV OR XOR other

miBC 54 434 12.59 14.25 12.58 0.00 0.75 59.83
miBFD 55 647 5.41 7.86 30.22 1.35 13.11 42.05
miBFE 54 951 5.51 7.97 28.87 1.38 13.37 42.91
miQS 45 774 0.03 8.44 47.15 0.57 0.32 43.49
miRDD 70 824 0.01 1.11 37.90 0.00 22.23 38.76
miRDE 70 450 0.02 0.84 37.79 0.00 22.11 39.24
miSHA 40 647 3.16 9.18 42.88 2.37 10.77 31.65

µFIB 2 093 0.00 13.76 10.32 0.00 2.63 73.29
µLSUM 54 0.00 16.67 9.26 0.00 0.00 74.07
µMIX 90 8.99 10.11 17.98 8.99 8.99 44.94
µQSI 800 0.13 7.46 51.35 0.00 0.00 41.06
µQSR 804 0.00 7.56 36.97 0.00 0.00 55.46

Table 4.1 – Benchmark Portfolio’s Instruction Distribution.
This table displays the distribution of instructions in the benchmark portfolio from Section 3.2.3.1.
The DFP contains IFES mappings for highlighted instructions, categorizing all other instructions
not considered by the DFP under the label other.

m
iB

C

m
iB

FD

m
iB

FE

m
iQ

S

m
iR

DD

m
iR

DE

m
iS

HA FI
B

LS
UM M
IX QS

I

QS
R

Benchmark

0

20

40

60

80

100

In
st

ru
ct

io
n

Di
st

rib
ut

io
n

[%
] other

ADD
AND
MOV
OR
XOR

Figure 4.13 – Benchmark Portfolio’s Instruction Distribution Stacked Bar Plot.
This figure presents the visual representation of the instruction distribution across the benchmark
portfolio with the data from Table 4.1.

types, accounting for up to 51 percent (µQSI) of the instructions. This high percentage highlights
the potential for the most straightforward IFES mapping of the DFP technique. In two benchmarks
(µLSUM and µQSR), the bit-wise instructions (AND, OR, XOR) do not occur at all. On the other hand,
in specific benchmarks like µMIX, the bit-wise instructions make up a more significant part of the
instructions (27 percent) than others.

Overall, the distribution of instruction types provides insights into the pruning potential of the
DFP technique across the dissertation’s benchmark portfolio, with MOV and XOR instructions showing
promising prospects.

92

4.3 Evaluation

4.3.2 Validation of the Data-Flow Pruning

At this point, I will describe the validation of the DFP to ensure the sanity of the evaluation results.
I will outline the features and differences between DUP and DFP and then describe the approach
used to validate the DFP’s correctness.

4.3.2.1 Comparison of Def/Use Pruning and Data-Flow Pruning

The DUP focuses on the read- and write accesses of instructions in the data flow of the SUT. The
DFG also represents these accesses, which capture each instruction’s input and output values and
their corresponding execution times. By leveraging the DFG, the DFP can precisely map the read
and write accesses used in the DUP, thus accurately reproducing the DUP’s FESs.

Figure 4.14 presents the running example of the previous sections and shows the application of
both DUP and DFP on the same segment of the FS. The left side shows the FS with the application of
DUP, and the right side presents the FS with the application of DFP, including the IFES mappings for
the AND and MOV instructions. As a reminder, the value in register R0 represents the system’s output.
Through the use of DFP, the number of required pilots decreases significantly compared to DUP.
In this example, the number of pilots decreases from 16 in DUP to only four in DFP. The pilots in
DFP are weighted based on the effective FS coverage achieved after executing DFP, as explained in
Section 4.2.4.

Taking the MOV instruction as an example, the eight FESs of DUP are unified into four DFESs using
the IFES mapping for MOV. Similarly, for the AND instruction, the IFES mapping combines individual
FESs, creating larger sets of equivalences and uniting existing FESs from DUP. Notably, in the case
of the AND instruction, certain bits in the FS for the FI campaign are entirely disregarded due to the
analysis of AND semantics, which reveals that bit flips in certain bits, such as bit 0 in R0 at time t2,
are benign and can be ignored, leading to a reduction in FESs compared to DUP.

Without IFES mappings in the DFP, the edges on the right side of Figure 4.14 vanish, and the
information regarding benign bit flips disappears. Consequently, only the details about the read and
write accesses from the DFG would remain, which implies that if no IFES mappings are activated or
implemented in the DFP, the DFP semantically falls back to the semantics of the DUP with equivalent
determined pilots and its weights. With the incorporation of IFES mappings and the propagation of
the symbols, the DFP emerges as an enhanced version of the DUP.

4.3.2.2 Validation Procedure

For the validation of the DFP, I compare the results of DUP and DFP methods. The goal is to
demonstrate that the DFP calculates the same complete and precise failure classifications for all
benchmarks. FAIL* records the failure classes using the equivalent planned pilots for identical FI
campaign settings. A thorough per-FI comparison ensures that both methods yield identical failure
classifications for all the pilots. Overall benchmarks, DUP covers 1.3·1010 faults using 2.21·107 pilots.
When the IFES mappings of the DFP are deactivated, the number of pilots is the same nDUP = nDFP,
as expected. However, with the activated IFES mappings, the DFP determines 1.93 · 107 pilots.
Importantly, in all cases, both methods agree on the failure classes of the covered FSs. At the same
time, the DFP can cover the FSs of the benchmarks with fewer pilots, demonstrating its effectiveness
in reducing the number of injections while maintaining accurate failure classification coverage.

93

4.3 Evaluation

1

1

2 1

R0
Bit 0

1 1

1 1

1 1

1 1

R0
Bit 1

R0
Bit 2

R0
Bit 3

R1
Bit 0

R1
Bit 1

R1
Bit 2

R1
Bit 3

12

2

2

AND MOV

···

AND MOV

···

8

5

5

2

t 2 t 3 t 4 t 2 t 3 t 4

Figure 4.14 – Comparison of a Fault Space After Applying Def/Use Pruning and Data-Flow
Pruning.
The segment of the running example’s FS is shown twice, once after applying DUP and once
after applying DFP. The DUP determines 16 FES with weights of 1 or 2, and the DFP creates only
four FESs with weights of at least 2 and up to 8. The DFP combines distinct FESs of the DUP
and ignores FESs deemed benign. This figure also explicitly shows the transition from DUP’s
one-dimensional FESs to DFP’s two-dimensional FESs; the DUP creates FESs only regarding the
temporal dimension and the DFP incorporates the location dimension of the FS.

4.3.3 Results

This section focuses on the evaluation results, explicitly examining DFP’s efficiency and effective-
ness. The evaluation measures improvements in both efficiency and effectiveness as defined in
Section 3.2.1.3 from page 63.

4.3.3.1 Data-Flow–Pruning Efficiency: Overhead

First, let us examine how efficiently the DFP comes to a result. The calculation of pilots using the
DFP for the Micro benchmarks took at most 1.1 seconds, whereas for the MiBench benchmarks, it
ranges from 2.5 minutes (miBFD) to 24 minutes (miRDD). In comparison, the DUP approach took
no longer than 11 seconds for all benchmarks, with the longest pruning time observed for miRDE.
These relatively long pruning times result from the current prototypical implementation, which visits
value nodes multiple times. The DFP scales linearly with the number of instruction and value nodes,
as the ISA limits the number of DFG predecessors. Overall, each node needs to be visited only twice.

Figure 4.15 illustrates the DFP’s execution times for the MiBench benchmarks, segmented into the
four individual steps as described in sections Section 4.2.1 to Section 4.2.4. The predominant step is
symbol propagation, which significantly contributes to the longer runtimes of the DFP. Optimization

94

4.3 Evaluation

in the processing of symbol propagation could improve this prototypical implementation. Other
steps exhibit lesser significance in the overall context: DFG creation consumes a maximum of 33
seconds (miRDD), IFESs calculation takes not more than 1.5 seconds (miRDE), and pilot planning
requires a maximum of 44 seconds (miRDD).

m
iB

C

m
iB

FD

m
iB

FE

m
iQ

S

m
iR

DD

m
iR

DE

m
iS

HA
Benchmark

0

5

10

15

20

25

Du
ra

tio
n

[m
in

]

Build DFG
Compute IFESs
Propagation
Planning

Figure 4.15 – Data-Flow–Pruning Single Step’s Overhead.
This figure illustrates the DFP’s execution times across the MiBench benchmarks. Each box
represents a specific step of the DFP process. The symbol propagation step notably dominates
the DFP’s runtime compared to other steps.

Despite the prototypical implementation of DFP’s symbol-propagation step, the DFP still achieves
significant end-to-end campaign-runtime savings for all MiBench and Micro benchmarks when
comparing the pruning time to the overall compute-time demand of the FI campaign. For example,
in the case of miRDD, DFP executed single-threaded for 0.4 hours to reduce the number of injections
by 13.1 percent. If the FI campaign executes the DUP pilots on a single-threaded machine, it will
take 188 hours, which I can reduce by 24 hours using DFP. Even when considering the pruning
overhead, using DFP pilots save more than 23 hours.

4.3.3.2 Data-Flow–Pruning Effectiveness: Reduction of the Number of Pilots

In this section, I present the evaluation results regarding the effectiveness of the DFP. I examine its
overall effectiveness (i.e., the reduced number of required pilots; refer to Section 3.2.1.3 on page
61) and sketch two additional characterizations of the DFP pilots. Finally, I group the results based
on the resulting failure classes of the FIs.

Overall Reduction

In the following analysis, I quantify the reduction in pilot count achieved by the DFP compared to
the DUP and present the results in Table 4.2. The columns related to Def/Use Pruning display the
number of required pilot injections (nDUP) and the average weight (w(pi)) of a single pilot in the
context of the entire FI campaign. A higher per-pilot weight indicates that the pruning method can
yield more extrapolated results per performed FI. In the case of DFP, I provide the same information

95

4.3 Evaluation

along with additional columns showcasing the percentage improvements (∆) over DUP. In the last
column group, I provide additional information about the planned DFP pilots: Within the pilots, loc
percent of the corresponding DFESs cover multiple fault locations in the FS,35 and val percent of
the corresponding DFESs cover more than one value node in the DFG, which includes the pilots
referenced by loc. For DUP, both metrics are zero.

Def/Use Pruning Data-Flow Pruning DFP Pilots

nDUP [104] w(pi) nDFP [104] w(pi) ∆n [%] ∆w [%] loc [%] val [%]

miBC 222.40 31.63 181.43 38.77 -18.42 +22.58 1.56 3.85
miBFD 331.38 571.79 295.95 640.24 -10.69 +11.97 2.77 4.92
miBFE 326.93 575.30 292.97 641.98 -10.39 +11.59 2.73 4.67
miQS 270.58 600.15 234.31 693.05 -13.40 +15.48 3.88 4.62
miRDD 397.60 881.84 345.37 1015.18 -13.13 +15.12 1.56 4.48
miRDE 397.99 868.77 351.90 982.55 -11.58 +13.10 1.89 4.53
miSHA 252.79 95.98 219.74 110.42 -13.07 +15.04 5.41 9.02

µFIB 8.87 12.98 7.56 15.24 -14.78 +17.35 2.35 7.51
µLSUM 0.26 6.35 0.26 6.35 0.00 +0.00 0.00 0.00
µMIX 0.45 6.61 0.40 7.49 -11.83 +13.42 0.00 6.38
µQSR 1.27 14.38 1.22 15.04 -4.36 +4.56 1.84 4.32
µQSI 4.23 28.43 3.88 30.96 -8.18 +8.90 5.71 7.71

Table 4.2 – Comparison of Def/Use Pruning and Data-Flow Pruning.
This table provides a quantitative comparison between DUP and DFP. The first two groups of
columns display the number of calculated pilots (nDUP and nDFP) and the average weights of
the pilots (w(pi)) for DUP and DFP, respectively. The highlighted columns in the DFP group
represent the percentage difference in the number of pilots (∆n) and the average weight of
the pilots (∆w). In the DFP Pilots columns, loc indicates the proportion of DFP pilots that cover
more than one location in the FS with their DFESs, and val indicates the proportion of DFP
pilots that cover more than one value node in the DFG.

The most crucial aspect of Table 4.2 is the percentage reduction in the required FIs (∆n). This
column explicitly represents the effectiveness described in Section 3.2.1.3. When examining the
MiBench benchmarks, we observe reductions ranging from 10.39 percent (miBFE) to 18.42 percent
(miBC). With more equivalent classified faults, the DFP requires fewer injections while maintaining
the same complete coverage of the FS as the DUP. Consequently, this leads to an increased weight
per injection.

For the micro benchmarks, we observe reductions (excluding µLSUM) ranging from 4.36 percent
(µQSR) to 14.78 percent (µFIB), accompanied by the necessary weight adjustments. However, in
the case of µLSUM, the DFP cannot reduce the number of injections compared to the DUP. This
outcome is not surprising considering the structure of this benchmark, which solely accumulates an
array of integer values into a register. The array elements are not overwritten (maximal lifetimes),
and the program does not perform immediate calculations on the accumulator register. Nevertheless,
in such cases, the DFP gracefully degrades to the DUP.

Next, let us delve into the characterization of the planned DFP pilots. In the last column group,
we observe that a relatively small percentage (< 5.1% for miSHA) of pilots cover more than a single
fault location or more than a single value node (< 9.2% for miSHA). All other pilots represent the

35As a reminder, for DUP, there is always only one location in the FS per FES.

96

4.3 Evaluation

same set of faults as planned with DUP. This finding suggests that only a few DFP pilots contribute
to the reductions and indicates that larger equivalence sets occur when propagation is possible. On
average, these multi-value–node pilots span up to 6.9 value nodes.

Reduction per Failure Class

Next, I consider whether DFP is more likely to combine faults that result in certain failure classifica-
tions. Table 4.3 shows how the percentual change in the number of pilots leads to a specific failure
class.

OK SDC TIME TRAP

miBC -1.45 -42.00 0 -4.69
miBFD 0 0 -0.32 -12.04
miBFE 0 0 -0.36 -11.12
miQS -25.96 -2.86 -0.15 -1.12
miRDD 0 0 0 -15.25
miRDE 0 0 0 -13.30
miSHA 0 -22.38 -0.04 -1.35

µFIB -0.10 -38.72 -0.73 -27.68
µLSUM 0 0 0 0
µMIX -27.66 -3.39 0 -4.16
µQSR 0 -5.59 -7.41 -11.32
µQSI 0 -15.03 0 -4.52

Table 4.3 – Pilot Reduction per Failure Class [%].
This table presents the data in the highlighted columns from Table 4.2 and groups it based on
the failure classes of the executed FIs.

Across all benchmarks, SDC and trap failure classes exhibit more significant reductions, whereas
other classes vary widely. This observation concludes that fine-grained data flows primarily influence
the DFP’s equivalence propagation. In summary, compared to the DUP, the DFP achieves reduc-
tions of up to 18 percent without compromising completeness or precision. Even in its prototype
implementation, it significantly accelerates the overall campaign speed.

4.4 Summary of Data-Flow–Sensitive Fault-Space Pruning

To summarize, FAIL* is extended by the Data-Flow–Sensitive Fault Space Pruning [�PDL21], DFP for
short. The DFP is a semantic extension of the well-known Def/Use Pruning (DUP); DFESs unify the
one-dimensional FESs of the DUP across locations and are potentially two-dimensional regarding the
FS (visualized in Figure 4.14). Compared to the DUP, the DFP considers the program’s data flow to
be analyzed instead of only considering the read and write accesses in registers and memory. The
DFP is instruction-aware and value-aware, which includes the semantics of the instructions used
and the input and output values for the analysis. The DFP uses a Data-Flow Graph (DFG) as the
primary data structure, which reflects the program to be analyzed. Initially, the DFP defines an
injection symbol for each bit in the DFG, which serves as a label for a potential pilot for the ongoing FI
campaign. For each instruction of the DFG and based on its instruction semantics, an Instruction-Local
Fault-Equivalence Set (IFES) mapping can be developed for the DFP, dividing the input and output

97

4.4 Summary of Data-Flow–Sensitive Fault-Space Pruning

bits into effective and benign IFES. The DFP concatenates IFES mappings as specified in the structure
of the DFG so that the injection symbols of an effective IFES are propagated using a DFG breadth-first
search analysis, resulting in larger FESs compared to the DUP, the Data-Flow–Aware Fault-Equivalence
Set (DFES). Finally, each injection symbol remaining after the propagation step represents a pilot.

For a frequently occurring selection of instructions in the benchmark portfolio of this dissertation,
namely MOV, AND, OR, XOR as well as ADD, IFES mappings were developed and the entire process for
the DFP was implemented and evaluated in FAIL*.

For a frequently occurring selection of instructions in this dissertation’s benchmark portfolio,
namely MOV,AND,OR,XOR, and ADD, I developed IFES mappings. The entire DFP process is implemented
and evaluated in FAIL*. A DFP effectiveness of up to 18.42 percent is measurable for the given
benchmarks. The DFP effectively identifies DFESs that result in SDC and trap failure classes, indicating
its firm reliance on fine-granular data flows. All pilots that emerge are to be used to complete and
precisely cover the FS in an FI campaign. If no IFES mapping exists, the DFP generates pilots
equivalent to the DUP so that the DFP can be seen as an enhancement of the DUP.

The code and evaluation data of the prototype implementation are publically accessible on
Zenodo.

TRY IT OUT: Data-Flow–Sensitive Fault Space Pruning in FAIL*

The DFP can be compiled and executed seamlessly with an executable FAIL* installation with
a Capstone Assembler. The source code of the DFP and its evaluation data is available here:

https://doi.org/10.5281/zenodo.4698901

98

https://doi.org/10.5281/zenodo.4698901

5
Program-Structure–Guided

Approximation of Fault Spaces

I was trying to do too many things at the same time, which is my nature. But
I was enjoying it, and I still do enjoy it.

JAMES MARSHALL “JIMI” HENDRIX (1942–1970)

In this chapter, I present the work of my paper Program-Structure–Guided Approximation of Fault
Spaces, which leverages the control-flow structure of a program, mainly jump instructions, in the
fault-free execution trace to define FSRs. This approach focuses on injecting faults into data flows
that cross the boundaries of FSRs, as these data flows transfer computation results from one region
to another. I reduced the number of required pilots by assigning appropriate weights to each region
and the corresponding injected faults, while fully covering the entire FS. After extensively exploring
the data flow in the previous chapter to accelerate an FI campaign, this chapter focuses on the control
flow and its utilization in reducing the number of required pilots for achieving full FS coverage in an
FI campaign.

To understand this method, I will first describe the concept of program structure and its application
in the context of this dissertation. I explore how program structure guides FSR creation and highlight
its specific instances of FSRs. The FSR concept is integrated into FAIL*, and a comprehensive
evaluation is conducted to assess the effectiveness of this method in reducing the number of required
pilots and the locality of the obtained results. I implemented the FSR concept into FAIL* and
conducted a comprehensive evaluation to assess its effectiveness in reducing the number of required
pilots and the locality of the obtained results.

99

5 Program-Structure–Guided Approximation of Fault Spaces

I presented the FSR [�Pus+19] approach at the PRDC conference in 2019 and am the paper’s
primary author. My work included conceptualization, FSR implementation, benchmark design,
experiment conduction, and paper writing.

100

5.1 Program Control Flow in the Context of This Dissertation

5.1 Program Control Flow in the Context of This Dissertation

To begin, I will provide a general explanation of the control-flow concept within the scope of this
dissertation and sketch the construction of control-flow graphs. The nodes in such a graph, known
as Basic Blocks (BBs), will be described in more detail throughout this section. Specifically, I will
differentiate between static and dynamic BBs and present the implementation of dynamic BBs
determination in FAIL*, used in the chapter’s FI acceleration method.

5.1.1 Control Flow: Order and Execution of Instructions

A control flow is the order in which a computer program executes instructions or statements. It
governs the execution flow as the program traverses various sections, including loops, conditionals,
function calls, and other control structures [ASU86]. The control flow is a fundamental concept in
computer programming that governs the order of instruction execution within a program. It is a
crucial factor in program comprehension, debugging, and optimization. One common approach to
analyzing control flow is identifying and studying Basic Blocks (BBs), which provide a structured
view of the program’s execution flow.

BBs are consecutive instruction sequences within a program that start at a single entry point
and end at a single exit point without any jump instructions. They serve as fundamental units of
analysis in compiler design and optimization, playing a crucial role in tasks such as code generation,
program analysis, and performance tuning. BBs provide a structured representation of program
control flow, allowing for efficient program code analysis and transformation [ACK70].

Listing 5.1 displays a snippet of the objdump for the µQSI benchmark (see Section 3.2.3.1 on
page 67). Each unconditional (JMP) or conditional jump instruction (e.g., JL, JS) marks the end of a
BB, while the jump addresses define the start of a new BB. In the example provided, BBs A to G exist.
Notably, BB B is split into B1 and B2. Although B1 and B2 both end with the same jump instruction,
they are accessed by different instructions (see lines 51 and 55). B1 seamlessly transitions into the
subsequent BB B2, ensuring a smooth and uninterrupted execution flow. Therefore, B1 and B2 are
distinct BBs in this case.

BBs have fixed start and end instructions, allowing them to function individually within a program
and exhibit modularity. The execution of a program consists of concatenating these BBs. A Control-
Flow Graph (CFG) represents a program’s possible BBs order. Figure 5.1 shows the code example
from Listing 5.1 and its BBs as a CFG. Each BB serves as a node in the graph representation. Directed
edges represent the transitions between the BBs. These transitions connect the last instruction of
one BB to the first instruction of another BB. There are three types of transitions: (1) A conditional
taken jump, such as the transition from B to B1, is denoted by T, indicating a jump is taken; (2) an
unconditional jump, like the transition from A to D, is represented by J to signify an unconditional
jump instruction; (3) the sequential execution from one instruction to the next within the text
segment is indicated by NT for jump not taken, as seen in the transition from D to E, or transitions
without any jump instruction, such as from B1 to B2.

5.1.2 Dynamic Control Flow

Like the objdump output, the Control-Flow Graph (CFG) provides a static representation of the
control flow. It captures the relationships between different BBs and their transitions at compile time
without actually executing the program. The dynamic control flow captures the concrete execution
path of the program, representing the specific order in which basic blocks execute during runtime. It
represents the specific order in which BBs are executed during runtime. Various factors influence the

101

5.1 Program Control Flow in the Context of This Dissertation

Listing 5.1 – Objdump Snippet of Benchmark µQSI.
This objdump output snippet from µQSI displays one step of quicksort’s sorting process. The code is partitioned
into eight distinct BBs labeled A to G, each BB is highlighted in the code. BB B1 diverges from the conventional
pattern observed in other BBs by not concluding with a jump instruction; B1 seamlessly transitions into the
subsequent BB B2.

1 00100192 <qsort_iterative>:
2 ;A
3 100192: push %ebp
4 100193: mov %esp,%ebp
5 100195: push %edi
6 100196: push %esi
7 100197: push %ebx
8 100198: sub $0x1c,%esp
9 10019b: mov 0xc(%ebp),%ecx

10 10019e: mov 0x10(%ebp),%edx
11 1001a1: mov %edx,%eax
12 1001a3: sub %ecx,%eax
13 1001a5: lea 0x13(,%eax,4),%eax
14 1001ac: and $0xfffffff0,%eax
15 1001af: sub %eax,%esp
16 1001b1: lea 0x3(%esp),%eax
17 1001b5: shr $0x2,%eax
18 1001b8: lea 0x0(,%eax,4),%edi
19 1001bf: mov %edi,-0x20(%ebp)
20 1001c2: mov %ecx,0x0(,%eax,4)
21 1001c9: mov %edx,0x4(,%eax,4)
22 1001d0: mov $0x1,%edi
23 ; --- jump to D - line 37
24 1001d5: jmp 1001e4 <qsort_iterative+0x52>
25 ;B1
26 1001d7: mov %edx,(%ebx)
27 ;B2
28 1001d9: add $0x1,%eax
29 1001dc: cmp %esi,%eax
30 ; --- conditional jump to F - line 57
31 1001de: jl 10020f <qsort_iterative+0x7d>
32 ;C
33 1001e0: test %edi,%edi
34 ; --- conditional jump to G - line 65
35 1001e2: js 100220 <qsort_iterative+0x8e>

36 ;D
37 1001e4: mov -0x20(%ebp),%eax
38 1001e7: lea (%eax,%edi,4),%ebx
39 1001ea: mov (%ebx),%esi
40 1001ec: mov -0x4(%ebx),%eax
41 1001ef: sub $0x4,%esp
42 1001f2: push %esi
43 1001f3: mov %eax,-0x1c(%ebp)
44 1001f6: push %eax
45 1001f7: push 0x8(%ebp)
46 1001fa: call 1000a4 <partition>
47 1001ff: lea -0x1(%eax),%edx
48 100202: add $0x10,%esp
49 100205: cmp -0x1c(%ebp),%edx
50 ; --- conditional jump to B1 - line 26
51 100208: jg 1001d7 <qsort_iterative+0x45>
52 ;E
53 10020a: sub $0x2,%edi
54 ; --- jump to B2 - line 28
55 10020d: jmp 1001d9 <qsort_iterative+0x47>
56 ;F
57 10020f: mov -0x20(%ebp),%ecx
58 100212: lea (%ecx,%edi,4),%edx
59 100215: mov %eax,0x4(%edx)
60 100218: mov %esi,0x8(%edx)
61 10021b: add $0x2,%edi
62 ; --- conditional jump to D - line 37
63 10021e: jns 1001e4 <qsort_iterative+0x52>
64 ;G
65 100220: lea -0xc(%ebp),%esp
66 100223: pop %ebx
67 100224: pop %esi
68 100225: pop %edi
69 100226: pop %ebp
70 100227: ret

dynamic control flow, such as runtime conditions, user input, external events, and other dynamic
elements that determine the program’s execution path in the CFG. It provides a more accurate
representation of the program’s behavior during its execution [Muc97]. In other words, the CFG is a
scheme for all program’s possible dynamic control flows, and a single dynamic flow is an instantiation
of the CFG.

Regarding the exemplary BBs from Listing 5.1 and Figure 5.1, one possible complete dynamic
control flow using ten static BBs is:

A→ D→ B1→ B2→ F→ D→ E→ B2→ C→ G

For this chapter, I distinguish between static and dynamic BBs. In contrast, a dynamic BB is defined
similarly to its static counterparts: It starts at the jumped address and ends with an unconditional
or taken conditional jump. A non-taken conditional jump or the consecutive execution of the next
instruction in the text segment does not define a new dynamic BB. For the upper chain of BBs, this
definition leads to a squashed version of the control flow with seven dynamic BBs in between each
arrow:

A→ D→ (B1,B2)→ F→ (D,E)→ (B2,C)→ G

102

5.1 Program Control Flow in the Context of This Dissertation

A

Program
Entry Point

Program
Exit Point

Basic
BlockX

D

B1

B2

F G

C

E

T

NT

T
NT

T
NT

NT
T

J

J

Figure 5.1 – Control Flow Graph for Listing 5.1.
The control flow graph represents the code from Listing 5.1. It visualizes the entry and exit points
of the code, along with the individual BBs and their transitions. The J denotes unconditional
jumps to another BB, and T label conditional jumps for taken and NT for not taken. The BBs B1
and B2 are in consecutive order in the text segment; thus the transition from B1 to B2 represents
the program-flow execution without any jumps.

Therefore, dynamic BBs are always either equivalent to their static counterparts (e.g., A) or
encompass a sequence of consecutive static BBs, when no jump occurs; the latter is the case when non-
taken conditional jumps (e.g., (D, E)) or consecutive execution (e.g., (B1, B2)) occur. Consequently,
the dynamic information regarding the jump behavior during the program flow defines the dynamic
control flow and its dynamic BBs.

5.2 Fault-Space Region

Despite the use of DUP (see Section 2.3.2.1 on page 47), an FI campaign can still become infeasible
due to the large number of necessary pilots required. To address this issue, various heuristics (like the
heuristics presented in Section 2.3.2.2 on page 48) exist to reduce further the number of necessary
FIs. My developed Fault-Space Regions (FSRs) [�Pus+19] also fall into this category. However, I base
the method on the DUP technique, precisely its FESs, and deduce the required FIs using information
obtained from the golden run, which incorporates the dynamic control flow of the program.

Figure 5.2 represent the basic idea behind the FSRs. Listing 5.2a shows a snippet of a CRC32
implementation pseudo code, and Figure 5.2b shows the corresponding FS. The highlighted points
in the FS represent the pilots determined by DUP. The arrow in the figure represents the potential
data flow of a flipped bit, passing from one loop iteration to the next, assuming no masking effects
occur during the execution of instructions.

The fundamental concept of FSRs is based on examining FS segments defined by region borders
(i.e., the JNE instruction in Figure 5.2) and selectively injecting only the FESs that cross these region
borders. If a bit flip occurs within a region, it must eventually propagate across the region border
to reach the system boundary. Thus, this propagation continues from region to region until an
externally observable behavior is visible, akin to the concept of the fault propagation chain (refer to
Section 2.1.3 on page 19). Thus, if any of the instructions between the borders of the FSR (e.g., AND)
mask the bit flip, it will not cross any border anymore. Unlike the DFP from Chapter 4, FSRs do not
analyze the concrete data flow of a bit but instead approximate the data flow; it considers FSRs as

103

5.2 Fault-Space Region

1 loop:
2 R1 := MOV R0
3 R3 := SHR R3
4 R1 := ADD R1
5 R1 := NEG R1
6 R1 := AND R1, R4
7 R0 := XOR R1, R0
8 R2 := SUB R2
9 JNE loop

(a) Example Code

R0

R1

Effective FES Ineffective FESRead Access Write Access DUP Pilot

MOV ADD NEG AND XOR SUBSHR JNE MOVJNE

...

...

loop

...

...

(b) Def/Use Pruning

Figure 5.2 – Potential Bit-Flip–Propagation Flow Through Loop Iterations.
Listing 5.2a shows the pseudo code for the inner loop of a CRC32 implementation. Figure 5.2b
illustrates the corresponding FS segment, partitioned into FESs using DUP. The resulting pilots
for complete coverage are highlighted. The arrow through the pilots indicates that any single
bit flip occurring at one of these points of the FS will be propagated along this path. In this
specific case, a bit flip from the previous loop iteration enters the current loop and continues to
propagate in subsequent iterations.

black boxes through which data flows enter and exit, symbolized by the FESs crossing region borders.
This reduces the FIs of the upcoming campaign to those FESs that would carry bit flips from one
region to another.

Figure 5.3 illustrates the general concept of FSRs; you see the k-th FSR of the FS. This figure
illustrates the three fundamental components of the FSR approach for reducing the number of pilots:
(1) The FS is divided into FSR regions, which are segments of the temporal dimension, by applying
a fixed rule to establish region borders (i.e., bk and bk+1). (2) The FESs of the effective FS, obtained
through DUP, are categorized into two types: FESs that cross a region border are referred to as outer
FESs, whereas those that do not cross any border are considered inner FESs. (3) Finally, the pilots
and their corresponding weights from a defined weight function are determined based on the outer
FESs and the FSR weight.

This section presents this generalized method that applies to an FI campaign independent of
the FSs, architectures, programs, or ISAs. Later, I will present two possible instantiations of this
generalized approach based on dynamic BBs and function scopes.

5.2.1 Determining Region Borders

The first step is to define the region borders. The determination of region borders is possible in various
ways. Theoretically, the applier can use randomly distributed borders or uniformly distributed region
borders with a fixed number of regions spanning the entire FS. However, during the development
of this approach, it became evident that such non-deterministic and arbitrary determinations yield
ineffective results.

To explore the potential of leveraging program properties, I further investigated BBs as the
fundamental components of a control flow. By analyzing the golden run obtained from the FAIL*
tracing tool and examining the objdump, I can extract the dynamic control flow as part of the
program structure and use it for the deterministic calculation of FSRs.

Throughout the history of programming, programmers have intuitively divided programs into
modular parts (regarding the divide-et-impera principle [Cor+09]), whether through jumps, recursion,
or function calls. Compilers also divide program code into modular parts like BB, thus implicitly

104

5.2 Fault-Space Region

Time

Lo
ca

tio
n

0

1

2

3

t 0 t1 t 2 t 3 t 4 t5 t 6 t7 t 8 t 9 t10 t11

bk bk+1
xkFSR

Inner Effective FES

Outer Effective FES

Read Access

Write Access Ommited DUP Pilot

DUP Pilot

p

p

Figure 5.3 – Exemplary Illustration of a Fault-Space Region.
The effective FS and its corresponding FESs were determined using DUP in this exemplary FS.
Based on this, the FS is divided by region borders. The border bk defines the start of FSRk,
and bk+1 concludes it. For FSRk, if an FES extends beyond the region border (i.e., it crosses the
border bk+1), it is called an outer FES. If an FES remains within the region, it is considered an
inner FES. Applying FSRs determines a pilot (p) for every outer FES such as when applying DUP
(i.e., inject-on-read). The sum of all effective FESs of FSRk is the weight of this FSR. This FSR
weight is distributed over the determined pilots of the outer FESs using a weight function. The
rule for setting region borders and the weight function are freely definable. Omitting FIs into
the inner FESs of an FSR reduces the number of pilots for this FS to only two (i.e., nine for DUP;
see the highlighted points in this FS).

aggregating the system state at these points of the code. Therefore, leveraging the program’s structure
for analysis is natural and technically relevant.

In the context of this dissertation, I developed two region border rules that specifically address
the modularity within a program: Basic-Block Regions and Function Call Regions. These rules
allow a more fine-grained examination of the program structure, leading to practical analysis and
optimization.

5.2.1.1 Basic-Block Region

The first rule developed for constructing FSRs is based on dynamic BBs, as presented in Section 5.1.2.
With FAIL*, we obtain the objdump and a golden run during the tracing step.

The objdump provides static information such as the addresses of the instructions in the text
segment and the instruction width. The instruction width refers to the memory space in the text
segment or the address span until the next sequential and complete instruction in the text segment.
This approach derives the sequence of instructions and their corresponding addresses by analyzing
the golden run, which contains the sequence of instructions and their respective instruction widths
from the objdump. This extracted information is one possible way to define the region borders
within the FSR construction process. This approach provides a precise and complete representation
of the program’s dynamic control flow.

105

5.2 Fault-Space Region

The execution of instructions in a computer system follows the principle of sequentially executing
the instructions in the text segment, following the monotonically increasing instruction addresses
generated by the IP register of the processor [PH21]. In the absence of jump instructions, each
instruction’s address plus its instruction width is the address of the consecutive instruction in the
text segment. If this is not the case, a jump instruction has occurred within the dynamic program
execution.

The code in Listing 5.2 exemplifies the principle that represents the developed rule. The vari-
able trace represents the golden trace, a list containing instruction addresses executed in the
program. The variable objdump encompasses various static information, including the width at-
tribute, which is the instruction width. It iterates over the entire golden run, and if the calculated
address current_instr.address + objdump[current_instr.address].width does not match
the address of the consecutive instruction; it implies the execution of a jump instruction. These
cases are recorded in the region_borders list, creating a set of timestamps representing each BB
region’s left border. This function determines dynamic BBs.

Listing 5.2 – Determination of Basic-Block–Region Borders.
The golden run or trace is executed step-by-step within the loop, processing each instruction sequentially.
During execution, each instruction’s current address is compared to the expected address of the next instruction
in the text segment. If these addresses do not match, a jump has occurred in the program. To determine this,
the address of the next instruction, represented by next_instr.address , is compared with the sum of the
address of the current instruction and its instruction width. If a mismatch is detected, it is recorded in the
variable region_borders . The resulting values in region_borders represent the borders for the FSRs, which
corresponds, in this case, to the program’s dynamic BBs.

1 def calc_borders(trace: list, objdump: dict) -> list:
2 region_borders = []
3 current_instr = trace.pop(0)
4 trace_time = 1
5

6 for next_instr in trace:
7 # check if a jump was executed
8 if current_instr.address + objdump[current_instr.address].width != next_instr.address:
9 # record the time as a region border

10 region_borders.append(trace_time)
11

12 trace_time = trace_time + 1
13 current_instr = next_instr
14

15 return region_borders

Although it is theoretically possible to examine each instruction and further divide the BBs based
on not-taken conditional jump instructions, it would require checking for jumps in every individual
(non-jump) instruction. Moreover, determining whether an instruction is a jump instruction heavily
depends on the ISA and is not trivial due to the numerous jump instruction variants in different ISAs.36

By using BB regions, I employ a generic approach using dynamic BBs that operate independently of
the processor’s ISA and avoid the need to check each instruction for jumps.

5.2.1.2 Function-Call Region

My second rule, a refinement of the dynamic BB approach, aims at defining more coarse-grained
FSRs while considering function calls within the program. Each function call, indicated by the
instruction call, followed by a jump back to the call’s origin using the ret instruction, represents

36For instance, the spectrum of various x86-ISA jump instructions consists JE, JZ, JNE, JNZ, JB, JC, JNAE, JNB, JAE, JNC, JBE,
JNA, JA, JNBE, JS, JNS, JP, JPE, JNP, JPO, JL, JNGE, JGE, JNL, JLE, JNG, JG, JNLE, JMP, JO, JNO, JCXZ, JECXZ, and JRCXZ [Cor22].

106

5.2 Fault-Space Region

an implicit unconditional jump. Therefore, CALL and RET and all its relevant variants37 also serve
as BB entry and exit points and are handled within the BB regions. A simple extension in the if
condition in the code snippet from Listing 5.2 is required to create the FSRs at the function level:
The code must explicitly check for CALL and RET instructions, which allows for identifying function
boundaries and determining FSRs using function calls accordingly. This approach determines larger
FSRs, where each FSR is a set of dynamic BBs.

5.2.2 Distinguishing Inner and Outer Fault-Equivalence Set

When applying DUP, the one-dimensional FESs are generated; each single one consists of a collection
of FS points corresponding to a location l j at different points in time. Each FES j has a start tFES j , start =
{min t i | ∀(t i , l j) ∈ FES j}, representing the earliest occurrence, and an end tFES j , end = {max t i |
∀(t i , l j) ∈ FES j}, representing the latest occurrence. Therefore, the temporal interval for an FES j

spans from time tFES j , start to tFES j , end.
The method uses the identified region borders to determine the FESs extending beyond a region

border. Each b ∈ B in the set of region borders B represents a specific point in time within the FS,
indicating the beginning of a new FSR. For instance, a first region border b0 = 5 indicates that a jump
instruction occurred between t4 and t5. By applying the following condition, we can quickly identify
those FESs that correspond to the FSRk by crossing the FSR closing border bk+1 (see Figure 5.3 for
reference):

bk ≤ tFES j , start < bk+1 ≤ tFES j , end (5.1)

These FESs are considered as outer FESs and will be used to determine the pilots using FSRs.
The remaining FESs are inner FESs and are not considered when determining the pilots.

5.2.3 Defining Fault-Space Region Pilots

Once the region borders of the FSRs and the original FESs of the DUP have been sorted based on
whether the FESs cross a region border, the next step is to select pilots for the FI campaign. This
step involves determining a point within the FS and assigning a corresponding weight to the pilot.

The points within the FSRs are chosen based on selecting the latest possible time, specifically,
inject on read [Bar+05] for every outer FES. The choice is because any system failure visible outside
of the system must have propagated through all FSRs until the end. For an activated fault involving
an inner FES to be propagated and observed at the end, the activated fault must also manifest in an
outer FES. In other words, the activated fault must traverse somehow through the outer FESs of the
FSRs in order to reach the end of the program and be observed.

Although this approximation allows for saving FIs, it also leads to a certain degree of deviation,
making applying FSRs a non-precise method. However, despite the deviation, applying FSRs reduces
the required FIs significantly, as detailed in the upcoming evaluation section.

An accurate weight function is crucial to ensure complete coverage of the FS despite the deviations
occurring by omitting the inner FESs. This weight function assigns appropriate weights to the
selected pilots, considering the significance and impact of each FI in achieving complete FS coverage.

37Far fewer instruction variants typically need to be considered compared to jump instructions, making the computation
manageable from this perspective. In the case of x86 architecture, only the CALL variants CALL and SYSCALL, as well as the
return variants RET, RETF, IRET, and SYSRET exist [Cor22]. I have not considered system calls and interrupt variants for this
dissertation as they have not been implemented in my benchmark portfolio.

107

5.2 Fault-Space Region

5.2.3.1 Weight of a Fault-Space Region

The weights of the FSR pilots must consider both the inner and the outer FESs to ensure complete
FS coverage.

The FS is divided into distinct temporal parts by defining the region borders. Each FES j that
starts within a region FSRk, as defined by the borders, belongs to that specific FSRk. Therefore, we
can accurately define a single FSRk as a set of FESs, which leads to the following expression for the
definition of an FSRk:

FSRk =

�

⋃

j

FES j

�

� bk ≤ tFES j , start < bk+1

�

The FSR pilots cover the set of all FESs in the FS, including the inner and outer FESs. As a
result, these pilots cover an entire FSR and all potential FIs associated with it. The FSR’s weight is
determined to quantify the coverage provided by the pilots. This weight indicates the size of the
absolute set of points in the FS covered by the FSR. The weight of the k-th FSR is calculated as the
sum of the cardinalities of all FESs belonging to the FSR:

wFSR(k) =

�

∑

j

|FES j |
�

� FES j ∈ FSRk

�

The collective set of all FSRs corresponds to the set of all FESs after applying the DUP. Ultimately,
this represents the complete effective FS, so considering all FSRs makes this method complete
regarding the FS.

5.2.3.2 Evolved Weight Functions for the Fault-Space Region Pilots

Once the weights for all FSRs are determined, assigning these weights to the pilots within each
FSR is necessary, which ensures that the total sum of weights for all pilots across all FSRs matches
the weight of the effective FS. During my research, I developed two weight functions to address
this requirement. Both weight functions use the arithmetic mean and weighted arithmetic mean,
respectively.

Arithmetic Mean Weight Function

The first weight function wmean, based on the arithmetic mean, distributes the weight wFSR of the k-th
FSR evenly among every pilot pi within the FSRk, which I define as follows, where PFSRk

represents
the set of pilots for FSRk:

wmean(pi) =

�

wFSR(k)
|PFSRk

|

�

� pi ∈ PFSRk

�

This weight function ensures a uniform distribution of an FSR weight among all pilots within FSRk.
It treats each pilot as equivalent necessary for propagating activated faults across FSRs, regardless
of the individual sizes of the propagating outer FES used for an FI.

Weighted Arithmetic Mean Weight Function

The second approach distributing the weight of FSRk among its pilots depends on the size of the
corresponding outer FES. This weight assignment considers the individual influences of the pilots

108

5.2 Fault-Space Region

within FSRk, considering the sizes of their associated FES. The intention is to assign a higher weight
to pilots associated with larger FES, inspired by the weighting strategy employed by DUPs.

Each outer FES within an FSR represents a portion of the FS directly and precisely covered by
an FI, which means a single pilot covers the part covered by its associated FES. As the outer FESs
potentially propagate activated faults from one FSR to another until the end of the program, it is
reasonable to use the outer FESs and their weights to determine a suitable weighted distribution for
the FSRk pilots.

First, the part of the FSR containing only the FS points belonging to an outer FES is determined.
Equation 5.1 defines the condition for identifying the outer FESs, which leads to the weight of the
FSR with outer FESs only:

wFSR, outer(k) =

�

∑

j

|FES j |
�

� FES j ∈ FSRk, bk ≤ tFES j , start < bk+1 ≤ tFES j , end

�

All FESs that do not satisfy this condition above are in the inner FESs part of the FSR. The
summed sizes of all inner FESs added with the outer FSR weight result in the weight of the entire
FSR wFSR. Using the outer FSR weight wFSR, outer, the total weight of the FSR wFSR(k) is distributed
proportionally based on the sizes of the associated pilot’s FES:

wwmean(pi) =

�

wFSR(k) ·
|FES j |

wFSR, outer(k)

�

� pi ∈ FES j

�

So, the weight function wwmean assigns more weight to pilots originating from larger FESs, as
they precisely cover more points in the FS. Thus, wwmean is thus more consistent with the weighting
approach used in the DUP method.

5.2.4 Summary of Applying Fault-Space Regions

Applying FSRs aims to reduce the number of pilots required for complete FS coverage. The reduction
is achieved by injecting a subset of PDUP based on the DUP method. The following steps summarize
my contributed method:

1. Develop a rule for setting the region borders (see Section 5.2.1). In my work, I have analyzed
the program structure of the benchmarks and established rules based on dynamic BBs or
function scopes. These FSRs are modular instruction sequences or temporally separated parts
of the FS.

2. Use the region borders to determine the FESs of the DUP that cross a region border (see
Section 5.2.2). Faults activated within an inner FES eventually manifest in one of the border-
crossing outer FES. Therefore, the outer FESs represent the parts of the FS that propagate
potentially activated faults across the FSRs.

3. Assign a pilot to each outer FES and determine pilot’s weights using a weight function (see
Section 5.2.3). The DUP pilots only of the outer FESs are FSR pilots as well and I have
developed two weight functions for this purpose: One is an arithmetic mean, and the other is
a weighted one.

As the inner FESs are only indirectly incorporated into the method through the weighting of the
pilots in the outer FESs, applying FSR becomes an approximation. Although the approach provides
complete coverage of the FS, it may add a deviation in the results. However, as the evaluation will

109

5.2 Fault-Space Region

demonstrate, reducing the number of required pilots is significant without causing drastic deviations
in correctness.

The resulting FSRs using the abovementioned rules above will be named Basic-Block Region
(BBR) and Call Region (CR) for the rest of this dissertation.

5.3 Evaluation

In this section, I present the evaluation results of applying FSRs. Firstly, I discuss the two evaluation
criteria: (1) the reduced number of pilots required to achieve complete FS coverage and (2) the devia-
tion from the precise results obtained with DUP, considering that applying FSRs is an approximation
method. Next, I present the findings regarding the locality of the results because I coarse the focus
point of the FIs from individual instructions to more significant code regions. Finally, I briefly sketch
the validation of the FSR method.

5.3.1 Fault-Space–Region Effectiveness and Result Deviation

The goal of applying the FSRs is to reduce the number of pilots required for complete coverage
of the FS. To assess the effectiveness of this FI campaign acceleration method, I have defined the
corresponding metric in Equation 3.1 on page 61. This metric quantifies the percentage reduction in
the number of pilots needed for full FS coverage.

Since the pilots only pertain to the outer FESs of the FSRs and the inner FESs are indirectly
accounted for through the weights of the outer FESs, applying FSRs is an approximation and may
yield imprecise results. To evaluate the meaningfulness of these imprecise results, I consider the
deviation of the results as a measure of accuracy.

DUP provides the ground truth to establish a baseline for comparison. The set of DUP pilots PDUP

corresponds to its results RDUP. By examining RDUP and identifying which FES each pilot belongs to,
it is possible to make precise and comprehensive statements for each point in the FS. The union of
all FESs represents the effective FS. The classification-specific weight accumulation function wacc(c)
globally assesses the impact of a specific failure class c of the set of all occurring failure classes C
and its share in the whole FS. The function wacc using the single pilot weights w(pi) regarding its
corresponding FESs is defined as follows:

wacc(c) =

� |PDUP|−1
∑

i=0

w(pi)
�

� pi ∈ PDUP, c ∈ C , (pi , c) ∈ RDUP

�

The function wacc represents the process of traversing the entire FS point by point and recording
each class that occurs. It captures the semantic equivalent of examining the FS comprehensively
and accumulating the weights for each failure class encountered.

I also apply this weight function wacc to the results obtained after applying FSRs for each failure
class that occurs. If there were no deviation and the FIs yielded identical results compared to DUP,
the accumulated weights for each failure class would be the same as for DUP. However, even a single
different result leads to differences in the accumulated weights for the corresponding failure classes.

Therefore, the deviation δ resulting from applying FSRs, compared to the precise DUP, is mea-
surable directly when comparing the individual accumulated weights for each failure classification.

110

5.3 Evaluation

These absolute differences in weight are then normalized using the geometric mean38 χgeo over the
total amount of points overall FESs or rather in the effective FS E , allowing for cross-benchmark
comparability. The deviation δ is thus defined as follows:

δ = χgeo

��

|wacc, DUP(c)−wacc, FSR(c)|
|E |

�

� ∀c ∈ C

��

5.3.2 Results Overview

In this section, I present the evaluation results of applying FSRs. I begin by providing a comprehensive
overview of the developed regions, including BBRs and CRs, and both weight functions I developed.
Following this overview, I delve into the results for each benchmark, considering them as a whole FS
and then separating them by memory FS and register FS for a more detailed perspective.

To enhance the understanding of the approximation itself and its characteristics, I will also present
an analysis of the locality of the results. This analysis provides insights into how the application of
FSRs affects the distribution and proximity of the FIs within the FS.

Finally, I sketch the validation of the evaluation, where I demonstrate the ability to produce
identical (precise) results to the DUP with a specific configuration. This validation ensures the
reliability of the FSR approach.

By analyzing and presenting these results, we gain valuable insights into the effectiveness and
applicability of FSRs in reducing the number of required pilots and its impact on the precision of
results.

First, I show initial findings across MiBench and Micro benchmarks from my benchmark portfolio
to provide an initial impression in the preliminary section. In this context, I thoroughly examine the
whole FS, encompassing its temporal dimension and all locations. This FS offers a comprehensive
perspective on the entire system. It encompasses faults in all critical storage and computation
components, including the processor, memory, and, indirectly, caches. Moreover, I analyze this both
collectively and individually for registers and memory. Within each of these distinct FSs and using the
geometric mean, I present the percentage reduction ∆n in the required FI, along with the deviations
δ from the results given by the DUP for the weight functions highlighted in Section 5.2.3.2. I provide
these comparative insights for both BBRs and CRs.

5.3.2.1 MiBench Benchmarks

Table 5.1 shows an overview of all the MiBench benchmarks. When considering the whole FS under
examination, FSRs achieve notable reductions in the required FI are achieved: −72.45 percent
when applying BBRs and −87.51 percent when using CRs. However, applying the weight function
wmean and directly comparing the results achieved with RFSR against RDUP yields deviations of 18.66
percent for BBRs and 30.77 percent for CRs. By employing the weight function wwmean, the deviations
are considerably diminished compared to wmean. The deviations are merely 1.13 percent for BBRs
and 4.84 percent for CRs. This analysis highlights that, in general, the reductions in required FIs
for complete FS coverage are higher when CRs are employed. However, deviations are also more
significant in this scenario. From an overview perspective, the data demonstrates that BBRs showcase
less deviation from actual results than CRs. This overview also shows that using wwmean leads to
considerably lesser result deviations than using wmean.

38The geometric mean χgeo is a statistical measure commonly used to calculate a set of values’ central tendency or
average. It is computed by taking the n-th root of the product of the values x i , where n is the number of values in the set:
χgeo = npx0 · x1 · . . . · xn−1. The geometric mean is particularly useful when dealing with datasets that have multiplicative
relationships between the values [LR22].

111

5.3 Evaluation

Fault Space Whole Memory Register

∆n [%] BBR −72.45 −11.64 −83.72
[%] CR −87.51 −39.90 −97.30

δ mean [%] BBR 18.66 20.95 25.74
[%] CR 30.77 22.66 58.73

δ w.mean [%] BBR 1.13 0.10 20.94
[%] CR 4.84 3.58 45.09

Table 5.1 – Evaluation Overview of all MiBench Benchmarks.
The table illustrates the reduced percentage of necessary FIs, denoted as ∆n, and the deviations
δ given as the geometric mean for the MiBench Benchmarks. The shown deviations pertain
using the two presented weighting functions, wmean and wwmean. The column whole FS refers to
the entire FS, defined as F = T × L. This FS is divided into two distinct segments: the memory
FS and the register FS. This separation allows a more profound view of the underlying evaluation.
This data is further distinguished using the FSR rules BBR and CR.

Directing our attention to the second column, which focuses on the separate analysis of the FS
containing only registers, we observe an even more substantial reduction. However, this reduction
leads to notably higher deviations in the results. CRs achieve a remarkable −97.3 percent reduction.
Nevertheless, this reduction comes with deviations of 58.73 percent and 45.09 percent, indicating
significant disparity in the outcomes. On the other hand, when employing BBRs, although the
reduction in FIs is slightly less, the deviations are comparably lesser than CRs.

Shifting our focus to the memory FS analyzed independently, the reductions achieved are more
modest. However, these smaller reductions lead to correspondingly minor deviations in the results.
Specifically, in the case of the BBRs within the MiBench benchmarks and with the wwmean weight
function, there is an −11.64 percent reduction in the number of FIs with an impressively minimal
deviation of only 0.1 percent.

I will delve into this point in more detail in the subsequent sections. However, I want to sketch this
already: The reduction observed in the context of registers can be attributed to the generally smaller
FESs because data in registers do not last long compared to data in the memory. Consequently,
more FESs in the register FS are categorized as inner FESs when applying the FSR approximation,
leading to their exclusion. Although this results in substantial reductions, it also yields suboptimal
precision in the outcomes. Conversely, the memory FS behaves distinctly differently. The FESs are
comparatively larger, resulting in a considerable portion of outer memory’s FESs, and hence not
excluded. Consequently, in contrast to the register FS, a smaller proportion of the inner FESs’ weight
needs to be distributed to the outer FESs in the memory context which results in a more feasible
deviation of the results.

5.3.2.2 Micro Benchmarks

In Table 5.2, I present an overview of the Micro benchmarks. In general, there is a notable reduction
in the number of FIs, yet the overall deviation is notably more pronounced when compared to the
MiBench benchmarks. However, there is an exception to this trend found within the memory FS,
mainly when BBRs and wwmean are employed, resulting in a minimal deviation of only 0.74 percent.
When scrutinizing the deviations of individual benchmarks within this category, the results vary,
ranging from 0.004 percent (µFIB) to 1.95 percent (µMIX) when using BBRs and wwmean. However,
the deviations to the MiBench benchmarks are substantially higher under any other configuration.

112

5.3 Evaluation

Fault Space Whole Memory Register

∆n [%] BBR −61.00 −10.29 −70.81
[%] CR −76.89 −29.45 −86.84

δ mean [%] BBR 46.94 18.65 29.93
[%] CR 50.37 19.17 59.90

δ w.mean [%] BBR 11.23 0.74 18.97
[%] CR 32.90 6.92 59.51

Table 5.2 – Evaluation Overview of all Micro Benchmarks.
This table shows the same type of data like as Table 5.1 but overall Micro benchmarks instead.

The FSR’s poor performance in the Micro benchmarks depends on their minimal workload.
These benchmarks consist of only 54 to 2093 instructions (the Mibench benchmarks have at least
40647 instructions), resulting in a small number of BBRs ranging from 14 (µLSUM and µMIX)
to 490 (µFIB) or a small number of CRs ranging from 5 (µLSUM and µMIX) to 183 (µFIB). The
limited workload and the unfavorable ratio between the limited number of FSRs and the number
of instructions leads to the classification of many FESs as inner FESs, resulting in notably high
deviations in the obtained results. Due to this, the Micro benchmarks are unsuitable for evaluating
the FSR in terms of instruction volume.

5.3.2.3 Overview Summary

At this point, I present a summary so far and highlight the key points we will delve into next:

Impact of Fault Spaces: When considering the FS as a whole or segregating it into memory and
register locations, different outcomes emerge regarding the reduction of FIs and the deviation
of the results.

• Application of the FSRs method proves effective across the whole FS, resulting in notable
reductions and manageable deviations.

• In the register FS, reductions are substantially higher, but deviations are also more pronounced
due to the small size of FESs, causing the omission of many inner FESs.

• Reductions within the memory FS are comparatively lower, yet deviations are significantly
reduced compared to the register FS, primarily due to the larger FESs and increased presence
of outer FESs.

Effect of Weighting Functions: The two developed weighting functions yield strongly varying
results.

• The relatively simplistic weight function, wmean, leads to substantial deviations and appears
unsuitable for the FSR method.

• In contrast, the weight function wwmean produces more accurate results and seems suitable for
applying FSRs.

113

5.3 Evaluation

Comparison of FSR Types: The two developed FSR rules exhibit distinct behavior.

• BBRs, with their finer granularity, yield more precise results than CRs, accompanied by legiti-
mate reductions in FIs.

• Using CRs leads to more inner FESs, leading to higher reductions in FIs and elevated outcome
deviations.

Workload and Program Structure Impact: The workload and program structure plays a pivotal
role in determining the effectiveness of the FSR method.

• Micro benchmarks, characterized by low workloads and a limited number of generated FSRs,
are not well-suited for this method.

• In contrast, the MiBench benchmarks, featuring significantly higher workloads, prove more
suitable for FSR application, resulting in statistically more stable results concerning deviation.

In the following sections, I will delve into more comprehensive results for each benchmark,
reinforcing the initial observations. To streamline the amount and presentation of the displayed
data, I will entirely exclude unsuitable aspects. Therefore, I will refrain from discussing the wmean

weighting function or the Micro benchmarks from this point onward.
Despite the apparent unsuitability of the FSR method for the register FS, I present detailed results

for comprehensiveness. This dissertation thoroughly addresses these results as an integral part of
the complete FS.

5.3.3 Fault-Space–Separated Results

In the subsequent sections, I will present more detailed evaluation results. Initially, I will present the
findings for the whole FS, followed by the distinctions between the memory-only and register-only
FS to explore the effectiveness of the FSRs on different location types.

5.3.3.1 Whole Fault Space

In this investigation, I thoroughly examine the whole FS of all MiBench benchmarks, encompassing
the complete temporal dimension and all accessible system locations. These locations encompass all
registers and memory addresses available within the ISA layer.

In Table 5.3, I begin by presenting the foundational data for each benchmark. This first dataset is
the workload, defined as the number of instructions within the benchmark, effectively representing
the length of the temporal dimension T of the FS. Additionally, the table provides the total size of
the F and the size of the effective FS E .

As a reminder, the effective FS constitutes the portion of the FS that the DUP effectively considers
and shapes into individual FESs. For each of these FESs, a pilot, essentially an FI, is determined
within the DUP process. The total quantity of these FIs is aggregated and presented as nDUP. Each
nDUP of each benchmark is the ground truth (see Section 3.2.1 on page 59) for every benchmark
evaluation regarding the number of required FIs. Importantly, all these data across all benchmarks
are within the same order of magnitude, ensuring their comparability.

Lastly, I added the number of FSRs (#regions) determined using the BBR or CR rule. All this
data is derived from the program trace, ensuring it is the same across all detailed examinations,
namely register FS and memory FS, except the FS sizes |F |, which may vary.

114

5.3 Evaluation

MiBench- Whole FS miBC miBFD miBFE miQS miRDD miRDE miSHA

|T | 54 434 55 647 54 951 45 774 70 824 70450 40647
|F | [·109] 0.08 2.17 2.16 1.78 3.85 3.81 0.34
|E | [·109] 0.07 1.89 1.88 1.62 3.51 3.46 0.24

#regions BBR 10 666 4 768 4 824 6 211 3 905 3933 5251
CR 1431 409 411 985 390 454 42

nDUP [·106] 2.52 3.50 3.46 2.93 4.17 4.17 2.67
∆n BBR [%] −70.39 −74.61 −74.90 −64.42 −76.73 −77.51 −72.14

CR [%] −92.22 −85.01 −84.88 −85.75 −81.77 −81.87 −97.95

δ w.mean BBR [%] 1.56 0.94 0.77 0.47 2.09 1.93 0.84
CR [%] 3.61 6.02 6.26 1.72 5.61 2.93 9.10

Table 5.3 – Detailed Results of the Whole Fault Space for each MiBench Benchmark.
This figure presents the results of applying FSRs to the MiBench benchmarks. It shows the
temporal dimension’s length of the FS |T |, the overall size of the FS |F |, and the effective part
of the FS |E |. Additionally, it lists the total number of regions (#regions) using BBRs or CRs. For
comparison, the table shows the count of DUP pilots (nDUP) and the reduction achieved in pilots
using BBRs or CRs (∆n). Lastly, the table denotes the deviation observed in the determined FI
experiment outcomes compared to the results of the precise DUP’s FI experiments (δ).

Table 5.3 shows the results for the whole FS of each MiBench benchmark. When using BBRs, the
outcomes exhibit a maximum deviation of 2.09 percent (miRDD), whereas the reductions in the
required FIs range from −64.42 percent (miQS) to −76.73 percent (miRDD).

Conversely, the average deviation increases to 4.84 percent when employing the coarser CR
rule. However, the FI reduction remains substantial, starting from −81.77 (miRDD) percent and
increasing (excluding miSHA) to −92.22 (miBC) percent. Notably, miSHA poses challenges due to
its limited number of function calls, resulting in a higher deviation, as indicated by 9.1.

BBRs are suitable for the entire FS, whereas CRs offer a viable option when a slightly higher
deviation is acceptable.

5.3.3.2 Memory Fault Space

In Table 5.4, I present detailed results for the FSR method applied to the memory FS of each MiBench
benchmark.

For miBC, miRDE, and miSHA, BBRs cause maximal deviations, reaching 0.78, 0.35, and 0.2
percent, respectively. These deviations occur alongside reductions in FIs ranging from −22.9 to
−35.86 percent. However, deviations caused by BBRs in other cases are negligible.

Furthermore, the FI reduction (∆n) achieved by BBRs ranges from approximately 1 percent
(miBFD and miBFE) to −35.86 percent (miRDE). The minor reduction observed for the blowfish
benchmarks (miBFD and miBFE) is due to significant and frequently occurring FESs that span region
borders. In cases where memory is not used for intermediate results, the BBR rule converges toward
the DUP method.

For CRs, the table displays the most substantial deviation, approximately 8.56 percent, for the
miSHA benchmark, coupled with a significant FI reduction of −90.38 percent. This outcome results
from limited function calls, leading to only 5251 FSRs. It highlights that CRs are less practical for
programs with few function calls.

115

5.3 Evaluation

MiBench- Memory FS miBC miBFD miBFE miQS miRDD miRDE miSHA

|Fmem| [·109] 0.06 2.16 2.14 1.76 3.83 3.79 0.33
|Emem| [·109] 0.06 1.88 1.87 1.62 3.49 3.44 0.23

nDUP [·106] 0.12 0.62 0.62 0.57 1.17 1.16 0.52
∆n BBR [%] −22.90 −1.27 −1.18 −13.95 −34.69 −35.86 −23.78

CR [%] −45.11 −23.14 −23.34 −40.03 −39.65 −38.96 −90.38

δ w.mean BBR [%] 0.779 0.003 0.004 0.076 0.183 0.353 0.201
CR [%] 4.113 4.182 4.073 1.099 4.945 1.646 8.557

Table 5.4 – Detailed Results of the Memory Fault Space for each MiBench Benchmark.
This table shows the same type of data as in Table 5.3 but focuses only on the locations of the
memory FS. The values for the |T | and #regions are equivalent to those in Table 5.3.

Apart from miSHA, CRs reduce the number of FIs by at least −23.14 percent and up to −45.11
percent, with deviations ranging from 4.18 percent to 1.65 percent.

In summary, CRs (excluding miSHA) and BBRs significantly reduce memory FS with moderate
approximation errors.

5.3.3.3 Register Fault Space

For the register FS, the results present a distinct perspective, as shown in Table 5.5. The table reveals
that the register FS is two orders of magnitude smaller than the memory FS and is notably denser
with short-read FESs, which is evident from the minor FS reduction achieved by the DUP method.

This discrepancy comes from the limited number of registers compared to the multitude of
touched memory cells and the brief retention time of register data. Across both rules, the FSR
method can save a minimum of −72.78 percent of all FIs (miBC), albeit at the cost of significantly
higher deviations. Deviations can reach up to 42.59 percent for BBRs (miRDE) and 102.74 percent
for CR (miSHA).

MiBench- Register FS miBC miBFD miBFE miQS miRDD miRDE miSHA

|F reg| [·107] 1.57 1.60 1.58 1.32 2.04 2.03 1.17
|E reg| [·107] 1.23 1.19 1.13 0.83 1.43 1.31 0.78

nDUP [·106] 2.40 2.88 2.84 2.36 3.00 3.01 2.15
∆n BBR [%] −72.78 −90.31 −90.90 −76.66 −93.20 −93.63 −83.75

CR [%] −94.58 −98.25 −98.24 −96.83 −98.28 −98.48 −99.76

δ w.mean BBR [%] 12.68 14.55 8.72 15.64 57.53 67.11 26.39
CR [%] 36.53 42.73 54.47 17.09 44.15 42.59 102.74

Table 5.5 – Detailed Results of the Register Fault Space for each MiBench Benchmark.
This table shows the same type of data as in Table 5.3 but focuses only on the locations of the
register FS. The values for the |T | and #regions are equivalent to those in Table 5.3.

These substantial deviations stem from a prevalent register-usage pattern that conflicts with the
assumption that the FSR method captures region computation results by selecting the border-crossing
FESs. In situations where intermediate results are computed in registers but subsequently written to

116

5.3 Evaluation

memory before leaving the region and the scoped FS (for instance, caller-saved registers for CR),
the relevant data flows occur within the FSRs, bypassing the FSR method in memory.

As a result, FSRs are unsuitable for a register-only FS when intermediate results traverse through
main memory.

5.3.4 Locality of the Results

For a resilience assessment of systems or programs, the focus often extends beyond the end-to-end
error rate (see Section 2.1.4 on page 21). Comparing different program parts or sections becomes
pivotal. For instance, detailed FI results empower system designers to decide which functions require
additional software-based hardening measures, such as triple-modular redundancy.

The application of FSR represents a shift in focus from individual instructions to larger code
regions. Consequently, the method can no longer distinguish between adjacent instructions but
instead calculates local error rates for each FSR, which remains feasible because the FSR method
approximates, independently for each region, from the FI results of the outer FESs to all FESs within
the region.

Furthermore, since FSRs align with the program structure and partition the execution trace along
the time axis, they still enable differentiation between various program phases and code blocks. For
instance, with BBRs, the method can assess whether the initial execution of a loop body is more
vulnerable than subsequent iterations.

In the ensuing sections, I will explore how well the FSR method with the BBR rule can provide
localized results and whether this locality is sensitive to specific benchmarks, FSs, or failure classes.
As CRs exhibited higher deviation at the whole program level, I will concentrate solely on BBRs in
this section.

For each BBR, I compute two error-rate vectors: a precise one and an approximated one. These
vectors encompass results for each of the four failure classes. For the precise baseline, I weight the FI
results for inner and outer FESs according to their FES size. In contrast, for the approximated vector,
I apply weights to the results of the outer FESs according to wwmean. Subsequently, I calculate relative
deviations element by element and employ the geometric mean to summarize the BBR-specific
precision.

5.3.4.1 Benchmark- and Fault-Space Sensitivity

To begin with, I aim to assess the sensitivity of the local results concerning different benchmarks
and the three used FSs. As a general expectation, higher precision at the whole program level
(Table 5.3-5.5) should correspond to better local results.

For the register FS, which already exhibited challenges at the whole-program view, the method
demonstrates significant deviations when scrutinizing individual BBRs, which results in median
deviations ranging from 29.6 percent (miQS) to the maximum 100 percent (miRDD and miRDE).
Even five 75-percent quantiles show up to 100 percent deviation from the actual result. Once
again, this highlights that the FSR method is less suitable for a register-only FS, as local results can
effectively bypass the region borders in memory.

Figure 5.4athe boxplot depicting BBR-result deviations considering the combined FS. We observe
that the median deviations remain below 45 percent, with a 75-percent quantile extending up to
49.4 percent (miBC). Consequently, good results in the whole-program approximation (Table 5.3)
correspond to more precise results for the local error-rate function. For instance, miQS displays a
median deviation of 11.4 percent.

117

5.3 Evaluation

miBC
miBFD

miBFE
miQS

miRDD
miRDE

miSH
A

0

20

40

60

80

100

120

De
vi

at
io

n
[%

]

BBR Locality (all failure classes) per Benchmark

(a) Boxplots representing all benchmarks across all failure
classes. Each data point represents the geometric mean of
relative deviations within the local error-rate vector for a
single Basic-Block Region.

miBC
miBFD

miBFE
miQS

miRDD
miRDE

miSH
A

0

20

40

60

80

100

120

De
vi

at
io

n
[%

]

BBR Locality (only SDCs) per Benchmark

(b) Boxplots showcasing all benchmarks for the Silent Data
Corruption failure class. Each data point signifies the relative
deviation within the local SDC error rate for an individual
BBRs.

Figure 5.4 – Deviations in Local Results for the Whole Fault Space per Benchmark.
The red line denotes the median, the boxes enclose the 0.25 and 0.75 quantiles, and the whiskers
extend to the last value within 1.5 times the interquartile distance. For clarity, the box plots do
not show the outliers.

Moving to the memory FS, I observed the most precise local results, as anticipated from the
whole-program approximation. In this case, all benchmarks exhibited a median relative statistical
error of zero, and only one benchmark displayed a 75-percent quantile unequal to zero: miQS
remained below 0.1 percent deviation in the 0.75-quantile. Consequently, BBRs are well-suited for
the whole-program approximation and provide precise local results for the memory FS.

5.3.4.2 Failure-Class Sensitivity

In addition to benchmark and fault-space sensitivity, I have also delved into the sensitivity of BBR-
specific results across different failure classes. This investigation is particularly relevant because, in
practice, some failure classes, especially SDCs, hold more significance in assessing the resilience
of a program segment or code block. Therefore, I have conducted a detailed examination of local
deviation results for the combined FS, which provides the most comprehensive coverage of program
behavior.

Figure 5.5 shows boxplots depicting relative error-rate deviations across all benchmarks, grouped
by their failure class. Notably, traps show the highest degree of imprecision (median: ≈ 63 percent),
which heightened imprecision suggests that such outcomes more frequently result from FIs within a
BBR.

Conversely, the BBR rule yields the most favorable results for the most critical failure class: SDC.
Here, the median deviation is 11.1 percent, and the 75-percent quantile remains below 20 percent.

With this insight, Figure 5.4b concentrates exclusively on SDCs and presents the per-benchmark
quality of BBR-local results. This figure uses the same boxplot as Figure 5.4a but with an SDC class
filter applied.

Observations reveal that median precision for local SDC rates is generally higher for all bench-
marks except for miQS. Median values span between 0.97 percent for miSHA and 19.62 percent for
miBC and 0.75 quantiles range from 9.22 percent (miRDD) to 31.04 percent (miQS). Since local

118

5.3 Evaluation

SD
C

Ben
ign

Tim
eo

ut Tra
p

0

20

40

60

80

100

120

De
vi

at
io

n
[%

]

BBR Locality per Failure Class

Figure 5.5 – Deviations in Local Results for the Whole Fault Space per Failure Class.
These boxplots illustrate data points from all benchmarks across various failure classes for the
whole FS and represent the median, quantiles, and whisker values as in Figure 5.4.

results for the SDC class are often more precise than those of other failure classes, the data flows
resulting in SDC incidents frequently cross a BBR border and are effectively captured by the FSR
method.

This investigation into local error rates underscores that the BBR rule can provide a high degree
of locality. Particularly for SDC failures, which are the most critical, the FSR method with the BBR
rule yields low deviations from precise FIs that encompass the entire FS but at significantly lower FI
costs.

5.3.5 Validation

To validate the FSR approach, I devised a process to calculate the equivalent set of DUP pilots. The
sets of FSR pilots and DUP pilots are equivalent when the FSR method considers all FESs as outer
FESs, meaning that only FESs crossing region borders are taken for pilot determination.

To achieve this, I established a trivial region border rule in which a new region border is set
after each instruction. As a result, the FSR method creates a total of |T | FSRs, each with a temporal
length of 1.

For an FES to be an outer FES, it must cross a region border. FESs with sizes of two or more
satisfy this condition. However, FESs with sizes of 1 do not cross any border and, by definition,
remain classified as inner FESs at this stage of the validation process.

Instructions that consecutively read the same bit generate FESs with a size of 1. In such instruction
sequences, DUP can also not optimize the number of required pilots based on the read and write
accesses, resulting in a pilot with a weight of 1.

The corresponding pilots are equivalent when comparing FESs of size two and larger between
DUP and FSR. The FESs of the remaining pilots of DUP, which have the size 1, are equivalent to
the inner FESs when the FSR approach is applied. Therefore, if one pilot is assigned to each of
these inner FESs, these pilots are equivalent to the DUP pilots with a weight of 1. Finally, the pilots’
weights and, thus, the sum of all pilot weights are the same in both cases; therefore, equivalent FI
campaigns occur.

119

5.4 Summary of Program-Structure–Guided Approximation of Fault Spaces

5.4 Summary of Program-Structure–Guided Approximation of
Fault Spaces

Fault Injection is a powerful means for quantifying a program’s resilience against transient hardware
faults, an essential aspect of assessing the functional safety of critical systems. However, the number
of required FIs escalates rapidly. Even with precise reduction methods like the Def/Use Pruning,
achieving complete and precise Fault Space (FS) coverage becomes impractical.

To address this challenge, I introduce the Fault-Space Region (FSR) approximation method.
FSRs significantly reduce the number of necessary FIs while maintaining relatively low deviation in
failure classification. I construct these FSRs from program structures, such as basic blocks and call
instructions, by analyzing the program trace objdump. Faults are only injected into data flows that
cross a region border (as explained in Section 5.2.1). A single pilot is defined and injected for these
outer Fault-Equivalence Set (FES), whereas the inner FESs are omitted from injection (as presented
in Section 5.2.3 and Section 5.2.2). To distribute the weight of the omitted FESs to ensure FS full
coverage, I have developed two weight functions: wmean and wwmean (as detailed in Section 5.2.3.2).

I compare the required faults between the precise DUP and my FSR method in the evaluation. I
also quantify the approximation error between the two methods when applied to three different
FSs: general-purpose registers, main memory, and both concurrently.

The MiBench benchmarks provided valuable insights into the effectiveness of the FSR method. For
seven MiBench benchmarks from the automotive and security categories, the FSR method achieved
an average reduction in the required faults for the entire FS by 77.51 percent, with a relative
approximation error of less than 2.09 percent regarding the whole FS. However, the workload
must not be too small for high effectiveness. Therefore, the micro benchmarks in the dissertation’s
benchmark portfolio were unsuitable.

The evaluation revealed that the FSR method for the register FS faces challenges due to the
short length of FESs. Consequently, fewer FESs cross region borders or cause faults to bypass into
memory. Additionally, the weight function wmean is unsuitable, leading to significant deviations. In
contrast, wwmean performs much better and is the preferred weight function. Comparatively, the Call
Region (CR) rule demonstrated higher reductions in FIs but resulted in higher deviations than the
Basic-Block Region (BBR) rule.

In light of these findings, the optimal approach for applying the FSR method is to consider the
whole FS or the memory FS, using the BBR rule and the wwmean weight function. This generally
appliable combination strikes a balance between reducing FIs and minimizing deviations.

Furthermore, I present the locality of the results obtained through the FSR method. For this, I
compare the precise error-rate vector (DUP) with the error-rate vector approximated by the FSR
method. The FSR method demonstrate a solid ability to maintain the locality of results, particularly
concerning the failure class Silent Data Corruption, with a median deviation of 11.1 percent.

TRY IT OUT: Program-Structure–Guided Approximation of Fault Spaces in FAIL*

For those interested in the source code of the evaluated Fault-Space Region instances, based
on basic blocks and function scopes, it can be found within the prune-trace tools directory of
the FAIL* GitHub repository:

https://github.com/danceos/fail

120

https://github.com/danceos/fail

6
Timeout-Detection Methods for

Fault-Injection–Experiment
Acceleration

You build on failure. Use it as a stepping stone and close the door on the past.
Don’t try to forget the mistakes, but don’t dwell on it.

JOHN R. “JOHNNY” CASH (1932–2003)

The complete duration of an FI campaign comprises n essential pilots. These pilots encompass
the entire FS, and each of these single FI experiments requires time duration of texp. Consequently,
the total duration of the FI campaign is tcpn = n · texp. In the previous two chapters (4 and 5), I have
introduced two methods to reduce the overall campaign duration tcpn by minimizing the number of
pilots n.

This chapter delves into the FI experiment time texp, a factor that has not yet received attention
in my dissertation. Herein, I provide a detailed examination of the timeout failure class, signifying
instances where program execution fails to terminate after an FI. I will describe the existing ap-
proaches for handling timeouts in general and in the context of FAIL* and explore the potential gains
from optimizing the handling of timeouts, or rather the prediction of timeouts. This problem presents
a formidable challenge as it can be reduced to the renowned Halting Problem [Gö31; Tur37], thus
defying deterministic solutions.

Furthermore, this chapter outlines various approximation methods I have previously developed
and evaluated. These methods are introduced to address the timeout prediction challenge in greater
depth. Notably, the method that has demonstrated the best performance is ACTOR. I provide a

121

6 Timeout-Detection Methods for Fault-Injection–Experiment Acceleration

comprehensive exposition of this effective timeout prediction method within the context of FI
campaigns at the ISA layer. This method can significantly reduce the total campaign duration tcpn,
and I present detailed evaluation results to support this claim.

My colleague presented ACTOR at the SAFECOMP conference [�Tho+22] in 2022, and I was
the paper’s third author. The development of ACTOR occurred in a master’s thesis supervised by me.
I shared my prior research experiences in the timeout context, contributed to the conceptualization
of ACTOR, designed the benchmarks used, analyzed evaluation results for further improvement,
and contributed to paper writing.

122

6.1 Fault-Injection Experiment Time

6.1 Fault-Injection Experiment Time

In this section, I delve into the temporal dimension of individual FI experiments and establish some
definitions to aid in comprehending this chapter. The duration of an FI experiment plays a pivotal role
in shaping the overall runtime of an FI campaign, given that a campaign encompasses a multitude
of such experiments. For instance, as evidenced in the collaborative research [�Tho+22], a total of
2.8 ·107 injections determined by DUP results in the execution of 1.3 ·1012 instructions post-injection,
which entails a sequential runtime of approximately 13 CPU days when employing FAIL* on the
evaluation setup, operating at a simulation rate of 1.16 MHz.

Even within FI frameworks like FAIL*, which exhibit high parallelizability due to their client-
server architecture (see Section 3.1 on page 53), it remains advantageous to minimize the average
duration of individual FI experiments in order to decrease the entire FI-campaign runtime further or
to reduce resources used by the FI framework. To evaluate the potential for reducing the runtime
of FI experiments, I will expound upon several key aspects: the relationship between the number
of FIs, the count of simulated instructions, and the distribution of failure classes throughout the
campaign’s runtime.

This workload analysis of the benchmarks used in this chapter offers insights into the distributions
of failure classes and the number of executed instructions. Whereas other approaches, like those
presented in Section 2.3.3 on page 49, concentrate on the failure class SDC, my focus in this chapter
is on examining the failure class of Timeout (TO).

6.1.1 Experiment Time Line

First and foremost, let me clarify what I mean by the concept of FI experiment time. To aid in this
understanding, Figure 6.1 illustrates the time frame of a FI experiment along with some relevant
intervals.

t 0 t pi t exp,end

...

Pre FI Post FI...
t exp

t|T|−1

tgr

Figure 6.1 – Fault-Injection Experiment Time Line.
This figure shows various definitions for time points and intervals used in this chapter. An FI
experiment starts at time t0 and concludes at time texp, end; thus, its duration is texp. The interval
of the golden run is the period tgr for potential FIs and is defined by t0 and t |T |−1. Each pilot pi

corresponds to a specified FI time t pi
between t0 and t |T |−1. The interval before the t pi

is the
pre-FI interval, and the one after is the post-FI interval. texp, end can occur before t |T |−1 depending
on the behavior of the SUT and the FI (e.g., the SUT triggers a trap immediately after the FI).

An FI experiment begins at time t0, signifying the initial state of the SUT (i.e., before the execution
of the first instruction). The associated pilot, denoted as pi , specifies the injection time point t pi

.
This FI time point is determined regarding the golden run and aligns with one of the recorded time
points in the set T , which falls within the interval between t0 and t |T |−1. The temporal length of the
golden run is tgr. The time interval preceding t pi

is the pre-FI time, whereas the period after t pi
is

the post-FI time.

123

6.1 Fault-Injection Experiment Time

Following the injection, the experiment progresses until it reaches the time point texp, end. At
the moment of texp, end, when the SUT terminates, the FI framework determines a failure class (see
Section 3.1.2 on page 56) for this specific FI. In cases where the SUT does not terminate (detected
by a time threshold being reached for example), the FI framework records a timeout for the pilot.
The time point texp, end can occur before t |T |−1, such as when the SUT triggers a trap immediately
after the FI, but it is after t pi

as per definition.
The elapsed time from the starting point at t0 to texp, end constitutes the duration of the FI

experiment, denoted as texp, which is the focus of this chapter. Depending on the circumstances,
this duration texp may not only be shorter but can also extend beyond the original duration of the
golden run. Such an extension could occur if, for instance, an FI affects a loop’s counter variable,
resulting in its value remaining valid but decreased. Consequently, the loop would run for a more
extended period compared to the golden run. This illustrates how the FI can alter the control and
data flow after the FI occurs.

Furthermore, as discussed in Section 3.2.1.3 on page 62, texp is the sum of both the program’s
runtime tprg of the SUT and any associated cumulated overhead tov. This overhead can arise from
various sources, including the simulation of the SUT and the FI framework, or the implementation
of acceleration methods.

When injecting a specific fault, FI frameworks like FAIL* expedite the program’s execution
to the injection time t pi

and then execute the FI. This acceleration mainly applies to the pre-FI
time. Depending on the specific FI framework, this forwarding process can be optimized through
techniques like checkpointing [KDC05; Ber+02] or hardware-assisted breakpoints [SRS14], as
detailed in Section 2.3.3 on page 49.

However, the post-FI execution cannot be accelerated to the same extent because the FI-induced
control flow may deviate from the golden run and behave unpredictable.

6.1.2 Fault-Injection Campaign Workload

First and foremost, I provide an overview of the overall workload associated with the benchmarks
in this dissertation. Using the precise DUP pilots ensures complete coverage of the FS, as detailed
in Section 2.3.2.1 on page 47. Each of these pilots leads to a corresponding FI, resulting in an FI
outcome categorized within one of the predefined failure classes, as discussed in Section 3.1.2 on
page 56.

I will delve into the distribution of experiments within an FI campaign and how it correlates with
the number of instructions (i.e., the concrete workload). By the end of this section, I will conclude
and pinpoint the specific aspect within this context that will be the primary focus of this chapter.

6.1.2.1 Number of Fault-Injection Experiments and its Simulated Instructions

Figure 6.2a presents the distribution of FI results as percentages for all MiBench benchmarks. The
predominant failure class across all benchmarks is SDC. SDCs account for a percentage ranging
from 15.6 (miQS) to 70 (miBFE) percent in the individual distributions and 49.1 percent (geometric
mean) overall MiBench benchmarks. This indicates that when additional data independent of the
control flow is injected, the SUT can continue functioning correctly but will eventually terminate
with a divergent result. The next most significant class overall is benign, with variations from 12.6
(miSHA) to 60.7 (miQS) percent and an overall portfolio percentage of 22 percent. In these FIs,
the injection proves ineffective, ultimately leading to the correct termination of the SUT due to the
masking effects of individual instructions or the regenerative algorithm semantics. The failure classes
trap and timeout follow closely and exhibit similar proportions. Traps range from 3.7 (miBFE) to

124

6.1 Fault-Injection Experiment Time

15.8 (miRDE) percent, with 8 percent overall, while timeouts vary from 5.1 (miRDE) to 27 (miSHA)
percent, with 7.9 percent overall.

Based on this data, Figure 6.2b shows the number of simulated instructions after the occurrence of
an FI until the end of the benchmark. The count of instructions executed by experiments ending in a
trap is negligible. Compared to the proportion of FI experiments that result in an SDC, the proportion
of simulated instructions drops significantly overall. The proportions of injections associated with
an SDC experiment vary from 13.7 (miQS) to 66 percent (miRDD). Across all benchmarks, the
proportion of instructions relative to the failure class proportions decreases to 40.2 percent. The
number of simulated instructions for benign FI experiments ranges from 10.9 (miSHA) to 53.7
percent (miQS), with a slight decrease overall across all MiBench benchmarks, reaching 19.9 percent.
Notably, the instructions for a timeout experiment have increased compared to all other failure
classes and the FI experiment count from Figure 6.2a. The proportions range from 20.1 (miRDD) to
61.7 (miSHA) percent, accounting for 29.2 percent across all MiBench benchmarks.

m
iS

HA

m
iQ

S

m
iR

DE

m
iR

DD

m
iB

FE

m
iB

FD

m
iB

C0

20

40

60

80

100

FI
 E

xp
er

im
en

ts
 [%

]

(a) Executed FI Experiments

m
iS

HA

m
iQ

S

m
iR

DE

m
iR

DD

m
iB

FE

m
iB

FD

m
iB

C0

20

40

60

80

100

Si
m

ul
at

ed
 In

st
ru

ct
io

ns
 [%

]

Timeout
Trap
SDC
Benign

(b) Simulated Instructions Post-FI

Figure 6.2 – Distributions of Experiment Results and Instructions After Fault Injection.
Figure 6.2a displays the distribution of resulting failure classes across all MiBench benchmarks
in percent. In contrast, Figure 6.2b shows the number of simulated instructions executed post-FI
and how they correspond to the resulting failure classes.

6.1.2.2 Instructions over Fault-Injection Campaign Time

As depicted in the overview provided in Figure 6.2, SDCs constitute the majority of simulated
instructions. However, compared to the proportion of the FI experiment amount, the proportion
of simulated instructions has notably increased during timeouts, which suggests that after an FI, a
significant portion of instructions are executed in FI campaigns corresponding, to the relatively low
number of FI experiments that conclude with a timeout.

Figure 6.3 illustrates the progression of an FI campaign using the miQS benchmark as an example.
The x-axis of this stacked histogram represents the period of the most extended FI experiment,
specifically experiments where the FI initiates before executing the first instruction. On the y-axis,
the figure shows the count of ongoing experiments within the FI campaign at various points post-FI.
The different colors further categorize these counts, representing emerging failure classes. The initial,
almost proportional increase in the number of ongoing experiments is due to the delayed timing of

125

6.1 Fault-Injection Experiment Time

single FIs during the experiments, which varies based on the pilot’s definition and occurs at different
time points. Additionally, the figure highlights the end time of the golden run t|T |−1 for reference.

0 20000 40000 60000 80000 100000 120000
Instructions since Benchmark Start

0.0

0.5

1.0

1.5

2.0

Po
st

-F
I E

xp
er

im
en

ts

1e6

End Time of Golden Run

Timeout
85.2%

Timeout
10.0%

Timeout
9.7%

Timeout
9.2%

Timeout
9.6%

Timeout
9.8%

Timeout
91.5%

Timeout
94.9%

Timeout
97.0%

Timeout
99.8%

miQS
Timeout
Trap
SDC
Benign

Figure 6.3 – Temporal Distribution of Experiments Segmented by Failure Classes for the
Benchmark MiBench Quicksort.
This figure illustrates the histogram of the number of FI experiments at different time points
post-FI for the benchmark miQS. The potential time frame for FIs, as defined by DUP pilots, spans
from the first to the last instruction of the golden run. Each experiment runs for a maximum
of three times the duration of the golden run, which is the timeout threshold in this case. The
number of experiments at each time point is divided into failure classes. The integrals in the
histogram correspond to the number of executed instructions overall, and the segment integrals
based on the failure classes are equivalent to the boxplot data in Figure 6.2b.

The integrals of this histogram for each failure class provide the count of executed instructions
post-FI, corresponding to the data already presented in Figure 6.2b. Therefore, the increased
proportion of timeout instructions mentioned earlier is also evident in this case.

As demonstrated in Figure 6.2a, most of the experiments fall into the benign failure class. A
significant portion of these experiments terminated after the regular end time of the golden run but
before reaching 1.1 times the runtime of the golden run tgr. Experiments that lead to an SDC also
show a similar trend.

At any specific point, the total number of ongoing experiments represents the hypothetical
scenario where all experiments run simultaneously. For instance, at instruction number 20000,
FAIL* executes approximately one million experiments, and of those, 9.4 percent continue to run
until reaching the timeout threshold. Beyond the histogram’s fall (about 49000 instructions), most
experiments conclude and result benign or SDC. Consequently, the proportion of experiments
resulting in timeouts increases. When most experiments terminate, about 49000 instructions, slightly
less than 1.1 times the golden-run duration, approximately 70.6 percent fall into the timeout category.
This proportion steadily rises until the experiment reaches the threshold; the timeout threshold is
three times the runtime of the golden run (ca. 137000 instructions).

Determining an appropriate TO threshold is challenging, making it an open research question.
The conventional approach, irrespective of the FI context, involves extending the program runtime by

126

6.1 Fault-Injection Experiment Time

a specific factor and selecting this extended time as a TO threshold. This factor is inherently arbitrary;
in the literature, factors between two and five are chosen without substantial justification [SB19;
Kal+15; MV12], and Leo and colleagues even suggest a factor of ten [DL+12]. However, when
considering the trade-off between FI campaign runtime and the potential correctness of the ground
truth, I chose a factor of three throughout my work, which seems to be a suitable threshold value
regarding my benchmarks and one commonly used value in the research community.

6.1.2.3 Conclusions

Since the integral in the histogram of Figure 6.3 represents the number of executed instructions post-
FI, a reduction directly equates to optimizing the overall runtime of an FI campaign. As outlined in
Section 2.3.3 on page 49, numerous studies have tackled predicting the outcome of an FI experiment,
specifically whether an experiment results in an SDC or not. In contrast, timeout research is relatively
scarce within simulation-based FI at the ISA level. Consequently, my work has centered on optimizing
the post-FI time of FI experiments that conclude in a timeout.

The potential for optimization is readily apparent in Figure 6.3. If it were feasible to accurately
predict a timeout immediately after an FI, the ongoing experiment would result in a timeout, and the
portion of experiments ending in timeouts in Figure 6.3 would vanish entirely. In the case of miQS,
this would result in significant savings in executed instructions, particularly after the threshold of
roughly 1.1 times the golden-run runtime.

However, predicting timeouts is reducible to the Halting Problem, so timeout prediction is not
deterministically solved. Although it is not solvable in the generic case, with enough additional
information and constraints, there are potential opportunities for handling TOs. Using a TO threshold
provides a practical way to approximate the existence of a timeout.

Nevertheless, selecting an appropriate threshold is nontrivial. Higher thresholds increase the
probability of correctly classifying an FI experiment as a timeout, but they also expand the area
represented in Figure 6.3, thus raising the overall FI-campaign runtime. Conversely, lowering the
threshold to save overall FI-campaign runtime may lead to misclassifications. For instance, if a
threshold of 70000 instructions exists in the case of miQS, 8.5 percent of the remaining experiments
are misclassified as timeouts, although they eventually terminate as non-timeouts.

As the research on timeout prediction in the context of ISA-layer FI is limited in the FI community,
I have focused on optimizing the FI experiment time texp by using acceleration methods that predict
timeout classifications. This, in turn, reduces the overall FI-campaign runtime tcpn.

6.2 Timeouts in Fault-Injection Campaigns

This section will delve into handling TOs, explicitly focusing on TO detectors. I will describe the
properties and approaches for implementing TO detectors. Following that, I will explore how the
decisions made by these detectors impact FI campaigns as a whole, considering the interplay between
correct and incorrect TO determination. Finally, I will assess the tangible potential for FI-campaign
runtime savings that arise from effective TO predictions.

6.2.1 Common Timeout Handling

In defining a TO detector, we need to specify two fundamental properties: when the detector triggers
and the decision logic it employs.

127

6.2 Timeouts in Fault-Injection Campaigns

6.2.1.1 Timeout Thresholds

The timing of the detector’s decision, often referred to as the TO threshold, can be set in two ways
within the context of FIs. As illustrated in Figure 6.4, the two possibilities are as follows:

Relative Threshold t thr,rel Here, the TO threshold is set relative to the injection time, t pi
. The

implementer defines a period xrel, and the detector triggers at t thr,rel = t pi
+ xrel.

Absolute Threshold t thr,abs In this case, the TO threshold is an absolute time, which selects an
absolute, fixed period or relating it to the program runtime, tprg, or the golden-run runtime,
tgr. For instance, setting an absolute threshold of three times the golden-run duration is also
feasible: t thr,abs = 3 · tgr.

t 0 t pi t thr,abs

...

t thr,rel

+x rel
+t thr,abs

Figure 6.4 – Two Possibillities for Defining Timeout-Detection Thresholds.
This figure illustrates two possibilities for establishing a TO threshold on a timeline: (1) The first
approach involves a defined period xrel relative to the injection time t pi

, resulting in a relative
threshold t thr,rel = t pi

+ xrel. (2) Alternatively, the threshold can be defined with an absolute
value t thr,abs.

Relative thresholds are suitable when no golden run is available or when the SUT’s execution
time lacks determinism and predictability. They are also helpful when a consistent and homogeneous
TO behavior across campaigns is desired.

On the other hand, absolute thresholds, independent of any specific runtimes, are universally
applicable. However, using fixed arbitrary values for absolute thresholds can lead to unnecessary
extensions of the FI-campaign runtime. Therefore, it is recommended to establish a reference
to the program or SUT, such as setting the threshold as a multiple of the golden run duration
(e.g., 3tgr) [SB19; Kal+15; MV12; DL+12]. Absolute thresholds relating to the program runtime
provide a more contextually relevant TO determination.

Both approaches offer flexibility in tailoring the detector’s behavior to the specific requirements
of an FI campaign.

6.2.1.2 Detector Decision Logics

There are two approaches to how a detector reaches its decision:

Static Detection In this approach, the detector is triggered at the predefined threshold and decides
independently of the system’s current state. Once the execution reaches the threshold, it results
in a TO.

Dynamic Detection In contrast, when detecting TOs dynamically, the detector evaluates the system’s
state and employs specific heuristics to determine whether a TO has occurred. This approach
allows for flexibility; the experiment can conclude with a TO, the SUT terminates, or the SUT
continues if the TO decision is negative.

These approaches depend on the FI campaign’s requirements and the SUT’s characteristics.

128

6.2 Timeouts in Fault-Injection Campaigns

Static detection is simple but may lead to premature TOs, whereas dynamic detection can be
more accurate but requires careful design and implementation of heuristics. Static detection is a
simple and deterministic way to handle TOs, but it may not be the most efficient or accurate method.
It is suitable for situations where there is consistent TO behavior across FI campaigns or when there
is no golden run to reference. In addition, hard deadlines applied in real-time systems provide natural
static thresholds.

Dynamic detection is more sophisticated and adaptable; it can respond to system behavior
variations and may avoid unnecessary TO recordings if it functions correctly. It is useful when the
system’s execution time varies, is periodic, has unknown aspects, or a more fine-grained approach
to TOs is desired.

Furthermore, static thresholds have no overhead, as they do not process data but only make a
static decision, whereas dynamic detectors and decision-making add overhead overall.

6.2.1.3 Summary

To construct a TO detector within the FI context, the developer must make crucial decisions based
on the properties previously outlined. However, as discussed earlier, all combinations of the two
properties are valid in the context of FI. In the case of FAIL*, a relative and static TO detector has
been implemented, allowing the threshold to be specified in absolute milliseconds.

As per my literature review, within the simulation-based–FI context, static detectors seem to be
the norm. These detectors are typically triggered based on either an absolute or relative threshold.
Developing effective dynamic TO detectors in this domain remains an ongoing research question.

There is a subtle but significant distinction between the two properties concerning the effectiveness
(Section 3.2.1 on page 59) of the TO detector as an FI-campaign acceleration method: (1) Adjusting
the TO detector threshold, regardless of its dependence on the SUT’s program runtime, primarily
impacts the overall runtime of the FI campaign. (2) In contrast, the choice between static and
dynamic TO detector decision logic can significantly influence the accuracy of determining whether
a TO has occurred. Incorrect decisions of the TO detectors are possible, which can affect the quality
of the outcome.

Regardless of implementing a TO detector there should always be a framework threshold with a
static decision where the SUT automatically terminates, an essential and standard TO mechanic.
Using FAIL*, this framework threshold for the static determination of a TO is an absolute value and
does not refer relatively to the pilot’s injection time.

6.2.2 Quality of Timeout Detectors

Implementing a TO detector as an FI-campaign acceleration method introduces another dimension
to its overall effectiveness: the quality of TO detector decisions. In this section, I delve into the
interplay between optimized FI-campaign runtime and the enhanced quality of TO detector decisions.
As the sole focus on runtime optimization is no longer adequate in this context, I also examine how
this quality can be quantified, primarily through statistical binary classification.

6.2.2.1 Campaign Runtime and Timeout-Detection–Quality Trade-Off

Decisions from TO detectors are prone to misclassifications, as already sketched above. However,
when evaluating the effectiveness of TO detectors as FI-campaign acceleration methods, focusing
solely on the saved overall FI-campaign runtime is insufficient.

129

6.2 Timeouts in Fault-Injection Campaigns

Looking at the two extreme cases in choosing the FI threshold, it becomes evident that FI
campaign runtime savings are not the only factor to consider: (1) In one case, a static detector
is triggered immediately at the start of an FI experiment and classifies the experiment as a TO.
This approach is highly effective in reducing the FI campaign’s total runtime. However, it results in
classifying all FI experiments as TOs, regardless of their actual outcome, significantly impacting the
quality of the static TO decisions. (2) On the other extreme, if we assume an infinite threshold as
feasible, this implies that the Halting Problem, in essence, is solvable. In this scenario, all detector
decisions would be correct, leading to the highest possible quality for the TO detector. However, no
meaningful statement occurs from the runtime optimization perspective.

These extreme cases demonstrate the trade-off between FI-campaign runtime optimization and
static detector quality:

The higher the TO detection threshold during an FI experiment,
the higher the quality of the TO detector decision.

A higher average runtime of FI experiments, achieved by setting a high threshold, naturally
leads to a longer overall FI campaign runtime, which is indeed poor. However, the implementer
must consider the trade-off between shorter FI-campaign runtime versus higher TO detector quality
during the TO detector design process.

The theorem mentioned above is also applicable to dynamic detectors. However, dynamic
detectors differ from static detectors because they can continue the FI experiment after making a
correct or wrong decision and repeat the decision when the corresponding used data or system state
changes. Nonetheless, the quality of a dynamic detector still relies on the timing of the decision, that
is, the detector threshold. Indeed, it also depends on the decision logic that considers the system
state of the SUT, providing opportunities to exert control over the program flow.

6.2.2.2 Statistical Binary Classification

Assessing campaign runtime savings when using a TO detector alone is insufficient; the correctness of
the decisions is also essential, as they can potentially result in misclassifications. I employ statistical
binary classification to measure TO detection’s decision correctness (i.e., the quality).

Binary classification categorizes elements of a set into two distinct groups, or classes, using
a predefined classification rule [Bis06]. In my case of TO detectors as FI campaign acceleration
methods, the classification rule is the logic of the TO detector, and the result is the detector’s
prediction of whether an FI experiment results in a TO or not.

Fundamental combinations can occur based on the correct FI experiment classification and the
TO detector decision assigned by the implemented detector logic to evaluate the quality of a TO
detector. As mentioned earlier, there is no inherently correct set of classifications in the context of TO
detection. Employing a static TO detector with an extremely high threshold suffices for evaluation.
During my preliminary investigations, I selected a framework threshold ranging between 100 s and
200 s, while the runtime of a MiBench benchmark program is well below one second. The factor of
> 100 times the program runtime for this framework threshold may be impractical for real-world
applications but serves its purpose for evaluation and establishing a (good enough) ground truth
within the challenging nature of the Halting Problem.

Classifications

Figure 6.5 illustrates four combinations between the actual and predicted classifications [Bis06].
The terms positive or negative describe the TO detector’s decisions. If the TO detector determines

that the FI experiment ends in a TO, the decision is positive; otherwise, it is negative. Depending on

130

6.2 Timeouts in Fault-Injection Campaigns

False
Negative

True
Positive

True
Negative

False
Positive

yes no

ye
s

no

TO detector’s prediction?

Is
 T

O
?

Figure 6.5 – Binary-Classification Combinations for Timeout-Detection Evaluation.
This table displays the four possible combinations for binary classification in evaluating Timeout
(TO) detectors. One dimension stands for the decision made by the TO detector, where Positive
indicates a TO prediction, and Negative represents a non-TO prediction. The other dimension
represents a failure classification from the FI experiment’s ground truth, whether a TO (True)
or not (False). This table allows us to derive the correctness of the decisions and the type of
misclassification (either FP or FN).

the correctness of these decisions, four combinations exist in the context of TO detection during an
FI experiment:

True Positive (TP) The FI experiment without TO detectors proceeds until it reaches the framework
threshold and is classified as a TO. The TO detector correctly predicted the TO at its threshold,
allowing the SUT to terminate at the detector’s threshold. As long as the TO detector threshold
is before the framework threshold, it saves FI experiment runtime, and the prediction is correct.

True Negative (TN) The FI experiment without TO detectors is usually completed and classified
as non-TO. The TO detector correctly predicted that the FI experiment would not result in
a TO and the FI experiment proceeds. Finally, the SUT terminates as it would without an
implemented TO detector; thus no runtime is saved in this case, but the detector’s decision
was correct.

False Negative (FN) The FI experiment without TO detectors proceeds up to the framework thresh-
old and is initially classified as a TO. The TO detector, triggered at its threshold, incorrectly
decides that there is no TO; this is a wrong prediction. The FI experiment continues until it
reaches the framework threshold, at which point it is correctly classified as a TO. In this case,
the TO detector’s decision was wrong, but it has no ultimate consequences for the correctness
of the FI campaign’s resulting failure classifications. This does not save FI-experiment runtime,
but the time between the detector and framework thresholds could have been saved if the
prediction had been accurate. Thus, a detector should produce as few FNs as possible because
every FN wastes potential runtime savings, but FNs do not distort the detector’s correctness.

False Positive (FP) The FI experiment without TO detectors is usually completed and classified as
non-TO. The detector incorrectly decides that the FI experiment will end in a TO. This decision
is incorrect and the FI experiment terminates earlier than an FI experiment without a detector.
In this case, time is saved, but the outcome is wrong. Unlike FNs, FPs distort the TO detector’s
accuracy and the FI campaign’s correctness. A detector should not produce any FPs because
any FP is an actual prediction error and leads to incorrect campaign results.

131

6.2 Timeouts in Fault-Injection Campaigns

Quantifying the Timeout Detector’s Quality

Now that I have provided a more detailed explanation of the binary classifications and their meaning,
the next step is to quantify the quality of the TO detector across a whole FI campaign with various
rates [Bis06]. With n planned pilots, n FI experiments start, and, as described in the previous section,
there will be a total of n classifications concerning the TO detector’s decision,.

The first rate is the TP rate, also known as sensitivity or recall [Bis06]. This rate represents
the proportion of correct TO detections compared to the sum of correct detections (TP) and the
number of wrong non-TO classifications (FN). Analogously, there is the TN rate, also known as the
specificity [Bis06], which signifies the proportion of all correctly detected non-TO FI experiments
compared to the number of correct non-TO detections (TN) and wrong TO detections (FP). The
definitions for these rates are the Equation 6.1 below, where, for example, #TP stands for the
number of TO detector decisions that correctly detected a TO during the execution of the planned
FI campaign:

TP rate :=
#TP

#TP+#FN
TN rate :=

#TN
#TN+#FP

(6.1)

If both these rates equal 1, the TO detector functions perfectly and does not make any misclassi-
fications.

The complementary rates to TP and TN are the FN rate and FP rate,39 which are defined as
follows [Bis06]:

FN rate :=
#FN

#TP+#FN
FP rate :=

#FP
#TN+#FP

(6.2)

As described in the previous section, an FN does not impact the correctness of failure classifications
in the FI campaign. At an FN rate of 1, the FI campaign runtime reverts to what it would be if each
FI experiment had reached the framework threshold. The FN rate does not affect the correctness of
the FI campaign but serves as an indicator of potential FI campaign runtime savings the lower it is.
An FN rate of 0 suggests that potential FI campaign runtime has been saved but does not guarantee
the correctness of individual FI experiment classifications.

The FP rate is higher when more FI experiments are wrongly classified as TO compared to the
number of correctly detected non-TO (TN) and wrongly detected TOs (FP). Accordingly, the FP rate
reflects the correctness of the FI experiment classifications by a TO detector because every FP results
in a wrong failure class within the FI campaign.

As the FN rate indicates, the rates are insufficient individually and must always be considered
together. Since complementary rates exist, I will not delve further into the FN and TN rates; instead,
I will consider the TP and FP rates. Thus, the TP and FP rates together quantify the quality of the TO
detector decisions. An optimal and ideally deciding TO detector has a TP rate of 1 and an FP rate of
0.

6.2.3 Potential Fault-Injection–Campaigns Runtime Savings

This section delves into the theoretical runtime savings achievable through TO detectors. To quantify
an FI campaign runtime saving potential, I define the ground truth for this chapter and outline the
potential FI campaign runtime savings of an optimal TO detector (i.e., the upper bound). Following
this, I analyze the implications of FI campaign runtime savings and how TP and FP rates influence
these outcomes.

39The FN rate is complementary to the TP rate and the FP rate is complimentary to the TN rate.

132

6.2 Timeouts in Fault-Injection Campaigns

6.2.3.1 Ground Truth in this Dissertation

A sufficiently high framework threshold is necessary to determine a ground truth in the TO detection
context. After defining the framework threshold, the FI framework proceeds with the campaign as
planned. The resulting failure classes are used to assess the TO detector’s performance.

As mentioned earlier, I initially employed an exceedingly high, albeit arbitrarily chosen framework
threshold, ranging from 100 s to 200 s, in scenarios with an average program runtime of less than one
second. I assume a high threshold make TOs highly probable to be correctly determined. Although
framework thresholds exceeding 100 times the golden-run runtime tgr suffice to evaluate TO detector
correctness, they are not practical for real-world applications or the productive utilization of FI
frameworks.

Executing FI campaigns with a static 3tgr framework threshold in FAIL* establishes the ground
truth in the TO context. This ground truth serves a dual purpose: it defines both the baseline FI-
campaign runtime and the failure classes used for comparing the performance of the implemented
TO detectors under evaluation.

In this dissertation, I will use the term 3tgr detector to reference the process in FAIL* of recording
a TO at the selected absolute framework threshold 3tgr.

For the evaluation, this chapter focuses explicitly on the MiBench benchmarks only. Through
my research for this chapter, I discovered that the runtimes of the Micro benchmarks need to be
longer to obtain statistically stable and significant evaluation results in evaluating implemented TO
detectors.

6.2.3.2 Optimal Timeout Detector

The ground truth defines one extremum of the FI-campaign runtime savings.
The other extremum is a detector that dynamically decides ideally at the injection time t pi

whether the running FI experiment ends in a TO. I define the (hypothetical) optimal TO detector
OPT, which stops all timeouts at the pilot’s FI time t pi

and thus reaches the theoretical optimum.
As the optimal decision-maker, OPT acts with a TP rate of 1 and an FP rate of 0. Therefore, the
application of OPT removes all post-FI instructions, shown in the stacked boxplot in Figure 6.2b or
the TO integral in Figure 6.3.

Table 6.1 summarizes the percentage of post-FI instructions in the ground truth of the MiBench
benchmarks, which corresponds to the TO percentages in the stacked boxplots of Figure 6.2b. If
OPT were implementable, the percentages of these post-FI instructions listed in Table 6.1 would be
saved, ranging from 20.05 to 61.67 percent, depending on the benchmark, representing the upper
bounds of the potential savings regarding post-FI instructions.

MiBench Benchmark miBC miBFD miBFE miQS miRDD miRDE miSHA

TO Post-FI Instr. [%] 25.18 28.36 28.73 32.26 20.05 22.21 61.67

Table 6.1 – Percentages of Post-FI Instructions in Timeout Experiments.
This table illustrates the overall percentage of post-FI instructions executed from FI experiments
within the ground truth, concluding with a TO for each MiBench FI campaign. The values
correspond to the TO proportions detailed in Figure 6.2b.

The design space of possible dynamic detectors is between these extremes (OPT and 3tgr).
Hence, each implemented dynamic detector adds to the framework-based 3tgr detector, keeping FI
experiments bound.

133

6.2 Timeouts in Fault-Injection Campaigns

6.2.3.3 Analysis

Real-world detectors often have a non-zero FP rate. When applied to a population with many non-TO
experiments, this can result in many FPs. These FPs can skew the failure class and are considered
more significant than FNs, which mainly only extend the FI campaign duration.

To illustrate this, Figure 6.6a demonstrates the impact of the FP rate for an absolute detector
on the percentage of false decisions for the MiBench benchmark miQS; the vertical line represents
the time tgr. Prior to tgr, a detector that is 90 percent correct makes incorrect decisions in roughly
9 percent of cases. However, after tgr, even a detector that labels all experiments as TOs (FP=1)
becomes practical. This effect is even better for detectors with lower FP rates.

Consequently, detectors should operate after tgr, which also rules out relative detectors as they
could often trigger before tgr.

Conversely, there is a compelling argument to activate the detector as early as possible to maximize
its effectiveness and prevent the execution of stuck FI experiments. In this context, Figure 6.6b
provides insight into the reduction in FI-campaign runtime achieved by absolute detectors with
varying TP rates compared to the 3tgr detector.

0 20000 40000 60000 80000 100000 120000
Timeout Detector Invocation [Instr.]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fa
lse

 D
ec

isi
on

 [%
]

miQS
FP=0.01
FP=0.05
FP=0.1
FP=1.0

(a) False Decision Percentages of Hypothetical
TO Detectors with Different FP rates

0 20000 40000 60000 80000 100000 120000
Timeout Detector Invocation [Instr.]

0

5

10

15

20

25

30

Ca
m

pa
ig

n-
Ti

m
e

Re
du

ct
io

n
[%

]

OPT

miQS

TP=1
TP=0.9
TP=0.8
TP=0.7

(b) Campaign-Runtime Savings of Hypothetical
TO Detectors with Different TP rates

Figure 6.6 – Influence of Timeout-Detector Quality on the Campaign’s Correctness and
Runtime Savings.
These figures show the influence of different quality characteristics of TO detectors, the TP rate
and the FP rate concerning potential misclassifications and FI-campaign–runtime savings, using
the miQS benchmark.
Figure 6.6a presents hypothetical FP rates across the runtime of an FI experiment. The percentage
of misclassifications significantly decreases after reaching the time tgr mainly because a significant
fraction of FI experiments have already terminated (as indicated by Figure 6.3).
Figure 6.6b shows various hypothetical TP rates. The highest savings during a campaign occur
at the time of the optimal threshold (tgr) for each rate. However, they never quite reach the
savings achieved by the optimal solution (OPT), which means the later a target outcome (TO)
is correctly classified, the less overall campaign-runtime savings can be achieved.
The campaign-runtime savings peak at the time of tgr for each rate, but they indeed never reach
the level of savings achieved by OPT. This implies that the later a TO is correctly classified, the
lower the overall campaign-runtime savings.

134

6.2 Timeouts in Fault-Injection Campaigns

Before tgr, an absolute detector has limited utility as many TO experiments have not yet com-
menced, which shows that it is not a suitable activation point. However, as time progresses, a TO
detector loses potential for savings as the 3tgr limit approaches.

Immediately after tgr, even detectors with a TP rate of 70 percent can save approximately 18
percent of the overall FI campaign runtime. When invoked at or after tgr, absolute detectors have a
benchmark-specific upper limit regarding potential savings that never reach the OPT’s savings.

This upper bound savings for the MiBench benchmarks, when a detector reaches TP= 1, range
between 77.7 percent (miBC) and 80.27 percent (miRDE) of the OPT savings; for instance for
miRDE, the upper bound is TP=1 savings

OPT savings =̂
17.83%
22.21% ≈ 80.27%.

In conclusion, the analysis demonstrates that absolute TO detectors, activated shortly after tgr

where they have minimal negative impact, provide benefits even if they exhibit a high FP rate. At
this point, even if the TO detectors are less effective at detecting TO experiments (low TP rate),
their potential for saving FI-campaign runtime remains substantial. This observation holds for all
the benchmarks under examination.

6.3 Initial Timeout-Detector Research

Now that the potential of TO detectors as acceleration methods for FI campaigns is described, I will
sketch two approaches and outline my findings. The findings revealed that these approaches were
ineffective in reducing the overall campaign duration; consequently, these methods were discontinued
in the subsequent stages of my work. Nevertheless, this initial research has provided the necessary
knowledge and guided the development of the effective TO detector ACTOR.

6.3.1 Jump-Address Histograms

The IP register contains the memory address of the upcoming instruction to be fetched and executed.
I include all non-monotonic IP changes with the term jump, including unconditioned jumps and
conditioned branches. The dynamic control flow of the program (see Section 5.1.2 on page 101)
is extractable with the help of the objdump of the program’s ELF file and the program trace from
the tracing step. This extraction allows us to trace the order in which individual unconditioned and
conditioned jumps occur.

My initial approach to creating a TO detector relies on two key assumptions: (1) infinite loops
result in TOs, which are detectable by tracking an increased frequency of jump or branch addresses,
and (2) that jump addresses unknown to the golden run lead to invalid instructions or unfamiliar
control flows. However, in addition to TO detection, assumption (2) can lead to other failure classes,
such as traps, due to invalid memory accesses.

The program tracing process in FAIL* is expanded to create a golden histogram in addition to
the golden run, which records all jump addresses during the tracing and a unique jump-address
histogram for each FI experiment. Using a set of metrics, the base concept compares the histograms
from each FI experiment with the corresponding golden histogram at the same time. Based on that,
the FI experiment is classified as a TO, or the experiment continues the execution.

During the development of this approach, it became evident that collecting data on the intended
system state in the form of jump-address histograms is excessively data-intensive and impractical to
process. The designed neural network trained using this vast data. The resulting models were then
employed for TO detection within FAIL*.

The abundance of metrics and recorded jump histograms constitutes a vast metric space; finding
the proper configuration for the TO detector is not trivial. During my student’s master thesis, my

135

6.3 Initial Timeout-Detector Research

student and I opted to analyze this collected data to ensure the correct parameterization of the
metrics and decision-making using the neural network through the Keras [Ker] deep learning tool.
The resulting trained models were used to guide the TO-decision process.

To address the trigger time for the TO detector, FAIL* was extended to set 3tgr absolute framework
thresholds. This threshold bounds the period between the FI time point t pi

and the framework
threshold 3tgr for potential executions of dynamic TO detectors. Initially, I attempted to run the TO
detector multiple times, even periodically. However, it quickly became obvious that this approach
was infeasible due to the amount of data processed.

Consequently, I conducted initial analyses similar to those in Figure 6.6a, revealing that a
significant portion of the experiments terminated after 1.2tgr on average. I also evaluated other
thresholds, such as 0.5tgr and 0.8tgr, but these thresholds lead to low detector quality (low TP and
high FP rates). As a result, I focused solely on the TO detector threshold of 1.2tgr; Figure 6.6a shows
a more detailed analysis, which confirmed this threshold.

However, applying the models leads to significant overhead. None of the benchmarks exhibited
a positive effect on the FI-campaign runtimes. Thus, this initial implementation of this approach
seems impractical overall.

6.3.2 Adaptive Timeout Thresholds

This second approach is inspired by the work of Edwards and colleagues [ESE14]. The authors adapt
TO thresholds using information obtained before or during the program run and apply this approach
to automatically evaluate student assignments. They assume is that if a former test case fails due to
a TO, the next one might reach the TO threshold. Therefore, the authors decrease the threshold
every time a TO occurs.

Based on this idea, the following approach to reduce the FI-campaign runtime is to adjust the TO
threshold during the campaign’s progression using the resulting failure classes of the previous FI.

During my student’s master thesis, we hypothesized that if an FI triggers a TO, a TO will
likely occur if a higher significant bit is injected. Therefore, when a TO occurs, the threshold is
decreased for the remaining higher-significance FIs (up to the Most Significant Bit (MSB)). In the
plain implementation of FAIL*, each job contains FI instructions for one byte. Therefore, it was
obvious to use a local adjustable threshold byte-wise. The initial threshold for the Least Significant Bit
(LSB)’s FI was 3tgr. If one of the flipped bits leads to a TO, the threshold is reduced for the remaining
FI experiments of the byte; otherwise, it is not reduced.40 The reduction value in two versions of
the TO detector is 5 percent and 10 percent, resulting in potential reductions of 35 percent and 70
percent.

However, we expected to observe a logarithmic reduction pattern, with significant reductions
in the beginning and relatively consistent reductions for the higher bits, given the high probability
of TOs in those cases. The evaluation results validate our expectations. The 10 percent approach
seems more promising, and the quality of the TO detector remains very high. The precision41 and
accuracy42 of the results are consistently above 98 percent. This high level of precision and accuracy

40The initial concept reduces the threshold for each occurring TO and subsequently increasing the threshold for a non-TO,
with the constraint that the upper limit of 3tgr is not exceeded. For the initial exploration of adaptive thresholds, the threshold
has only been reduced for every TO.

41During the evaluation of the approach, various binary classification ratios have been used. In addition to the TP and FP
rates mentioned earlier, the precision describes the ratio of the number of TPs to the total number of FI experiments classified
as TO. The precision is calculated as #T P

#T P+#F P .
42The accuracy is determined by considering all correct classifications (TP and TN) in relation to the total number of FI

experiments: #T P+#T N
n .

136

6.3 Initial Timeout-Detector Research

is reflected in the TP and FP rates, suggesting a high quality of prediction. For the 5 percent version,
the quality is even better.

However, the overhead of this approach is negligible, as it involves only counting the number of
TOs and adjusting the threshold in the corresponding callback of FAIL*. Considering the end-to-end
runtime of the campaigns, the reductions vary from only 1.39 percent (miRDD) to 3.1 percent
(miBFE), with miSHA as an outlier at 5.4 percent.

At this point, we assumed it would be more like guessing parameterizations (e.g., reduction value,
locality of the threshold) rather than relying on real system states. Consequently, we discontinued
this approach because it resulted only in minor savings.

6.4 Autocorrelation Timeout Detection

In this section, I introduce the dynamic TO detector ACTOR. To understand how ACTOR works, I will
first explain the concept of autocorrelation in the context of TOs based on the work of Ibing [IKP16].
Ibing and colleagues describe an on-the-fly TO detector for software that records jump addresses and
makes decisions based on autocorrelation to determine whether the running program ends in a TO. I
will discuss the aspects we have used as the concept for ACTOR and delve into the parameterization
of this heuristic, explaining the specific parameters used in ACTOR and the reasons behind their
selection.

6.4.1 Autocorrelation

Autocorrelation is a technique commonly used in signal processing and statistical analysis. Ibing and
colleagues [IKP16] used autocorrelation to detect periodic infinite loops. The authors apply discrete
autocorrelation to the jump-history list rather than the entire program trace. They do so because
the sequence of jump targets is sufficient to reconstruct the complete path through the (dynamic)
program’s structure.

The autocorrelation considers last m jumps at a particular time and compares the recorded jump
sequence with a time-lagged version of itself. The discrete autocorrelation can be simplified into a
recursive count function a(g, m), with g representing the current lag:

a(g, m) =

¨

a(g, m− 1) + 1 if H(m) = H(m− g)
0 else

(6.3)

In a nutshell, we count how many times the program jumps g backward in time periodically,
starting from the last taken jump (H(m)), before encountering a jump target that is different from
H(m). This process is repeated with different lags (e.g., g ∈ [1, 64]) on a fixed jump-history list H,
resulting in a vector of autocorrelation count values, denoted as a⃗.

For instance, in the visualization of Figure 6.7, the program is stuck within an endless loop that
takes alternating conditional jumps with each iteration, visualized by a CFG (see Section 5.1.1 on
page 101) and the jump-history list, which is also a segment of the program’s dynamic control flow
(see Section 5.1.2 on page 101). Since the last jump target H(m) is taken every four jumps, we end
up with an autocorrelation vector of a⃗ = (0,0,0,4). If the autocorrelation value exceeds a given
threshold athr, it classifies a TO.

We adapted this concept for TO detection within the FI context and successfully implemented it
in FAIL*, resulting in the dynamic TO detector called ACTOR.43

43ACTOR stands for AutoCorrelation-based TimeOut Restriction.

137

6.4 Autocorrelation Timeout Detection

A CA B
A

CB

TNT

A CA B A CA B A CA B A CA B

Latest Jump
Recorded

H (m)H (1)

Oldest Jump
Recorded HJump-History List

g=1→0

g=2→0

g=3→0

g=4→4

Figure 6.7 – Exemplary Autocorrelation Timeout Detection.
On the left is a minimalistic example of a CFG with BBs A, B, and C (see Section 5.1.1 on page
101). During the program’s execution, the program flow jumps to different addresses, recorded
in the jump-history list H with the predefined length m in the order they occur. Starting with the
most recently recorded jump, denoted as H(m), this approach counts whether and how often
the address H(m) reappears within the lag interval for a series of different lags g. If a counter
exceeds a predefined threshold athr, the running program is classified as a TO.

6.4.2 Implementation

In this section, I will discuss the individual parameters of the autocorrelation approach and how
they are adapted in the context of FI and the implementation of ACTOR. The core functionality of
ACTOR was implemented as a separate FAIL* plugin and in a separate FAIL* campaign definition.
This plugin simultaneously creates a golden-run jump-history list containing all the golden run’s
sequential jumps when the golden run is generated in the initial FAIL* tracing step. The plugin is
executed during every FI experiment using this golden-run jump-history list.

To implement autocorrelation as an absolute, dynamic TO detector in FAIL*, we need to make
adaptations and select the four parameters for ACTOR, including: (1) Firstly, it is essential to
determine when and how often the autocorrelation is triggered, which means the dynamic TO
detector threshold, as well as when the recording of the jump-history list H starts. The ACTOR-specific
parameters are (2) the jump-history–list length m, (3) the set of lags g1, g2, . . . used for counting
the jump addresses that occur, both necessary for Equation 6.3 and (4) the jump-counter thresholds
ath,1, ath,2, . . . to determine if the SUT’s execution can be classified as a TO or not, after applying
different lags for the recursive counting function a.

In cases where ACTOR classifies the FI experiment as non-TO, the framework threshold 3tgr

serves as a fallback to catch potential FNs. The main challenge with this approach is managing
the TO detector’s overhead and detection latency, as these factors are critical for achieving actual
end-to-end savings while influencing the quality of ACTOR.

6.4.2.1 Timing of ACTOR

Ibing and colleagues [IKP16] focused on natively run programs and used the binary-instrumentation
package Pin [Luk+05] to hook all jumps of the programs under evaluation. They continuously ran
the autocorrelation on every jump from the program’s start and used a jump-history length 100.
This approach resulted in slowdown factors of 100 to 225, which would negate any potential savings
achievable with a TO detector.

Considering the lessons learned from my initial attempts, as mentioned in Section 6.3, and the
workload analysis outlined in Section 6.2.3, ACTOR diverges from Ibing’s method in two significant
points: (1) Recording jumps during the execution of an FI experiment has a noticeable impact on the

138

6.4 Autocorrelation Timeout Detection

performance of any FI framework. To mitigate this, ACTOR initiates jump recording after tgr, where
active FI experiments decrease rapidly (Figure 6.3). (2) ACTOR records jumps until the jump-history
list reaches a specific length, m, and then performs the autocorrelation exactly once, minimizing the
overhead for each FI experiment but may result in missing some TOs. If ACTOR does not detect a
TO, no additional overhead occurs.

The preliminary workload analyses from Section 6.2.3, particularly the insights visualized in
Figure 6.6a, and the findings from the jump-histogram approach (as discussed in Section 6.3.1), led
to the adoption of ACTOR’s dynamic threshold 1.2tgr.

6.4.2.2 Jump-History–List Length

The jump-history length m is determined based on the analysis of post-FI instructions, as shown in
Figure 6.3. Given that the TO detector triggers at 1.2tgr, we calculate the size of the jump-history list
m by considering the remaining runtime factor after tgr (which is 0.2 with the dynamic threshold
1.2tgr), the benchmark’s average jump density (d), and the length of the golden run tgr.

For example, if we have a benchmark in which every tenth instruction is a jump, and the golden run
tgr contains 1000 instructions, we set the jump-history–list length m to 0.2 · tgr

d =
1000
10 = 20 branches.

Due to potential deviations in the injected SUTs compared to the correct execution, the jump-
history list may be filled before or after 1.2tgr but still near 1.2tgr.

6.4.2.3 Set of Lags

The following parameter we need to determine is the set of lags for ACTOR. We used all lags ranging
from 1 to a predefined maximal lag gmax: g i ∈ [1, gmax].

The choice of gmax impacts ACTOR’s sensitivity to patterns with different periodicities. A larger
gmax allows ACTOR to detect patterns with more extended periods, but it may lead to more brittle
decisions, resulting in a higher FP rate.

For example, if we set gmax to 128, ACTOR could detect periodic sequences that repeat only every
128 branches. However, for such cases, a valid TO detector decision would require a jump-history
list length m that is quite huge, potentially increasing the FI experiment runtime.

To balance sensitivity and practicality, we chose a maximum lag gmax = 16, aligning with our
aim of detecting tight loops.

6.4.2.4 Jump-Counter Threshold

The recursive count function from Equation 6.3, denoted as a, takes a lag as input. Since different lags
and different distances between jump comparisons are involved, different maximum counters are
possible. This variation makes setting a single counter threshold for all lags impossible. Consequently,
a separate counter threshold ath,i must be defined for each lag g i .

Ibing et al.[IKP16] did not have restrictions on the jump-history–list length m, allowing them to
use a relatively large counter threshold (e.g., 500) that applied uniformly across all lags. However,
with ACTOR’s fixed-sized jump-history list, a(g, m) is always less than ⌊mg ⌋, making lag-specific
counter thresholds necessary.

This necessity creates a vector of counter thresholds, denoted as a⃗ = (ath,1, ath,2, . . .). The FI
experiment is classified as a TO if any observed value exceeds its threshold.

139

6.4 Autocorrelation Timeout Detection

To calculate the individual counter thresholds, we require the entire jump history of the golden
run, denoted as Hgr, during the tracing process. The single counter thresholds ath,i are computed in
the tracing step as follows:

ath,i = 1+ max
j∈[0,(|Hgr|−m)]

a(g i , Hgr[j, j +m])

To calculate ath,i , we identify the maximum value for the counting function a that we observe
when performing autocorrelation on the golden run. ACTOR shifts an m-sized window over Hgr and
calculates the autocorrelation to achieve this. With the resulting vector a⃗, ACTOR cannot trigger if
confronted with a regular program run, even if the FI shifts the execution beyond tgr.

6.4.3 Evaluation

After introducing ACTOR and its parameterization, I will discuss the evaluation results of ACTOR,
implemented in FAIL*. First, I will explain the procedure and rehearse the ground truth for the
evaluation. Then, I will delve into the specific results that reflect the effectiveness of this method. I
will discuss the overall runtime savings and the decision quality, as it is an essential aspect of the TO
detector’s effectiveness, as described in Section 6.2.2. The technical setup of this evaluation is the
same as described in Section 3.2.3.2 on page 69

6.4.3.1 Evaluation’s Ground Truth

The 3tgr threshold proved to be a practical compromise (compared to the original > 100 runtime
factor) between the overall FI campaign runtime and the high probability of detecting TOs correctly
compared to OPT (see Section 6.2.3.2). The ground truth for each benchmark consists of the pilots
according to the DUP method (see Section 2.3.2.1 on page 47) and the corresponding number of
nDUP FI experiments.

To assess the effectiveness of this FI-experiment acceleration method, as detailed in Section 3.2.1.3
on page 62, all FI-experiment runtimes (meaning the total number of SUT’s executed instructions)
are recorded with the framework threshold set at 3tgr, along with the corresponding experiment
failure classes. Additionally, we measured the end-to-end FI-campaign runtimes for each FI campaign,
from the very start of the first pilot’s execution to the completion of the last pilot, including all
overheads incurred by FAIL*.

6.4.3.2 Results

Through our evaluation, we aim to demonstrate that ACTOR effectively reduces the end-to-end
FI-campaign runtimes without biasing the result statistics toward correct TO classifications. We
present the theoretical optimum OPT would achieve if invoked at every FI time t pi

and compare
ACTOR’s decisions to those of a static TO detector invoked at the same time as ACTOR, which is
1.2tgr.

For our evaluation, we focused on the MiBench benchmarks of the benchmark portfolio (see
Section 3.2.3.1 on page 67) but excluding the Micro benchmarks. I exclude the Micro benchmarks
because their runtimes are too short to produce statistically stable and significant results.

We compared ACTOR against OPT and a static 1.2tgr detector in the evaluation. OPT is a bench-
mark for the upper bound of campaign-runtime savings, whereas the 1.2tgr is a static (overheadless)
alternative to ACTOR.

140

6.4 Autocorrelation Timeout Detection

Timeout-Decision Quality

First, let us examine the impact of ACTOR on the ratios of the occurring failure classes (see Table 6.2,
Misclassification ∆%). Overall, we observe that ACTOR has a minimal effect on the determined
failure classes from the ground truths across all benchmarks, shifting less than 0.5 percent of all FIs
from one failure class to a TO. Additionally, ACTOR’s threshold at around 1.2tgr successfully limits
the invocation of ACTOR to less than 10 percent of all experiments (see Table 6.2, Inv.), except for
miSHA, which experiences a high number of long-running timeouts, as shown in Figure 6.2a.

Furthermore, the ACTOR detector is highly effective, with a TP rate exceeding 85 percent in
aborting FI experiments that would continue its execution until 3tgr. In all cases, the static 1.2tgr

detector, invoked around the same time as ACTOR, reclassifies more experiments as TOs as ACTOR.

Benchmark
Misclassification [∆%] 1.2tgr ACTOR

Ben. SDC Trap TO TO [∆%] Inv. TP Rate FP Rate

miBC +0.00 −0.02 +0.00 +0.02 +0.04 4.69 % 98.51 % 93.40 %
miBFD −0.07 −0.13 +0.00 +0.20 +0.28 8.21 % 96.76 % 84.12 %
miBFE −0.06 −0.12 −0.01 +0.19 +0.31 8.37 % 98.27 % 82.40 %
miQS −0.05 −0.35 −0.03 +0.43 +1.41 9.01 % 88.55 % 37.72 %
miRDD −0.07 −0.08 −0.03 +0.19 +1.49 8.51 % 85.65 % 5.27 %
miRDE −0.03 −0.26 −0.11 +0.40 +0.46 5.63 % 99.92 % 56.39 %
miSHA +0.00 −0.16 −0.11 +0.27 +13.75 27.50 % 99.75 % 42.29 %

Table 6.2 – Quality of the Timeout Detection.
This table presents data comparing the resulting ACTOR and the 1.2tgr detector classification.
Under Misclassification ∆%, the table shows the percentage changes in the failure classes
compared to the ground truth, and under 1.2tgr, the change in the TO ratio using the static
1.2tgr detector. The table on the right shows some key data from ACTOR, including the number
of ACTOR invocations (Inv.) in relation to the total number of active experiments at 1.2tgr and
the TP and FP rates of ACTOR.

However, the FP rate of ACTOR varies significantly, ranging up to 93.4 percent (miBC), which
means that ACTOR incorrectly identifies FI experiments as TOs when they would eventually result
in a different failure class before 3tgr. Despite this variation, we still achieve good results in terms of
misclassification for the FI experiments that have not yet terminated at 1.2tgr for two main reasons:
(1) We invoke the detector on only a tiny subset of FI experiments (see Table 6.2, Inv.). (2) From
these invoked FI experiments, only a small subset will yield a non-TO result (e.g., see Figure 6.3).
As a result, even a high FP rate leads to relatively minor changes in the overall results. I will return
to the FP rate issue in more detail in Chapter 7.

Campaign-Runtime Savings

In Table 6.3, I present the runtime savings achieved by ACTOR through the early termination of the
FI experiments. ACTOR reduces the FI experiment runtime by a minimum of 13.1 percent (miBC
and miRDD) and up to 30 percent (miSHA) for the number of simulated post-FI runs. Compared to
OPT, ACTOR achieves a significant reduction despite (on average) invoking 0.7tgr instructions later
than OPT (i.e., the FI times t pi

of all FI experiments across all benchmarks).
In direct competition with a 1.2tgr detector, which acts around the same time as ACTOR, ACTOR

stays within 5 percent points of the savings achieved by the 1.2tgr detector (except for miSHA).

141

6.4 Autocorrelation Timeout Detection

Benchmark
ACTOR Post-FI Instr. [%]

End-to-End
m g tovACTOR

ACTOR 1.2tgr OPT

miBC 2705 3.9952 64 µs −13.1 −17.3 −25.2 −12.66 %
miBFD 981 9.5484 65 µs −15.8 −20.4 −28.4 −15.72 %
miBFE 1019 9.5679 67 µs −16.1 −20.7 −28.7 −15.91 %
miQS 1385 1.6200 53 µs −19.5 −23.3 −32.3 −16.07 %
miRDD 794 1.0094 38 µs −13.1 −14.5 −20.1 −12.24 %
miRDE 851 1.0070 47 µs −17.2 −16.0 −22.2 −17.59 %
miSHA 1766 1.0002 68 µs −30.6 −44.4 −61.7 −27.64 %

Table 6.3 – ACTOR Quantifications and Overall Campaign-Runtime Savings.
This table quantifies the autocorrelation, including the history-list length m, the average lag
g, and the method overhead of ACTOR tovACTOR

. The subsequent section of the table illustrates
the reduced percentage of post-FI instructions using ACTOR, the 1.2tgr detector, and OPT as
an upper-bound reference. The table also demonstrates the end-to-end FI campaign runtime
savings, considering all potential overheads from both FAIL* and ACTOR compared against the
only use of the framework threshold 3tgr.

ACTOR sometimes achieves more significant runtime savings than the 1.2tgr detector, as executions
stuck in tight loops can fill the jump-history list before 1.2tgr (the list length is limited, as described
in Section 6.4.2.2).

The jump-history list length m, determined during the tracing step, spans a range from 794
(miRDD) to 2705 (miBC) for the MiBench benchmarks. As described in Section 6.4.2.2, higher list
lengths are caused by a determined higher jump density during the benchmark’s execution. The
average lag g of an FI campaign results from considering all the lags from ACTOR invocations
that lead to a TO classification. Lower g values, as observed in miRDD, miRDE, and miSHA with
round about g ≈ 1, indicate that a single, consistently repeating jump address was detected more
frequently. Higher g values, like for miBFD and miBFE with g ≈ 9.5, suggest that longer jumps occur
periodically.

These reductions translate into tangible end-to-end savings (see Table 6.3, End-to-End) for the
overall FI campaign runtime, ranging from a minimum of 12.2 percent (miRDD) to as much as
27.6 percent (miSHA). These end-to-end savings represent the overall effectiveness of ACTOR as an
FI-experiment acceleration method, as defined in Section 3.2.1.3 on page 62.

This success is attributable to two key design decisions: (1) The autocorrelation is highly efficient,
taking less than 70 µs to execute (see Table 6.3, tovACTOR

). ACTOR achieves this efficiency constraining
the number of considered lags (see Section 6.4.2.3) and the length of a jump-history list (see
Section 6.4.2.2) and invoking the autocorrelation exactly once. (2) Recording the jump-history list
within the FI experiment results in a 28 percent reduction in the simulation frequency of Bochs
because the FI framework delays the simulation when recording. Although this reduction is only
active in the interval [1.0,1.2]tgr, the simulation-time savings during the FI experiment translate
effectively into end-to-end FI-campaign–runtime savings.

6.4.3.3 Summary of ACTOR

Inspired by the work of Ibing and colleagues [IKP16], who introduced an autocorrelation-based TO
detection method, I present ACTOR [�Tho+22]. ACTOR is an autocorrelation-based dynamic TO
detector for the simulation-based FI-framework on the ISA-layer FAIL*, designed to identify highly-

142

6.4 Autocorrelation Timeout Detection

periodic jump patterns and terminate FI experiments early, thus preventing them from reaching the
framework threshold 3tgr.

Applied to seven benchmarks from the MiBench benchmark suite, ACTOR achieves significant
end-to-end savings ranging from 7.4 percent to 27.6 percent compared to a static timeout detector
triggered at 1.2tgr. Notably, ACTOR maintains a low classification error of less than 0.5 percentage
points and a high TP rate exceeding 85 percent for experiments.

However, ACTOR exhibits a high FP rate. The bad FP rates relate to the relatively low number of
ACTOR invocations during the already low number of active FI experiments at the ACTOR threshold
around 1.2tgr. I will further discuss this topic in Chapter 7.

6.5 Summary of Early Timeout-Detection Mechanisms

In this chapter, similar to the previous chapters 4 and 5, the primary focus is reducing the overall
runtime of FI campaigns tcpn = n· texp through the implementation of acceleration methods. However,
unlike chapters 4 and 5, the emphasis here is not on reducing the number of pilots n but on reducing
the individual runtime of FI experiments texp.

In this chapter, I delve into a detailed analysis of the workload of the MiBench benchmark FI
campaigns. This analysis particularly highlights the resulting failure classes and the number of
executed instructions in the individual FI experiments. It becomes evident from this investigation
that the potential for savings in FI experiments classified as Timeouts (TOs) is substantial, potentially
reaching up to 32.26 percent of the executed instructions post-FI time. In the case of miSHA, this
potential is even higher at 61.67 percent. Although previous failure-class prediction methods focused
on predictions related to SDCs (see Section 2.3.3 on page 49), TOs got less attention in the context
of FI campaign acceleration. Hence, developing an FI-experiment acceleration method for early TO
detection is the central topic of this chapter.

Therefore, it is essential to discuss the typical approach to managing timeouts: TO detectors,
whether absolute or relative, static or dynamic, provide the logic to make the corresponding TO
decision when they trigger at a specific threshold. However, TO decisions can result in misclassifications.
For example, an FI experiment might be wrongly classified as a TO even when it would not have led
to a TO without the TO detector. Thus, when using a TO detector as an FI-campaign acceleration
method, the effectiveness of an FI-experiment acceleration method (see Section 3.2.1.3 on page 62)
stands for the amount of runtime saved. However, it is also essential to quantify the quality of the
acceleration method which is where binary classification comes into play.

Throughout my research, I developed three different TO detectors. The first two detectors
are based on jump-address histograms or adaptively changeable thresholds. Unfortunately, these
approaches proved to be either inefficient or less effective. Despite the challenges encountered, this
research has yielded valuable insights. It has provided a deeper understanding of the system-state
requirements for TO detectors, their limits, and the significance of setting the TO threshold at 1.2
times the golden run duration tgr.

However, the third TO detector, inspired by the work of Ibing and colleagues [IKP16], led us
to the TO detector ACTOR. ACTOR uses autocorrelation for the TO detection based on the jumps
in the running FI experiment. I discussed ACTOR regarding its corresponding parametrization,
implemented in FAIL*, and evaluated it due to the potential overall FI-campaign–runtime savings
and the quality of the TO decisions.

The evaluation of ACTOR demonstrates that the impact of FI experiment misclassifications is
minimal, below 0.5 percent, which is an improvement over the static approach at the same threshold
1.2tgr. Simultaneously, ACTOR maintains a high rate of true positives, consistently exceeding 85

143

6.5 Summary of Early Timeout-Detection Mechanisms

percent. However, the false positive rate is relatively high. Still, this can be contextualized by
considering the low number of ongoing FI experiments at the threshold 1.2tgr and the limited
number of invocations, a maximum of 9 percent or 27.5 percent in the case of miSHA.

Nonetheless, the ACTOR’s FI-campaign–runtime savings are significant. The overhead caused by
ACTOR is no more than 68 µs, resulting in overall end-to-end FI-campaign savings ranging from
12.2 to 27.6 percent.

The code of ACTOR implemented in FAIL* is publicly accessible via Zenodo.

TRY IT OUT: Autocorrelation Timeout Detection Using ACTOR in FAIL*

You can access and execute ACTOR through the provided archive, which includes FAIL* for
performing FI-experiment TO detection via autocorrelation:

https://doi.org/10.5281/zenodo.6534708

144

https://doi.org/10.5281/zenodo.6534708

7
Discussion and Related Work

I like to move forward and notice things along the roadside that indicate
where I should go.

JOSHUA MICHAEL “JOSH” HOMME (BORN 1973)

In this chapter, I provide a comprehensive discussion of the contributions made in this dissertation,
along with the underlying assumptions, results, and relevant associated research. The fault model
used in this dissertation is the first topic discussed. The discussion of the fault model focuses on
the ISA layer chosen for injection and the single-fault assumption. Each contribution is discussed in
detail, followed by an examination of the dissertation’s setup, encompassing the simulated hardware
in FAIL* and the evaluations’ benchmark portfolio. The chapter concludes by exploring related work
within the context of FI-campaign–runtime acceleration methods.

145

7.1 Fault Model

7.1 Fault Model

A Fault Model (FM) serves as the foundational assumption for assessing the reliability of an SUT
concerning the occurrence of faults, their propagation, and their potential impact on the SUT’s
behavior. Given that I conceptualized all my contributions based on the described FM, in this section,
I will delve deeper into the FM outlined in Section 2.2.4 on page 41 and discuss its value.

Two essential aspects of the FM have been the subject of recurrent discussion within the research
community: (1) The ISA layer’s selection for FIs, which entails a trade-off between accuracy regarding
the reliability assessment of the system and the hardware-model complexity and accessibility. (2)
Flipping a single bit on the ISA layer to emulate a propagated fault from the hardware. This aspect
also has drawn considerable attention and debate.

7.1.1 ISA-Layer

It is possible to conduct FIs in system layers closer to the physical layer, like the microarchitectural
layer or the physical layer itself. The proximity of FIs to the physical layer aligns the results more
closely to reality. The higher the system layers for FIs is, the fewer potential FI points are accessible
due to layer abstractions. Consequently, FIs conducted in these higher SUT layers only indirectly
affect the (partly uncovered) segments of the underlying layers (refer to Section 2.2.4.1 on page 41).
However, low-layer hardware models are often not available [Sch16]. Conducting assessments at
the ISA layer proves much less time-consuming [Cho+13] and offers more comprehensible targets
for FI [SRS14]. Nevertheless, the ISA layer remains controversial, primarily due to the perceived
lack of precision in estimating system reliability.

Cho and colleagues [Cho+13] have delved into this debate, exploring discrepancies in the
accuracy of FI outcomes across various layers, spanning from software to the flip-flop layer. Their
investigations reveal substantial differences in the occurrence of SDCs, sometimes reaching up to an
order of magnitude; at higher layers, the occurrence of SDCs in FI outcomes potentially rises [Cho+13;
SB19].

Despite the perceived inaccuracies associated with the ISA-layer FI, Cho and colleagues emphasize
their utility: although not precise, these outcomes can effectively guide correct design decisions.
Thus, even though the results may not be flawless, they remain valuable if they lead to accurate
system design choices [Cho+13].

The CLERECO44 [Koo+14; Val+15; Kad+16; Cha+19; PG21] research group builds on Cho’s
insights and explores cross-layer system evaluations using FI. Their investigations focus on analyzing
individual layers and estimating the interconnections between them and the assessments of individual
layers.

Papadimitriou and their colleagues [PG21] from the CLERECO group present an extensive
study from physical origins [Cha+19] to compare the FI’s impact across multiple layers, from the
microarchitecture to higher layers.

To accomplish this, they employ standard metrics like AVF and PVF (refer to Section 2.2.2 on page
35) alongside specialized variants, such as the Hardware Vulnerability Factor (HFV) and Software
Vulnerability Factor (SVF). These metrics allow distinct measurements across various segments/layers
of the SUT. Additionally, the authors introduce fault-propagation models that embrace diverse error
types that are, not visible at the ISA layer, such as corrupted instructions or operands/immediates.

Their research depicts different fault-propagation–model distributions across two different ISAs
with distinct microarchitectural implementations within the ARM series. Their examination highlights

44CLERECO stands for Cross Layer Early Reliability Evaluation for the Computing cOntinuum and is an EU FP7 project.

147

7.1 Fault Model

dissimilarities in fault propagations across different hardware despite employing the same ISA. In
this context, the authors formulated the following statement:

“Any software modification may alter the hardware access and utilization patterns (and
thus, its vulnerability to soft errors) in such a way that the mix of fault manifestations that
reach the software layer also changes dramatically. As a result, any effort to reduce the
vulnerability of the software which does not consider the vulnerability of the underlying

hardware may skew the analysis and lead to pitfalls in design protection.” [PG21]

The authors claim that using higher layers, such as the ISA layer, for FIs is generally too imprecise.
For measuring PVF and SVF, the authors use the LLFI tool [TP13; Lu+15] to inject faults into the
immediate representation of the SUT’s program, which is analogous to FIs on the ISA layer [Pal+19].
I agree with this statement in general, but it is essential to distinguish between the two perspectives
of this statement.

Firstly, deriving conclusions about hardware vulnerabilities by executing FIs on the ISA layer,
intending to implement hardening techniques in the hardware, is a common approach [PG21].
However, Papadimitriou and colleagues discovered that this method leads to erroneous conclusions,
which is because fault propagation within the hardware, such as errors in instructions, their operand-
s/immediates, or the escaping (masking) of faults within the hardware itself, may not be accurately
traceable or addressable solely at the ISA layers. Hence, focusing solely on the ISA layer overlooks
a significant portion of hardware-related fault propagations, as it restricts the consideration of
erroneous data exclusively at the ISA layer. The author mentions correctly that “it is impossible to
accurately analyze the vulnerability of a program for hardware errors without having the underlying
hardware information of faults-propagation effects” [PG21].

Secondly, taking a hardware-agnostic perspective to observe FI on ISA layers to make conclusions
about SIHFT techniques for hardening the SUT’s software on fixed hardware offers advantages, as
indicated by the authors themselves [PG21]. However, their study reveals a discrepancy between
the evaluations based on PVF and SVF metrics and those considering the entire hardware or whole
system stack (using HVF or AVF). The authors consider the failure classes benign, SDC, and all
other cases simultaneously, uniting them into a “crash” failure class. Notably, they highlight that the
proportion of SDCs through FI surpasses crashes at software layers compared to lower layers. The
authors attribute this fact to the inadequate consideration of a higher layer of the hardware’s fault
propagation; using a higher layer for FI considers the fault model for addressing incorrect data only.

Moreover, the authors present the outcomes of a case study of two benchmarks to compare
occurrences of SDCs in SIHFT-hardened algorithms by the ∆-encoding [KF14] with unhardened
variants. Unfortunately, there is no explanation for why the authors chose these two benchmarks for
the comparison. Their findings demonstrate a reduction in the relative proportion of SDCs when
considering the software layers only (PVF and SVF), as expected through the implemented SIHFT
technique. However, they note an overall increase in the vulnerability of the SUT, encompassing both
SDCs and crashes, when using the SIHFT-hardened benchmarks, and the whole SUT is considered
(AVF). Thus, the authors conclude that FIs conducted at higher layers, such as the ISA layer, yield
inaccuracies and often result in opposite outcomes.

The AVF, a metric applied to individual components, is typically assessed using the arithmetic
mean to describe the overall vulnerability of the SUT [Muk+03b; Muk+03a; PG21]. However,
Papadimitriou and colleagues take an alternative approach by including structural factors of the
hardware, such as cache sizes, to account for varying susceptibilities among different components.
In contrast, the authors focus solely on the quantity of hardware locations, using it as the basis for
comparing all layers. To evaluate comprehensively the program’s behavior under FI of the SUT, the
consideration of the temporal dimension remains essential and is missing in their consideration.

148

7.1 Fault Model

Papadimitriou and colleagues acknowledge the increased execution time resulting from implementing
SIHFT techniques, but none of their used and evaluated metrics account for the temporal dimension.
The absence of a two-dimensional FS assessment, combined with the authors’ exclusive comparison
of relative proportions of occurring failure classes, further restricts the validity of the results of their
analysis.

Conversely, Schirmeier and colleagues [SB19] have previously explored the ISA layer for FI,
presenting results that contrast Papadimitriou’s findings. The authors build upon Cho’s state-
ments [Cho+13] concerning the ISA layer for FIs. Schirmeier’s work highlights the effectiveness of
the ISA layer for FIs, contingent upon two assumptions. Firstly, the SUT’s hardware must remain
fixed for this evaluation. FIs on the ISA layer estimate the need to improve segments of the SUT that
are visible from the ISA layer, thus not the hardware itself. The primary goal is to enhance the SUT’s
reliability solely through algorithmic alternatives or explicitly implemented SIHFT techniques, aligning
with Papadimitriou’s hardware-agnostic view. Secondly, using an appropriate metric becomes crucial,
considering the temporal aspects of the program executed by the SUT.

The initial investigations, spanning from the digital-logic layer to flip-flops and ending at the ISA
layer, confirm the previously noted trend: the closer the injected layer is to the software, the greater
the presence of SDCs observed within the distributions of failure classes. This work considers 18
diverse benchmarks subjected to FI campaigns, including ∆-encoded [KF14] benchmarks. Using
the fault-coverage factor [BCS69; Lev+09] (i.e., the proportion of non-SDC results in all FIs of
a campaign, as referenced in Section 2.2.2 on page 35) as a standard evaluation metric, the 18
benchmarks underwent individual ranking based on the fault-coverage factor for each examined
layer. Notably, most of the benchmarks are search algorithms aiming to identify the most reliable
search algorithm, irrespective of other requirements; the other benchmarks are partly from MiBench.

Schirmeier uses the Kendall correlation [Ken38] to illustrate that the rankings among layers
exhibit significant dispersion in the rankings through the layers. Consequently, concluding the
reliability of different layers becomes challenging when relying solely on the fault-coverage factor
as a metric.

The fault-coverage factor lacks information concerning the program’s runtime and the specific
locations used within the SUT. In contrast to Papadimitriou’s research, Schirmeier introduces the
Extrapolated Absolute Failure Count (EAFC) metric [SB19]. This metric includes the size of the
FS as a factor for the fault-coverage factor to weight. Thus, EAFC not only considers the size
of structures/locations of the FS, akin to Papadimitriou’s study but also integrates the temporal
dimension of the FS.

Rankings based on EAFC reveal strong correlations across layers, except for this work’s strongly
restricted register-on-write FM. Consequently, conclusions drawn regarding algorithm selection
or implementing SIHFT techniques at the ISA layer hold validity for lower layers within the same
hardware configuration and FM (as described in Section 2.2.4 on page 41).

Papadimitriou’s critique about the ISA layer being too imprecise and potentially leading to
opposite conclusions holds significance when the dynamics of the SUT are not considered (i.e., the
temporal dimension of the FS). Additionally, their findings indicated an overall increase in the SUT’s
vulnerability, notably in the proportion of crashes. However, they also demonstrated a reduction in
the proportion of SDCs by implementing hardening techniques, a trend consistent with Schirmeier’s
research.

The higher occurrence of crashes, although significant, is not critical. Each crash, partitioned in
this dissertation as timeouts and traps, is inherently detectable, either by reaching a timeout threshold
or by the SUT’s trap itself. In contrast, SDCs require active intervention in the design process to
be detectable, making this failure class particularly the most dangerous one, especially when the
executed and expected system output is unknown. Therefore, the increase in potential crashes

149

7.1 Fault Model

resulting from implemented hardening techniques is not adverse regarding error detectability within
the system.

Schirmeier’s research demonstrates the effectiveness of using the ISA layer for FI on fixed
hardware, particularly in enhancing reliability through software adjustments, given the use of an
appropriate metric such as the presented EAFC metric, especially for assessing SDCs occurrences.
Indeed, as Papadimitriou correctly points out, a comprehensive analysis of the entire system offers
greater insight, especially in implementing hardware adjustments to improve the system. However,
the authors overlook the complexity of conducting such analyses across all layers to determine
the system’s overall vulnerability. Consequently, the practicality of assessing the system’s overall
vulnerability remains challenging and unclear in their context. Furthermore, the authors do not
delve into the input parameters of the used benchmarks, making the value of their statements
unclear. Schirmeier and colleagues have published their benchmark source code, which could aid in
estimating the practicality.

In conclusion, employing ISA-layer FI proves highly effective for refining software adjustments
on fixed hardware within the SUT, particularly in evaluating implemented SIHFT techniques for
hardening against SDCs. Accordingly, applying my contributions to the ISA layer is also valid.

7.1.2 Single-Fault Assumption

In the FM’s description of this dissertation (see Section 2.2.4 on page 41), I detailed a systematic
approach involving the injection of single-bit flips into the SUT to emulate transient hardware faults
or, rather, Single-Event Upsets (SEUs) (refer to Section 2.1.2 on page 13). However, during system
execution, a single SEU at the physical layer can manifest as multiple errors across higher layers
due to propagation effects through these layers. A straightforward illustration of this phenomenon
is the multiple accesses to a flip-flop at distinct times or the multiple readings of a bit from various
instructions targeting different addresses. Consequently, a single SEU can cause multiple bits visible
on the ISA to flip, resulting in what is known as a Multiple-Bit Upset (MBU). The simultaneous
occurrence of multiple SEUs is highly improbable to the extent [MW79; Nor96b; Li+07], so I
disregard this in my work. Therefore, incorporating a single SEU as a component of the FM suffices
for comprehensive consideration.

According to Cho’s findings [Cho+13], multi-bit errors are limited to instances where they are
adjacent to each other if they occur at all. For instance, word-wise multi-bit errors in registers are
quite common [Li+10]. The emergence of complex multi-bit patterns is improbable [Cho+13], and
realistic multi-FI pattern models are non-existent [SB19]. A viable approach to approximate occurring
multi-bit patterns is flipping entire bytes simultaneously, like in FAIL*, with specific parameters45

[Sch16].
Each occurrence of a multi-bit error is separable into its single-bit errors. As detailed in the

described generic FI process (see Section 2.2.2 on page 35) and as it is in FAIL*, I systematically
traverse the FS, creating distinct FI experiments to cover each (effective) point within the whole
FS. Consequently, individual FIs within the campaign encompass every potential permutation of
locations where a multi-bit pattern might arise. The primary difference is the possibility of altered
masking effects or system failures when single errors contrast with the occurrence of multiple errors.

Similar to specific metrics such as the FIT rate or the fault-coverage factor, the critical quantitative
aspect is whether the SUT behaves correctly and as expected or however not. Ultimately, as considered
in my dissertation (refer to Section 3.1.2 on page 56), various failure classes primarily differentiate
failures technically but do not conclusively determine whether the SUT executes without failure. The

45FAIL* has a burst mode that makes flipping whole bytes at once possible.

150

7.1 Fault Model

specific types of failures are rather significant in subsequent (qualitative) analyses or optimizations
of the FI process.

From this perspective of evaluating the SUT, four potential scenarios exist when repeatedly
considering individual bit flips and a multi-bit flip. For the sake of clarity, I contrast two individual
bit flips with a multi-bit flip where the equivalent two bits flip simultaneously:

1. If each bit flip is benign and the multi-bit flip also results in benign behavior, this case holds
minimal concern as only the externally observable benign behavior is significant.

2. In cases where individual bit flips and the multi-bit flip result in non-benign behavior, the
effect of the multi-bit flip on the system state probably differs from the two resulting system
states of the individual bit flips. Although this distinction may be necessary for qualitative
analysis, it remains of secondary significance in determining the reliability of the SUT from
the perspective of whether bit flips are benign.

3. In scenarios where two individual bit flips result in non-benign behavior but the corresponding
multi-bit flip is benign, exploring this multi-bit scenario also holds minimal significance. This
means each bit’s behavior has masked the other’s faulty effects. As a result, this particular case
is irrelevant in the analysis of multi-bit errors and can be ignored.

4. More critical is the scenario when individual bit flips result in benign behavior, but the corre-
sponding multi-bit flip results in non-benign behavior. Despite the systematic traversal of the
FS through individual single-bit–flip FI experiments, multi-bit flip would be misclassified solely
based on the benign classification of the individual results. This scenario leads to a severely
wrong conclusion about the impact of the multi-bit on the SUT based on individual bit flip
results.

As a reminder, the probability of a SEU occurrence is 1.328 · 10−11 percent following the Poisson
distribution [MW79; Nor96b; Li+07] (see Section 2.2.4 on page 41). An SEU is the fundamental
requirement for an error to become visible on the ISA layer. Consequently, the probability of an
SEU occurrence is the upper-bound probability that at least one bit flip becomes simultaneously
visible on the ISA layer as an SDC. However, this probability calculation excludes considerations of
resulting in other failure classes and fault-propagation models inherent in the hardware, as presented
in Papadimitriou’s work (e.g., escaping faults, erroneous instructions, incorrect operands/immedi-
ates) [PG21].

Incorporating a comprehensive hardware model into this calculation is challenging because of
the hardware model complexities and the lack of availability of realistic hardware models [SB19].
Thus, I present the upper-bound probability estimation for a multi-bit flip here. Consider a (bit-
wise) AND instruction from the data flow of an x86 processor, exemplary for the miSHA benchmark.
Beginning with the probability of an SEU as the base, the subsequent factors are incorporated for an
upper-bound estimation for a two-bit flip.

• Upon examining individual bit values, the output does not change for individual bit flips and
alters only when both bits flip simultaneously. This situation occurs within 1

4 of the 22 value
constellations: two zero input bit values.

• In the x86 architecture, data words of up to 32 bits are accessed. Considering this word length
alongside this instruction, the probability that the i-th bit will flip in one input and the i-th bit
in the other input is 1

32 .

151

7.1 Fault Model

• Within the miSHA benchmark, there exist 40647 instructions. Consequently, the probability
that the two bits flip simultaneously in the same AND instruction is 1

40 647 .

Hence, even based on this simple and straightforward calculation, the factor 1
4·32·40647 · 100=

1.92 · 10−5 (percent) is multiplied by the SEU probability, substantially reducing the probability by
five orders of magnitude.

This estimation remains an upper-bound probability when considering only this particular
instruction. With each additional instruction in this flip scenario, the upper-bound probability
progressively approaches the actual probability. Factors that are unavailable, such as hardware
masking effects, would further lower the probability. Moreover, the probability of multi-bit flips
occurring across different data words is notably reduced [Li+10].

In conclusion, this simple calculation shows that the probability of a multi-bit flip at the ISA layer,
where individual errors lead to benign behavior, and the corresponding multi-bit error results in a
non-benign behavior, is extremely low. As demonstrated in the previous list, considering additional
determined factors further reduces the probability,. Consequently, emulating an SEU as a bit flip
suffices for the reliability analysis of an SUT on the ISA layer.

7.2 Contributed Fault-Injection–Campaign Acceleration Meth-
ods

This section provides a detailed exploration of the acceleration methods contributed in chapters 4 to
6. I discuss each method individually and summarize its strengths, weaknesses, and potential future
research topics.

7.2.1 Data-Flow–Sensitive Fault-Space Pruning

The Data-Flow Pruning (DFP) method [�PDL21] introduced in Chapter 4 relies on an extracted data
flow and formulates FESs by utilizing deterministic Instruction-Local Fault-Equivalence Set (IFES)
mappings for use on the ISA layer. In comparison to the DUP method, DFP uniquely uses the location
dimension of the FS. DFP is precise, covers the whole FS, and stands as an enchanced version of
the DUP, uniting the DUP’s FESs into larger ones via additional logic using the data flow and its
instructions from the golden run. The derived Data-Flow–Aware Fault-Equivalence Sets (DFESs) can
be used by sampling or completely and systematically for full FS coverage.

DFP serves as a complete replacement for the DUP. In cases where IFES mappings do not exist, DFP
determines the equivalent FESs as the DUP. However, implementing any IFES mappings, even if for
simple instruction semantics like MOV, potentially reduces the number of FIs. Nonetheless, manually
implementing such IFES mappings for specific ISAs and instructions is a risk of programming errors.
It requires a one-time implementation for each instruction, its operand access patterns, and each
specific ISA. For instance, within the x86 ISA, different access patterns to registers (e.g., rax, eax,
ax, ah, al for a single register) must be considered.

Hence, the future work is the development of automated IFES mapping generators (as sketched in
Listing 4.1 on page 82), either explicitly implemented as indicated or determined through processor
models such as defined in Sail [Arm+19; Pro23b], for instance. These automated approaches would
extract semantics, streamlining the otherwise manual implementation of IFES mappings for diverse
ISAs and their single instructions.

Although achieving a pilot reduction of up to 18 percent marks a notable achievement, there
remain considerable possibilities for further enhancement. Firstly, expanding the number of IFES

152

7.2 Contributed Fault-Injection–Campaign Acceleration Methods

mappings to encompass additional instructions is imperative. Presently, the implemented set of
five instructions covers an average of only 51 percent of the program trace’s instructions. Secondly,
refining the value’s lifetime analysis offers the potential for smaller lifetime values (refer to Sec-
tion 4.2.3.3 on page 85). The current approach adopts an overly pessimistic approach by using the
overwrite time as the definitive point at which a value becomes inaccessible.

However, as previously suggested, validating that no program flow (even in the presence of a
bit flip) can access a value after an inter-instruction fault propagation needs a more sophisticated
approach. Achieving this requires an analysis of the binary to deduce all feasible accesses once the
propagated fault becomes active. This task is straightforward for registers within the same basic
block. However, this analysis becomes rapidly complex when values persist across multiple basic
blocks or reside in memory, potentially requiring pointer and alias analyses. Nonetheless, finding
improvements to the lifetime determination with the conservative overwrite time as the ground
truth remains a topic for future research.

Although I claim the precision and completeness of the DFP method, no formal proof exists to
confirm this. I assume that the straightforward construction of the DFG, as outlined in Section 4.2.1
on page 77, backs this claim by intuition – under the assumption that the considered IFES mappings
and the value lifetime estimation are valid. In practice, using solely the FES construction rule for
ε-nodes (i.e., no IFES mappings exist) demonstrates that DFP constructs the equivalent set of pilots
as DUP, strengthening this claim. Moreover, extensive experimental validation supports this claim;
across 1.42 · 1010 points in all FSs assessed in the benchmarks, DFP and DUP consistently produce
bit-wise equivalent outcomes. Nevertheless, I acknowledge formal proof of DFP’s correctness as a
relevant topic for future research.

In the previous Section 7.1.2, I highlighted the single-fault assumption underpinning the fault
model used in this dissertation. All IFES mappings are developed assuming the presence of exactly one
bit flip within one operand of an instruction. However, assuming multiple bit flips would occur more
often due to propagation in the data flow or initially from the propagation through the hardware
layers, these bit flips might get pruned due to the single-fault assumption within the IFES mappings.
This pruning behavior can impact the accuracy of the SUT reliability analyses and make them less
precise.

For instance, consider the AND instruction example mentioned earlier, where both operands hold
a bit value of zero in the same bit position. In this scenario, one of the two bit positions might not
be considered for the resulting IFES, consequently omitting its consideration in the FI-campaign
planning step of the DFP. However, as previously discussed, multi-bit flips are highly improbable.
Conducting a comprehensive analysis of DFP under the influence of multi-bit flips is a subject for
future research.

Finally, the application of DFP extends beyond the ISA layer. For instance, it is possible to
implement this method within the digital-logic layer: individual gates representing instructions in
the DFP and the voltages on the data lines reflecting the values within the DFG. The IFES mappings
are the semantics of the gates (i.e., the truth table). Therefore, with suitable adaptations, DFP is
extendable to deeper layers. However, this adaption entails huge DFGs and complex determinations
and distinctions of values alongside their respective lifetimes as the condition for symbol propagation.
These challenges remain as a subject for future research.

7.2.2 Program-Structure–Guided Approximation of Fault Spaces

In Chapter 5, I presented the concept of Fault-Space Regions (FSRs) [�Pus+19], which aims at
approximately significantly reducing the number of necessary FIs by effectively covering the whole
FS. This method involves creating borders deduced from program structures – such as Basic Blocks

153

7.2 Contributed Fault-Injection–Campaign Acceleration Methods

(BBs) and function scopes – segmenting the temporal dimension of the FS. Pilots within the FESs
of the DUP that cross such a border are FIs within the FI campaign. The weights of the remaining
FESs are distributed proportionately to the used pilot weights for the region, leading to a weighted
allocation.

Section 5.3.3.3 on page 116 presents the outcomes of applying the FSR method on the register-
only FS. The implementation resulted in substantial reductions in FIs but also caused significant
deviations in result accuracy. This stemmed from an increased bypass of the injected bit flips from
registers to the memory, causing it to exit the register scope if the resulting FES has not crossed a
region border.

The degree of bypassing is notably dependent on the ISA. In the case of the x86 processor
used in this dissertation, known for its limited count of 8 general-purpose registers, a compiler is
forced to swap results into memory due to the high register pressure. Consequently, bit flips may
exit the register-only FS scope if a region border is between these swapping operations. Thus, the
effectiveness of the FSR method regarding the register-only FS heavily relies on the ISA. I assume that
systems with a larger register count may encounter fewer issues when considering a register-only
FS. Optimizing the precision of FSRs or adjusting region border rules for the register-only FS by
leveraging architectural hardware properties stands as future research.

In essence, developing region-border rules is not strictly confined to dynamic sources; other
sources, not inherently dynamic, are feasible for this purpose. For instance, static jump addresses
can serve as alternatives instead of relying solely on dynamic BBs. However, purely static approaches
encounter limitations due to the absence of dynamic attributes, like indirect jump addresses, which
remain unknown during compile time. Exploring the combination of static program information
with dynamic data from the trace and evaluating the optimization achieved by such enhanced border
rules is a topic for future exploration, as well as how effective static-only approaches are.

The application of FSRs in this dissertation requires a trace at all times. However, when considering
the implementation of FSR in continuous systems for FI, a fixed trace could not be available due to
the infeasibility of achieving deterministic, reproducible re-execution of the SUT. However, achieving
complete coverage or analysis of the FS becomes impossible because of the non-finite and ever-
expanding nature of the temporal dimension within the FS of continuous systems.

Another limitation when employing region-border rules is when program structures essential
for FSR application are generally unavailable, resulting in insufficiently defined region borders. For
instance, in the miSHA benchmark and using the Call Region (CR) rule, the lack of functions prevents
the establishment of helpful region borders (refer to Table 5.3 on page 115). Similarly, the BB rule’s
effectiveness decreases if the compiler generates predicated instructions or predominantly linear
code with significantly fewer jumps.

Moreover, compiler optimizations influence the number of regions overall. For instance, loop
unrolling executed aggressively by the compiler expands BBs. However, in such cases, the BB rule
only considers the data flow flowing directly into and out of the program, neglecting individual loop
iterations. As mentioned, static compiler information can be considered to refine this aspect.

Additionally, another critical factor is the workload of the program under evaluation. As exempli-
fied for the Micro benchmarks in the evaluation (refer to Section 5.3.2.2 on page 112), applying
FSRs is not feasible, mainly when the program workload is low, and the FS is segmented into broader
regions, such as with the CRs rule or compiler optimizations like loop unrolling as mentioned before.
Consequently, this does not yield a statistically significant number of regions and their corresponding
weights, thereby preventing the attainment of reliable outcomes within this approximate approach.
Investigating the minimum program workload needed for the application of FSRs or instead exploring
the lower bound ratio of regions to program workload stands as a subject for future research.

154

7.2 Contributed Fault-Injection–Campaign Acceleration Methods

Irrespective of the compiler setup or ISA, FSRs are applicable beyond the ISA layer. For instance,
flip-flops serve as locations, and clock cycles define time units. The generation of FESs and determin-
ing borders for the FSRs are derivable from the flip-flop values within a respective trace. Expanding
to higher layers beyond the ISA layer is also feasible. In cases where a language interpreter executes
a program, variables function as locations, and statements represent the transitions between distinct
points in time of the FS. In such scenarios, the program structure or any components used for
establishing a border rule can be directly accessed by the interpreter, if available.

Finally, I will discuss the validation of the FSR described in Section 5.3.5 on page 119. The
overarching objective is to demonstrate that applying FSR leads to FI-campaign outcomes equivalent
to the ground truth or instead to those obtained through the application of DUP. In contrast to the
DFP, which unites FESs into larger ones, using FSR entails a form of sampling DUP’s FESs. This
sampling redistributes the weights of unused inner FES to the pilots of the outer FES. Consequently,
the validation concerning DUP is comparatively less critical than with DFP forming new FESs.

However, a border rule is defined to set a border after each system state. In that case, it generates
equivalent FESs of size two and larger than those FESs after applying DUP. FESs of size 1 exist as
inner FESs within the respective FSRs and, thus, are not injected. Despite this, a minor adjustment
allows FESs of size 1 to function as pilots in an FI campaign, ensuring the creation of equivalent
pilots overall. Given that DUP does not further optimize the resulting FESs of size 1, this slight
adjustment remains legitimate for validation purposes.

7.2.3 Early Timeout-Detection Mechanisms for Fault-Injection–Experiment
Acceleration

In this section, I revisit the concept of timeout detection in FI, aiming to distinguish the ACTOR
detector [�Tho+22] from other timeout-detection methods detailed in this dissertation. I delve
deeper into several previously mentioned aspects, expanding the discourse with new points and
highlighting areas for potential future work.

The determination regarding whether to abort an FI experiment due to a TO or to allow its
continued execution (even beyond 3tgr) represents a balancing act between the overall campaign
runtime and the quality of the TO detector’s results. When dealing with programs lacking a strict,
definitive endpoint, no TO detector can effectively discern between non-terminating programs and
faulty programs that might execute for an extremely protracted yet limited period. Consequently,
in general terms, there is no absolute ground truth (refer to Section 6.2.3.1 on page 133) for TO
detection; instead, there is only a semblance of similarity among different TO detectors. Hence,
the campaign designer faces the critical decision of determining whether the observed level of
uncertainty is acceptable within the current design phase.

7.2.3.1 ACTOR: Autocorrelation-based Timeout Restriction

In Section 6.4 on page 137, I described ACTOR, a Timeout (TO) detector within the context of
individual executed FI experiments. ACTOR uses the trace to identify specific parameters to ACTOR’s
functionality. After parametrization and during the execution of an FI experiment, the experiment
records jump addresses and analyzes them for jump patterns using autocorrelation [IKP16]. If, based
on the definition in ACTOR, a noticeable pattern is identified at time 1.2tgr, the FI experiment is
classified as an TO at an early stage. Otherwise, if no such pattern is recognizable, the experiment
normally proceeds.

Using ACTOR, we have successfully achieved earlier detection of non-timeouts, thereby saving
FI-experiment runtime. ACTOR achieves experiment runtimes comparable to those of a static 1.2tgr

155

7.2 Contributed Fault-Injection–Campaign Acceleration Methods

detector, yet getting timeout rates similar to a static 3tgr detector. This performance distinction is
best observable in the miSHA benchmark, where we detected 13.8 percent fewer timeouts than the
static 1.2tgr detector, concurrently reducing the overall campaign runtime by 27.6 percent.

A viable option for campaign designers is to employ ACTOR with a predetermined static frame-
work threshold, such as the 3tgr in the example of this dissertation. Notably, ACTOR offers flexibility
regarding its triggering mechanism, enabling it to activate beyond 1.2tgr if the TO rates surpass
predefined safety standards during its use, for instance.

Another aspect for discussion is the considerable variation in the FP rate of ACTOR (refer to
Table 6.2 on page 141), which exceeds partly 80 percent. These FPs stem from ACTOR’s detection
principle, primarily identifying strongly periodic jump addresses. TOs are a consequence of injecting
a loop counter that influences the execution of loop passes: LSB flips minimally affect the loop pass
count, whereas MSB flips cause intermittent alterations in loop passes. Although both types of FI
result in periodic branch patterns detected by ACTOR, some experiments conclude before 3tgr.

From our perspective, the classification of these FIs as TOs at 3tgr appears somewhat arbitrary,
as these experiments might still terminate as an SDC or benign result after 3tgr. For assessment
purposes, the ground truth relies on 3tgr, aligning with outcomes in related literature. However, the
FP rates are inconsequential for the investigated benchmarks, given that only a tiny proportion of
even low experiments are misclassified as TOs.

In earlier stages of our studies, we explored hardened variants (with triple-modular redundancy)
for the MiBench benchmarks. These variants entail running the program thrice consecutively, com-
paring their results, and determining the outcome through a voting mechanism. Notably, 86 percent
of these experiments conclude before 3tgr. Although this scenario shows a similar program exten-
sion as the injection of the loop counter, ACTOR effectively discerns between the third execution
and the SUT’s outcome, showing a lower FP rate of only 0.59 percent. Hence, we conclude that
ACTOR demonstrates a commendable detection quality for evaluating benchmarks with hardening
techniques.

One limitation of using ACTOR is its dependence on a program trace, which defines the values
for ACTOR’s parameters jump-history list H and autocorrelation-count vector a⃗. Future research
could explore alternative methods to determine these parameters, potentially enabling the use of
ACTOR without relying on a trace. Additionally, although the value for the maximum lag parameter
gmax = 16 proved effective for our benchmarks, SUTs executing nested loops and conditional jumps
may benefit from a higher value for gmax. Exploring these adjustments could enhance ACTOR’s
performance in such scenarios.

A potential threat to the validity of ACTOR is our selection of benchmarks primarily, from the
automotive and security branches of MiBench. Whereas these benchmarks are generally the best
representatives of safety-critical systems in that context, they focus on performance and repetitive
behaviors, lacking in complexity regarding jump targets. Additionally, our evaluation of ACTOR is
limited to the application at the ISA layer. However, ACTOR’s applicability extends to other layers,
given that a mechanism exists to record jump targets (e.g., branch-target buffer). Further research
across a broader spectrum of benchmarks and system layers could offer deeper insights into ACTOR’s
effectiveness and adaptability.

7.2.3.2 Initial Timeout-Detector Research

In Section 6.3 on page 135, I outlined my initial research and developed two approaches for TO
detection during an FI experiment. Although both methods yielded rather underwhelming outcomes,
exploring these approaches provided valuable insights crucial for the knowledge about TO detection
and the development of ACTOR. One method involves comparing histograms derived from recorded

156

7.2 Contributed Fault-Injection–Campaign Acceleration Methods

jump addresses (refer to Section 6.3.1 on page 135), and the other method adapts static thresholds of
an experiment based on the resulting system failures from other experiments (refer to Section 6.3.2
on page 136).

I will sketch additional aspects regarding these two approaches and highlight potential future
research.

Jump-Address Histograms

Using the previously recorded trace of the SUT, I conduct counting all occurring jump addresses
to construct a golden jump histogram. The developed FAIL* plugin records separate histograms at
different time intervals during individual FI experiments, comparing them to the golden histogram
using various histogram-comparing metrics.

The vast volume of data generated from numerous histograms at different intervals makes
this approach impractical. However, extensive analysis indicated that the 1.2tgr time point proved
effective for triggering TO detection, a conclusion that also matches with the findings from developing
ACTOR.

Determining the most appropriate metric for histogram comparison is challenging. Established
and known and self-developed metrics failed to provide precise, definitive TO classifications. Attempts
by my student and myself to leverage machine learning for identifying suitable metrics are not trivial.
Consequently, employing an entire spectrum of metrics within a single model is the result. At this
point, the research ventured into data retrieval, a research area outside the focus of my dissertation.
I implemented what I deemed the model’s minimal requirement to evaluate the approach’s overall
capability and limitations.

However, assessing the resulting model during FI-experiment execution incurred substantial
overhead, making this approach inefficient and ineffective, as developed so far. Nonetheless, this
work significantly contributed to my initial attempts at TO detection.

The histograms serve as a quantitative representation of the entire program’s structure. Based
on the current findings, there is potential for further optimization. Similar to the approach used
in ACTOR, the comparison should be triggered exclusively at 1.2tgr and should not rely on any
machine learning model. Future research should focus on identifying a precise metric or set of
metrics required for an effective and efficient comparison. The exploration into machine learning
arose due to the extensive data volume, finally identifying the 1.2tgr trigger point. The question
remains whether the histogram, which represents the program structure, is adequate for reliable TO
detection and future research on a second try.

Adaptive Timeout Thresholds

In FAIL*, pilots are technically grouped based on their respective bytes to inject. The adaptive
timeout threshold method applies a continuous reduction in the static threshold for all remaining FI
experiments of the byte whenever a TO is detected.

My student and I used a linear reduction of 5 or 10 percent during this research, resulting in
maximum reductions of 35 or 70 percent, respectively. However, these reductions are not aggressive
enough, mainly when only a few bits of the byte caused a TO. Developing a non-linear reduction
function could address this variability in results and to achieve a more aggressive reduction strategy,
which reduces the threshold strongly and flattens the reduction to a higher amount of resulting TOs.
Exploring the potential form of such a reduction function and determining the necessary data inputs
for its formulation is a prospective area for future research.

157

7.2 Contributed Fault-Injection–Campaign Acceleration Methods

However, this method poses an inherent challenge as it interconnects individual FI experiments,
preventing the parallelization of each single experiment. Thus, only the groups of experiments (in this
case, bytes) are parallelizable. This structural change might be beneficial in reducing infrastructural
data load in a client-server setup by redesigning FI experiments that do not rely on interactions
with the server except the group itself. However, this reduces the overall campaign’s parallelism by a
factor approximately related to the group size (in this case, 8).

One conceivable approach could be a global server-side adaptive threshold that transmits to each
client conducting a single FI experiment. Assessing the effectiveness of this coarse-grained approach
in terms of overall campaign runtime reduction and its feasibility in managing infrastructural
workload remains a subject for future research.

An area for future research is the trade-off between the loss of parallelism, the infrastructure
workload, and the potential savings in the end-to-end campaign runtime when employing adaptive
TO thresholds. This exploration could demonstrate how much parallelism can be sacrificed for
runtime efficiency when applying adaptive TO thresholds.

7.3 Experimental Setup

In this section, I delve into the experimental setup, which affects all results presented in this
dissertation, examining its advantages and disadvantages. Initially, I focus on the simulated hardware
or used hardware model. Subsequently, I delve into the benchmark portfolio, highlighting the specific
benchmarks’ requirements and challenges for evaluating FI-campaign runtime improvements.

7.3.1 Simulated Hardware

FAIL* [Sch+15], serving as the FI framework for my experiments, offers integrations with diverse
processor models (refer to Section 3.1.1 on page 53), providing a choice for the FI hardware target.
Bochs was FAIL*’s most well-integrated simulator when I began my work. For consistency in my
research, I opted to continue with Bochs and its simulated x86 processor.

The x86 processor, however, might not ideally suit the embedded domain due to its potentially
larger chip size and instruction set’s complexity. Typically, smaller processors like one of the ARM
Cortex [Arm22] series are preferred due to their lower unit cost and sufficient functionality for
intended purposes. Hence, evaluating based on a hardware model representing an ARM Cortex, for
instance, would likely mirror market norms more realistically.

Throughout my contributions, I encounter challenges inherent to the x86 architecture. Implement-
ing IFES mappings for the DFP (refer to Section 4.2.2.2 on page 79) using an x86 ISA is potentially
more intricate than other ISAs. Integrating IFES mappings for a single instruction demands the
correct consideration of all access patterns of the operands or immediates.

The syntax inherent in the x86 ISA46 requires considering a considerably larger number of
edge cases per instruction (e.g., operand-access syntax) than ARM instructions. Consequently, im-
plementing IFES mappings for x86 is inherently more prone to implementation errors and more
time-consuming than other processor ISAs with simpler assembly syntax.

Significant result deviations are evident in the FSR evaluation of the register FM (refer to
Section 5.3.3.3 on page 116). This discrepancy arises from the high register pressure stemming
from numerous indirect memory accesses within the instruction set and a smaller register file,
characteristics that may differ significantly in other architectures.

46This point is independent of the Intel or AT&T syntaxes.

158

7.3 Experimental Setup

Throughout several sections of this thesis, the Bochs simulator served as the primary processor
simulation, employing a basic timing model of one instruction per cycle and assuming wait-free
memory access [Sch16]. The selection of this simulator is intentional due to its simplicity. However,
FAIL* now offers interfaces capable of integrating more realistic hardware models; for instance,
models defined by the ISA-description language Sail [Pro23b] are assimilable into FAIL* [Die+22].

Nonetheless, certain discoveries would not have been achievable with a thorough, accurate, yet
slow and complex simulator in FAIL* [Sch16]. A sluggish FI infrastructure would have hindered
feasible FS traversing for most workloads, even with DUP or other acceleration methods.

However, the straightforward hardware model within Bochs, lacking a cache hierarchy, somewhat
limits the significance of the obtained FI results. Specifically, the outcomes derived from injecting
memory bit flips tend to present a pessimistic overapproximation [Sch16]. In a modern cache
hierarchy, certain memory bit flips might be masked, for instance, when the CPU writes a cache line
back to the main memory.

7.3.2 Benchmarks for Fault-Injection–Campaigns Improvements

Generally, benchmarks serve as a guideline to evaluate the quality of implemented software, providing
a statically comparable basis for drawing qualitative conclusions about the software’s performance
using metrics or in-depth analysis. In the domain of FI for evaluating system reliability, I suppose
four use cases exist:

1. Evaluation of an error detection/correction technique

2. Comparison of several error detection/correction techniques for a target SUT

3. Evaluation of an FI technique or fault model

4. Evaluation of FI–campaign runtime improvements

For all these use cases, suitable benchmarks are necessary. Currently, due to the absence of an
accepted FI benchmark suite, the research community frequently uses performance benchmark suites
like Dhrystone [Wei84], PARSEC [Bie+08; BL09], and notably, miBench [Gut+01], as used in several
works in the FI domain. Primarily designed to assess hardware performance, benchmark suites like
MiBench are the common representatives of the embedded benchmarks domain.

These benchmarks possess properties that may not align with the specific needs of the FI use cases.
Some of these performance benchmarks are notably simple, often repeating a set of instructions
thousands of times. Whereas these benchmarks may offer advantages, particularly in use case
4 (e.g., when using FSRs), they might not pose significant challenges for FI-campaign–runtime
acceleration methods. These benchmarks measure various aspects of a system, emphasizing different
resources like CPU, cache, or memory usage. However, these tailored aspects are primarily irrelevant
when determining the reliability of an SUT using FI, which is a mismatch in the focused purpose.

In use cases 1 and 2, where the focus is on evaluating error-tolerance techniques, the target
program is frequently fixed integrated into the system. This integration allows the evaluation of
general failure behaviors of an SUT or the comparison of diverse techniques for selection, aiming to
identify the most suitable error-tolerance technique for the specific target system running the target
program code. Conversely, in use cases 3 and 4, where the target application is either irrelevant to
the generalized development or due to fundamental research purposes, the potential variations for
designing a benchmark for these use cases are boundless.

When conducting performance measurements using benchmarks on actual, often high-speed
hardware, it is common in the FI domain to significantly reduce input sizes to ensure manageable

159

7.3 Experimental Setup

FI-campaign runtimes (i.e., campaign-runtime explosion, refer to Section 2.3.1 on page 45). However,
this practice introduces challenges compared with other research that might use the same benchmarks,
especially as the input size is often not specified in papers, or entirely new and unique inputs are
generated. Additionally, shrinking input sizes is a challenging task; for instance, resizing graph-based
inputs or cropping images without care can lead to invalid or semantically irrelevant inputs. Thus,
the reduction of input sizes is specific to each benchmark, demanding extensive manual work and
specific implementation.

Additionally to the benchmark, several adjustments are necessary for the environment and moni-
toring capabilities of the FI framework. For instance, when using (simulation-based) FI frameworks
to mimic an embedded environment, there is a requirement for various infrastructural elements and
additional code integration into the system, such as the stdlib or all system input and output inter-
faces. Particularly, executing the benchmark in a bare-metal environment, as in my case with FAIL*
using Bochs, demands manually adjusted implementation and manual integration of third-party
code, if needed. Moreover, setting signals or symbols manually (as highlighted in Section 3.2.2 on
page 64 or Listing 3.2 on page 65) is essential to ensure the interpretability of the SUT within the FI
framework.

Nonetheless, these benchmarks generally evaluate the fundamental effectiveness of the imple-
mented FI-campaign runtime improvements. Although real-world benchmarks are desirable for
such evaluations, they are optional for such an evaluation, as the benchmarks should make effective
FS-traversal assessable. Additionally, as implied above, benchmarks nearer to real-world applications
are challenging to implement in FI frameworks and might be infeasible to evaluate due to the high
workload of the campaign. However, the structural characteristics of the benchmarks play a role in
acceleration methods, such as the recorded jump targets for FSRs and ACTOR or the data flow and
its instructions for DFP. Hence, benchmarks mirroring the behavior of real-world systems would
naturally offer superior evaluation conditions.

To focus on these complexities, a possible future goal within the FI community should be the
development of a dedicated FI benchmark suite. This suite would mirror a predefined target domain
and possess program structures more closely aligned with real-world applications.

Developing distinct benchmarks emphasizing explicit susceptibility to SDCs or TOs, among other
system behaviors, would be particularly valuable, like benchmarks that are inherently resilient
to errors (e.g., numerical algorithms) would be particularly valuable. Moreover, variants of these
benchmarks in the suite – either end-to-end semantically equivalent (akin to Schirmeier’s work
comparing different sorting algorithms [SB19]) or hardened benchmarks – would be advantageous.
To enhance reproducibility, an input generator capable of consistently producing the same – for the
benchmarks semantically valid – input under predefined parameters automatically, neglecting the
need for manual and time-consuming adjustments.

Furthermore, the benchmarks should offer compatibility for execution under complete operating
systems and bare-metal setups, eliminating the necessity for manual benchmark adaptation within
the FI framework. The resulting ELF files – compiled with a preset of compiler options – from this
suite should ideally encompass pre-configured symbols and inputs, easing seamless integration
or simple adaptation across the FI community’s frameworks. This standardized approach would
improve the reproducibility and ensure uniformity in the FI community’s results.

Either way, the selection of benchmarks (refer to Section 3.2.3.1 on page 67) threatens the
validity of the evaluation results, given that evaluations only consider the characteristics of the
chosen benchmarks. This inherent challenge remains unsolvable, and it is crucial to be aware of this
fact when exploring the outcomes of the executed FI campaign. Considering a different benchmark
portfolio might change the statement about the performance of my presented acceleration methods,
potentially resulting in other FI-campaign–runtime reductions. Additionally, although the Micro

160

7.3 Experimental Setup

benchmarks initially proved highly beneficial for evaluating and understanding the DFP, their limited
workload makes them ineffective for assessing the effectiveness of the developed acceleration
methods.

7.4 Related Work

The challenge of the FI-campaign–runtime explosion (refer to Section 2.3.1 on page 45) in the
FI domain demands innovative approaches for optimization. Throughout this dissertation, I have
mentioned several acceleration methods briefly. This section provides a comprehensive overview of
the diverse approaches developed to optimize FI-campaign runtimes. To enhance the context, I will
consider my acceleration methods – namely the Data-Flow Pruning (DFP) [�PDL21], the Fault-Space
Regions (FSRs) [�Pus+19], and our developed TO detector ACTOR [�Tho+22] – and relate them to
the pertinent related work.

To reduce the FI-campaign runtime tcpn = n · texp, there are two primary strategies: reducing
the required number of FI experiments n but guarantee complete FS coverage, or decreasing the
experiment runtime per FI texp. The implementation of my acceleration methods, DFP and FSR,
directly addresses this by reducing the amount of the necessary FI experiments n, respectively.
ACTOR contributes minimizing the experiment runtime texp through early TO detection.

To efficiently traverse through a huge FS of an SUT, acceleration methods that minimize the
required FI experiments are essential. These methods can be categorized based on their coverage,
whether they offer complete or partial FS coverage, their precision, whether their methodology is
precise or approximative, or if they are generic regarding the observed system behavior, whether
they focus on a specific failure class only or not.

DUP [Smi+95; GS95; Ben+98b; Ber+02; BP03; Bar+05; Gri+12] (refer to Section 2.3.2.1
on page 47) stands out as a straightforward, basic, generic and precise acceleration method that
achieves full FS coverage. Although effective, DUP can still result in long campaign runtimes, raising
the need for further pilot reduction. DUP is the foundation for the principles behind DFP and FSRs,
using and manipulating the FESs derived from DUP. Moreover, DUP’s established nature makes it a
solid ground truth for evaluating acceleration methods, especially for DFP and FSRs.

In a manner akin to my data-flow analysis but targeting the entire program rather than a singular
execution path, Bartsch and colleagues [Bar+17] use program netlists [Sch+13] to pinpoint errors
guaranteed to be benign across all potential program paths. Their methodology complements DFP;
my approach addresses all failure classes while concentrating on an individual execution path,
enhancing scalability for extended program runtimes.

Compared to DFP, SmartInjector [LT13] unifies multiple FESs into larger (potentially also two-
dimensional) FESs but relies on heuristic methodology, resulting in imprecise pruning. Their focus is
also on the failure class SDCs only, whereas other more relevant failure classifications arise [DSE13;
Lu+15]. Conversely, DFP is precise, FS-complete, and operates without focusing on a failure class.

On the gate layer, we [�Die+18] have proposed error-masking terms to detect benign faults
within the first cycle after FI, which was the kickoff for the research into the DFP. Relyzer [Har+13]
and its application to approximate computing, Approxilyzer [Ven+19; Ven+16], analyze multiple
golden-run executions to identify errors that might behave similarly across all runs. Like DFP, they
utilize bit masking and propagation effects at individual instructions. However, their methodology
differs from DFP in three key aspects: (1) Precision: Relyzer predominantly prunes imprecisely,
although it partially relies on DUP for detecting equivalences within basic blocks. In contrast,
DFP ensures precise FS pruning and could serve as a building block within Relyzer. (2) Operand
Sensitivity: Although their techniques (Constant-based Equivalence and Constant-based Masking)

161

7.4 Related Work

utilize instruction semantics to prune between input and output bits, they focus solely on instructions
involving constant operands (e.g., LSHIFT %al, 5), ignoring dynamic operand values observed in
the golden run. As immediate instructions are relatively uncommon, their reported improvements
are minimal. In contrast, DFP considers both constant and dynamic operands. Additionally, my IFES
(refer to Section 4.2.2 on page 77) concept establishes equivalences between one input and one
output bit and among multiple input bits, enabling backward-directed forking of equivalences (see
AND in Figure 4.4 on page 76). (3) Pruning Preconditions: I explore preconditions (single static reader
and inaccessible dead values) for the data flow to enable precise, inter-location, instruction-sensitive
pruning (via DFP’s injection-symbol propagation) based on the single-fault assumption (refer to
Figure 4.10 on page 88 and Listing 4.3 on page 88). Thus, their constant-based equivalence and
masking method inherently lack precision, disregarding secondary data flows from input operands
to other instructions.

GangES [SH+14] executes multiple FI experiments concurrently and identifies matching execu-
tion states among these experiments. When two experiments are in the same state, only one finalizes,
and its outcome is applied to the other. Nonetheless, their matching mechanism is time-restricted
post-FI, making their methods ineffective for experiments that become stuck late.

Alternative sampling techniques [Lev+09; Ram+08] provide an approximate coverage of the
FS or prioritize significant faults [Ebr+15]. The fault-similarity heuristic [SBS14] applies machine
learning on recorded system states to prevent injecting similar faults, but it is not reproducible.
Some methods use structural attributes, such as data-structure dependencies [Ebr+16], address
bounds [SJK17], or memory states [Har+12b], to identify similar faults; this is the most similar
to my FSR approach. However, these sampling methodologies do not achieve FS-completeness or
precision. In contrast, creating FSRs is flexible, reproducible, and FS-complete; the accuracy depends
on the weight function only, and it works independently of the failure classification.

Besides FI-based reliability evaluations, various vulnerability factors [AFK01; AT05; Ebr+16;
Fan+16; SK09] integrate data from program execution, program structure, and processor architecture
to estimate reliability. Despite this, these factors lack a quantitative classification of specific failure
behaviors, failing to offer a complete or accurate depiction of the actual FS. TRIDENT [Li+18],
segments the program into blocks, and propagates SDC probabilities between these blocks without
executing real FI. However, this tool is similar to (e)PVF [SK09; Fan+16] and fails to achieve FS-
completeness or precision in its analysis due to considerations around branch probabilities and
pruned data dependencies.

Regarding dynamic TO detection during the execution of FI experiments, ACTOR represents a
prediction method that makes heuristic decisions regarding the outcome of the ongoing experiment,
determining whether it is a TO or not. ACTOR is the first attempt at dynamic TO detection specifically
designed to inject transient hardware dynamically.

Throughout Chapter 6, autocorrelation [IKP16] has been discussed as the significant means to de-
tect infinite loops; however, the initial approach shows an overhead runtime factor of 100 to 225, mak-
ing the unmodified autocorrelation approach unsuitable for FI. Another method, Looper [Bur+09],
employs a satisfiability modulo theory solver to generate non-termination formulas verified at run-
time, yet it also suffers from excessive runtime overhead factors reaching up to 10000. Carbin and
colleagues [Car+11] pursued a different approach by detecting recurring program states, recording
the whole program states, and marking an infinite loop if no system-state change is observable
between two loop iterations. However, in our FI benchmarks, we noticed that timeouts frequently
alter their program state (e.g., due to the decrement of a faulty loop counter).

162

8
Conclusion

The beautiful thing about learning is nobody can take it away from you.

RILEY B. “B.B.” KING (1925–2015)

In this final chapter, I revisit and summarize the key points of my dissertation and provide a
concise conclusion of my work.

163

8.1 Summary

8.1 Summary

The exploration in the field of dependable computing comprehends the emerging threat to hardware
design operation known as the “reliability wall” [BJS07] or “soft-error wall” [Muk08]. As transistor
sizes in hardware continue to shrink [Com22], transient hardware faults, also known as soft errors,
threaten system reliability. To mitigate the threat of errors during operation, hardware or software
often use hardening techniques to detect and correct them. Whereas Software-Implemented Hardware
Fault Tolerance (SIHFT) techniques may be less performant than their hardware counterparts, they
offer greater flexibility, cost-efficiency, and adaptability to the target system [Rei+05b; Kon08;
RGF23].

Fault Injection (FI) is one possible measure to assess the effectiveness of these hardening measures
in handling errors. By using FI frameworks that execute entire FI campaigns, it is possible to analyze
and quantify the SUT for reliability systematically. However, a well-defined Fault Model (FM) is
essential for a purposeful reliability analysis with FI. In the context of this work, I considered the
ISA layer to be the target injection layer within the specified FM.

The Fault Space (FS) [Gol+06] concept establishes a comprehensive understanding of all potential
transient faults. An FI framework executes the FI campaign, which observes the different system
behaviors when FIs run at every point in time and at every bit location regarding the FS of the SUT.
However, systematically traversing all possible points in time and bit locations of the SUT is not
feasible.

Accelerating an FI campaign is achievable by decreasing the number of FIs pre-injection or
dynamically optimizing individual FI executions. The field of accelerating FI campaigns is an ex-
tensive research area and has produced several well-established methods, like Def/Use Pruning
(DUP) [Smi+95; GS95; Ben+98b; BP03; Bar+05; Gri+12] or checkpointing [Par+00a; Par+00b;
Ber+02; SH+14; Par+14], for instance. Despite the significant reduction in runtime achieved by
appropriate acceleration methods and their combinations, the overall runtime can still be huge.

To further mitigate extensive FI-campaign runtimes, I introduced new acceleration methods for
the FI framework FAIL* [Sch+15] as part of my research. These methods use extracted program
structures from the SUT’s program trace, such as data flows and dynamic jump addresses. All of
my contributions need this previously extracted program trace. Acceleration methods outlined in
the three contributions have limited use without a proper trace. Without a trace, the acceleration
methods outlined in the three contributions can only be used to a limited extent.

I delved into these contributions in chapters 4 to 6 of this dissertation. To determine the ef-
fectiveness of this work my benchmark portfolio contains selected benchmarks from the MiBench
benchmark suite [Gut+01] and some self-developed Micro benchmarks. The contributions more in
detail, and my findings are as follows:

Contribution 1 Data-Flow–Sensitive Fault-Space Pruning
My developed acceleration method, Data-Flow Pruning (DFP), initially constructs a data-
flow graph from an extracted program trace. The DFP uses implemented Instruction-Local
Fault-Equivalence Set (IFES) mappings that replicate masking and propagation effects within
individual instructions. Subsequently, the DFP assigns unique injection symbols for each bit,
which the DFP propagates through the data-flow graph via the implemented IFES mappings.
Finally, the DFP plans an FI for every distinct injection symbol.

Without implemented IFES mappings, the DFP determines results equivalent to the DUP,
making the DFP an enhanced version of the DUP. Unlike the DUP, the DFP generates two-
dimensional equivalences, including information on the bit locations instead of using only

165

8.1 Summary

the temporal dimension, which is a structural unification of DUP’s FESs across time and bit
locations.

The greater the number of implemented IFES mappings, the greater the benefit compared to
the DUP. However, manually implementing IFES mappings is error-prone and requires careful
attention from its implementer. Furthermore, the propagation of injection symbols is based on
two conservatively designed conditions, leaving room for optimization.

I implemented the DFP as a FAIL* tool and evaluated its calculation efficiency and FI-reduction
effectiveness. DFP consistently completes the FI calculation in 4 to 38 minutes, a substantial
gain compared to the saved hours of FI-campaign runtime. Despite implementing only five
IFES mappings for relatively simple instructions ADD, AND, OR, XOR, and MOV, the DFP further
reduces the FIs from the DUP by up to 18.42 percent.

Contribution 2 Program-Structure–Guided Approximation of Fault Spaces
The Fault-Space Regions (FSRs) approach divides the FS into temporal segments defined by
region borders. In this dissertation, I have chosen dynamic basic blocks and function scopes as
borders, designating the entry points of FSRs. The FESs from the DUP are interpreted as data
flows that stay within one region or traverse from one region to the next. The latter represents
the data flows that propagate errors through the program. Consequently, these FESs are FI
representatives for the entire region, and their FI results are approximately extrapolated with
a weight function to the remaining non-injected FESs to achieve complete FS coverage.

The concept of FSRs has been implemented as a FAIL* tool and evaluated against the DUP
using my benchmark portfolio. FSRs with basic blocks are shorter than those defined by
function scopes, unions of individual basic blocks. Function scope FSRs lead to significant
reductions and high approximation errors, making them too coarse for FSRs. Additionally, the
use of FSRs is more precise for FIs in memory compared to FIs in registers.

The evaluation considers two different weighting functions, revealing that the one based on
a weighted average is more accurate. Consequently, the evaluation focuses on FSRs with
dynamic basic blocks and the weighted-averaged—alike weighting function.

FSRs are consistently determined in under 4.1 seconds over all considered benchmarks. Basic-
block FSRs and the weighted weighting function achievesan FI reduction of up to 77.51 percent
with an approximation error of less than 2.09 percent. The FSR approach demonstrates a
strong ability to maintain the locality of results, particularly concerning the failure class SDC,
with a median deviation of 11.1 percent.

Contribution 3 Timeout-Detection Methods for Fault-Injection–Experiment Acceleration
SUTs may encounter issues where they do not terminate after an FI, such as flipping a bit of a
loop counter. It is possible to detect as early as possible that the SUT would not terminate after
an FI. In that case, the period between the point of detection and the set timeout threshold,
where the SUT’s behavior is automatically classified as timeout, is eliminable. In this context,
dynamic timeout detectors can reduce unproductive time for every FI.

As the final contribution to this dissertation, I delved into the nature of timeouts of individual
FI. I presented the results of an analysis of timeouts from an FI campaign perspective, outlined
an upper bound of potential campaign-runtime savings, and proposed a viable time point for
triggering timeout detectors.

Furthermore, I shared the outcomes of initial approaches to optimize the FI execution time,
leading to the development of the timeout detector ACTOR.

166

8.1 Summary

ACTOR uses the program trace and extracts dynamic jump addresses to identify patterns in
jumps through autocorrelation, aiming to detect potential endless loops and to predict timeouts.
ACTOR has been implemented as a FAIL* tool with associated plugins. The evaluation of ACTOR
has a minimal impact of below 0.5 percent regarding timeout misclassifications. Additionally,
ACTOR shows a high true-positive rate of approximately 85 percent. However, ACTOR shows a
high false-positive rate but is not considered critical in relative terms. Overall, ACTOR needs a
maximum of 68 µs for the prediction calculation and achieves end-to-end FI-campaign–runtime
savings ranging from 12.2 to 27.6 percent.

Beyond the contributions, I discussed pertinent topics such as the fault model used in this
dissertation, the ISA layer as a targeted layer for FI, and the single-fault assumption. Although the
ISA layer may lack precision in quantifying the overall reliability of hardware, it proves effective for
evaluating SIHFT techniques implemented on fixed hardware. The single-fault assumption means
that only one fault occurs at a time, with only a single error subsequently becoming visible on the
ISA layer. I thoroughly discussed this aspect and the evaluation setup and outlined why considering
single errors visible on the ISA layer suffices for my research objectives.

Furthermore, I discussed my dissertation’s setup, detailing the benchmarks used and the simulated
hardware integrated into my technical setup. Choosing appropriate benchmarks to quantify the
effectiveness of FI-acceleration methods poses challenges, and I demonstrated the potential issues
in general and regarding the dissertation’s benchmark portfolio. Although the hardware simulation,
an x86 in the Bochs simulator as the FAIL* backend, exhibits realism limitations, it proved adequate
for quantifying the effectiveness of my contributions.

8.2 Conclusion

Systematic fault injection emulates a system under transient environmental effects like radiation and
heat. Implemented hardening techniques make systems more reliable and can be implemented in
software or hardware. Executing fault injection campaigns quantifies a system’s reliability within
software-implemented hardening techniques on fixed hardware. However, the execution time of fault
injection campaigns can become infeasible when an extensive and detailed statement about the
system’s reliability is desired. To address this challenge, various acceleration methods aim to either
reduce the number of injections or speed up individual injections of a campaign. This dissertation
delves into optimizing campaign runtimes using extracted program structures for application-tailored
campaign-runtime acceleration. Through the three distinct contributions, I optimized campaign
runtimes and semantically enhanced a well-established acceleration method. In summary, I presented
three novel acceleration methods, expanding the repertoire of potential and generally established
acceleration methods in this context. These thoroughly evaluated and published contributions offer
flexibility and can be combined in various ways, including with established methods beyond the
dissertation’s scope.

167

Acronyms

AVF Architectural Vulnerability Factor See: Section 2.2.2
Related to fault coverage, the AVF measures the vulnerability to a fault in a specific hardware
component.

BB Basic Block See: Section 5.1.1
A BB is a sequence of consecutive and non-branching instructions in a program with a single
entry point and exit point.

BBR Basic-Block Region See: Section 5.2.1.1
A BBR is an instantiation of an FSR based on BBs.

CFG Control-Flow Graph See: Section 5.1.1
A CFG represents a program’s static or dynamic control flow, illustrating the sequence of
executed instructions.

CPU Central Processing Unit
The CPU is the system’s core component, executing instructions and managing the overall
operation.

CR Call Region See: Section 5.2.1.2
A CR is an instantiation of an FSR based on function scopes.

DFES Data-Flow–Aware Fault-Equivalence Set See: Section 4.1
The DFES of the DFP are unified FESs based on the data flow and instruction semantics of the
examined program.

DFG Data-Flow Graph See: Section 4.2.1
A DFG illustrates the data flow of a program, showing interconnections between data values
and instructions.

DFP Data-Flow Pruning See: Section 4.2
Based on a DFG and implemented IFESs, the DFP constructs DFESs that reduce the number of
FIs in the pre-injection analysis step.

DRAM Dynamic Random-Access Memory
DRAM is volatile memory that stores data using capacitors, requiring periodic refresh cycles.

DUP Def/Use Pruning See: Section 2.3.2.1
The DUP calculates FESs and its representative pilots based on write and read times of register
or memory accesses.

ELF Executable and Linkable Format See: Section 3.2.2
ELF is a standardized format for binaries, object code, and shared libraries.

FES Fault-Equivalence Set See: Section 2.3.2
An FES is a set of faults in a system that leads to equivalent observable system outcome during
FI.

FI Fault Injection See: Section 2.2
FI is a testing technique that injects faults into a system to assess its reliability and to identify
potential vulnerabilities.

169

ACRONYMS

FIT Failure In Time See: Section 2.1.4
FIT is a metric to express the expected failure rate of a hardware device, which is the number
of failures that can happen per one billion (109) hours of operation.

FM Fault Model See: Section 2.2.4
An FM is a simplified representation to escribing which potential faults, errors, or failures may
occur wherein a system and how they behave.

FN False Negative See: Section 6.2.2.2
In binary classification, a FN is when a predictor incorrectly identifies a positive instance as
negative.

FP False Positive See: Section 6.2.2.2
In binary classification, a FP is when a predictor incorrectly identifies a negative instance as
positive.

FS Fault Space See: Section 2.2.1
A complete FS is defined by a fault model and contains all possible fault injections in time and
bit-location dimensions.

FSR Fault-Space Region See: Section 5.2
An FSR is a temporal segment of the FS defined by region borders for selecting FESs to aim FI
reduction in the pre-injection analysis step.

IFES Instruction-Local Fault-Equivalence Set See: Section 4.2.2
IFESs describe sets of input and output bits of a single instruction which are equivalent
regarding the instruction’s propagation and masking effects.

IP Instruction Pointer See: Section 2.2.2, Section 3.2.2
The IP is a register that holds the memory address of the next instruction the CPU will fetch.

ISA Instruction-Set Architecture See: Section 2.1.3, Section 2.2.4
An ISA defines the instruction set a processor can execute, including the instructions and data
manipulation supported by the hardware.

LSB Least Significant Bit See: Section 6.3.2
This bit represents the lowest-order bit in a numerical value, contributing the least to the
overall value.

MBU Multiple-Bit Upset See: Section 2.1.2, Section 7.1.2
An MBU is a multiple-bit error visible on the ISA layer caused by an SEU.

miBC MiBench Bitcount See: Section 3.2.3.1
This benchmark computes the bitcount of an array of integers with five distinct methods.

miBFD MiBench Blowfish Decryption See: Section 3.2.3.1
Blowfish is a symmetric block cipher with a variable key length, and this is the decryption.

miBFE MiBench Blowfish Encryption See: Section 3.2.3.1
This is analogous to miBFD, but it encrypts instead.

miQS MiBench Quicksort See: Section 3.2.3.1
This quicksort variant sorts an array of strings.

170

ACRONYMS

miRDD MiBench Rijndael Decryption See: Section 3.2.3.1
Rijndael’s block cipher with a variable key length is better known under the abbreviation AES,
and this is the decryption.

miRDE MiBench Rijndael Encryption See: Section 3.2.3.1
This is analogous to miRDE, but it encrypts instead.

miSHA MiBench SHA1 Checksum See: Section 3.2.3.1
The SHA1 hashing algorithm generates a 160-bit message digest for a given input.

MSB Most Significant Bit See: Section 6.3.2
This bit represents the highest-order bit in a numerical value, contributing the most to the
overall value.

PVF Program Vulnerability Factor See: Section 2.2.2
Similar to AVF, the PVF measures the vulnerability of an architectural-visible resource on the
ISA layer.

SDC Silent Data Corruption See: Section 3.1.2
SDC is a failure class, representing a terminated system returning undetected erroneous
output.

SEU Single-Event Upset See: Section 2.1.2, excursus on page 17
An SEU is a transient fault in electronics by external factors leading to a temporary change in
the state of a transistor, also known as a soft error.

SIHFT Software-Implemented Hardware Fault Tolerance See: Section 2.1.5, excursus on page 25
SIHFT techniques enhance the system’s reliability by implementing software-based error
detection or correction techniques.

SRAM Static Random-Access Memory
SRAM is high-speed volatile memory using flip-flop circuits as long as power is supplied.

SUT System Under Test See: Section 2.2.2
The SUT is a system variant. Depending on the FI technique, the environment, hardware, or
software must be altered to be usable by an FI framework.

SWIFI Software-Implemented Fault Injection See: Section 2.2.3.3
SWIFI techniques inject faults into a system’s software layer to evaluate reliability.

TN True Negative See: Section 6.2.2.2
In binary classification, a TN is when a predictor correctly identifies a negative instance.

TO Timeout See: Section 3.1.2, Section 6.2
A system behavior is classified as a TO when the system does not terminate after a predeter-
mined period.

TP True Positive See: Section 6.2.2.2
In binary classification, a TP is when a predictor correctly identifies a positive instance.

uFIB Micro Recursive Fibonacci See: Section 3.2.3.1
This benchmark returns the n-th Fibonacci number.

171

ACRONYMS

uLSUM Micro Iterative Looped Sum See: Section 3.2.3.1
The algorithm performs an iterative summation of a sequence of integers.

uMIX Micro Mixed Bit-Wise Operations See: Section 3.2.3.1
This benchmark extends µLSUM by bit-wise logical operations.

uQSI Micro Quicksort Iterative See: Section 3.2.3.1
Inspired by an original MiBench quicksort variant, this benchmark sorts three-dimensional
vectors by distance to the coordinate origin iteratively.

uQSR Micro Quicksort Recursive See: Section 3.2.3.1
This is analogous to µQSI, but it performs the sorting recursively instead.

172

Mathematical Symbols

a Autocorrelation Count Function See: Section 6.4.1
The function a(g, m), used by ACTOR, calculates the autocorrelation value for the given lag g
and jump-history list length m.

a⃗ Autocorrelation Count Vector See: Section 6.4.1, Section 6.4.2.4
The vector a⃗ = (ath,1, ath,2, . . .) contains different autocorrelation thresholds ai for different
considered lags i.

athr Autocorrelation Threshold See: Section 6.4.1, Section 6.4.2.4
If the autocorrelation value of function a(g, m) exceeds the threshold athr, the FI experiment
is classified as a TO.

b Single Fault-Space Region border See: Section 5.2
A FSR border b ∈ T is a point in time of the FS to segment the temporal dimension of the FS.

B Set of Fault-Space Region borders See: Section 5.2
The set B contains all set borders bi ∈ B regarding the used border rule for the given FS.

c FI-Experiment Failure Classification See: Section 3.1.2, Section 3.2.2
After an FI experiment, the SUT shows a certain behavior, which is categorized into one failure
class c ∈ C

C All possible FI-Experiment Failure Classifications See: Section 3.1.2, Section 3.2.2
C is the set of all in this dissertation considered FI-experiment failure classes.

E Effective Fault Space See: Section 2.3.2.1
The FS F = E ∪ I is segmented into the effective E and the ineffective part I of the FS.
Injecting into E is effective, which means that the SUT results in one of the considered failure
classifications C post-FI and is not exclusively benign.

F Fault Space See: Section 2.2.1
F is a two-dimensional space T × L of all possible points in time and accessible locations of a
running system.

g Lag of ACTOR See: Section 6.4.1, Section 6.4.2.3
The lag g, used in the autocorrelation function a(g, m), stands for the distance at which jumps
are checked for equality in the jump-history list H.

H Jump-History List of ACTOR See: Section 6.4.1, Section 6.4.2.2
ACTOR records jumps during runtime in a list H, which has the length m. Single jumps of the
list are denoted as H(i).

I Ineffective Fault Space See: Section 2.3.2.1
The FS F = E ∪ I is segmented into the effective E and the ineffective part I of the FS,
whereby injecting faults into I results eventually in a benign failure classification.

i Numerical Identifier
For instance, i marks points in time t i and locations l i in the F , or the i-th pilot pi of an FI
experiment of all in an FI campaign, or the i-th job from the FAIL*’s job server, or the i-th FES
of the effective FS E .

173

MATHEMATICAL SYMBOLS

j Numerical Identifier
Analogous to i

k Numerical Identifier
Analogous to i

l Location in the Fault Space See: Section 2.2.1
l describes a single location in the FS F or the FI location of a single pilot pi = (t i , l i)

L All Locations in the Fault Space F See: Section 2.2.1
The set L contains all accessible locations l i ∈ L in the FS F

m Length of Jump History List H See: Section 6.4.1, Section 6.4.2.2
The value m defines how many jumps ACTOR records in the jump-history list H for the
calculation of the autocorrelation value using the autocorrelation function a.

n Number of FI Campaign Pilots See: Section 2.3.1, Section 2.3.2.1
n stands for the amount of pilots n= |P| to be executed in an FI campaign.

nnaive Number of naive FI-Campaign Pilots See: Section 2.3.1
Without the application of any acceleration logic, the number of pilots is equal to all possible
FIs in the whole FS nnaive = |F |

nDUP Number of DUP FI-Campaign Pilots See: Section 2.3.2.1
nDUP = |PDUP| stands for the amount of calculated pilots for an FI campaign after applying
DUP.

nDFP Number of DFP FI-Campaign Pilots See: Section 4.2.4
nDFP = |PDFP| stands for the amount of calculated pilots for an FI campaign after applying DFP.

p FI Campaign Pilot See: Section 2.3.2.1
A pilot p is a representative of an FES and stands for an FI to be executed at a specific point in
time t and location l: p = (t, l)

P All FI Campaign Pilots See: Section 2.3.2.1
The set P contains all pilots P ∋ pi = (t i , l i) of an FI campaign.

PDUP All DUP FI-Campaign Pilots See: Section 2.3.2.1
The set PDUP contains all pilots P of an FI campaign after applying DUP.

PDFP All DFP FI-Campaign Pilots See: Section 4.2.4
The set PDFP contains all pilots P of an FI campaign after applying DFP.

r FI-Experiment Result See: Section 3.2.2
FI experiment’s single result r i = (pi , c) of the FI campaign contains the pilot pi for unique
reference, as well as the resulting SUT behavior categorized in a failure class c.

R All FI Campaign Results See: Section 3.2.2
The set R contains all single FI experiment results r i =∈ R of an FI campaign.

RDUP All DUP FI-Campaign Results See: Section 3.2.2
This set RDUP contains all single FI experiment results r i =∈ R of an FI campaign with applying
DUP in the pre-injection analysis step.

174

MATHEMATICAL SYMBOLS

s IFES Symbol See: Section 4.2.2.1
Every unique IFES symbol si represents an IFES considering the masking and propagation
effects of the instruction for a set of bits in the input and output of the instruction.

t Point in Time in the Fault Space See: Section 2.2.1
This describes a single point in time in the FS F or the FI time of a single pilot pi = (t i , l i)

tcpn FI-Campaign Runtime See: Section 3.2
tcpn is the period needed for executing a whole FI campaign consisting of all related FI
experiments.

texp FI-Experiment Runtime See: Section 3.2
texp is the period needed for executing individual FI experiment from the experiment’s very
start until the experiment reports back the observed system behavior post-FI.

tgr Golden-Run Runtime See: Section 6.2.1
tgr stands for the runtime of the reference execution (i.e., the golden run).

t pi
Pilot’s Injection Time See: Section 6.1.1

A pilot pi ∈ P injects a fault at the specified FI time t pi
.

tprg SUT’s Program Runtime See: Section 2.3.1,Section 6.1.1
tprg is a segment of texp and stands for the pure period needed for the execution of the SUT’s
program without any method or FI-framework overhead.

tov Runtime Overhead See: Section 2.3.1, Section 3.2.1
tov is the overhead period in either texp, when the overhead of individual FI is in focus, or tcpn,
when the overhead of the whole FI campaign is meant.

T All Points in Time in the Fault Space F See: Section 2.2.1
The set T contains all points in time t i ∈ T in the FS F

T P All Pilot’s FI-Experiment Runtimes See: Section 3.2.1.3
This is the set of the FI-experiment runtimes texp,i ∈ T P for every single executed pilot pi ∈ P

T PDUP
All DUP Pilot’s FI-Experiment Runtimes See: Section 3.2.1.1
Set of the FI-experiment runtimes texp,i ∈ T PDUP

for all DUP pilots PDUP.

w Weight Function for FES See: Section 2.3.2.1, Section 4.1, Section 5.2
Several weight functions w describe the cardinality of sets containing points of E , like FESs,
DFESs, or FSRs.

175

Bibliography

Own Work

[�Die+18] Christian Dietrich, Achim Schmider, Oskar Pusz, Guillermo Payá-Vayá, and Daniel
Lohmann. “Cross-Layer Fault-Space Pruning for Hardware-Assisted Fault Injection.” In: Pro-
ceedings of the 55th Annual Design Automation Conference 2018 (DAC ’18). San Francisco,
California, USA: ACM Press, 2018. ISBN: 978-1-4503-5700-5/18/06. DOI: 10.1145/3195970.
3196019.

[�PDL21] Oskar Pusz, Christian Dietrich, and Daniel Lohmann. “Data-Flow–Sensitive Fault-Space
Pruning for the Injection of Transient Hardware Faults.” In: Proceedings of the 2021 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems (LCTES
’21) (Virtual Conference). New York, NY, USA: ACM Press, June 2021, pp. 97–109. DOI:
10.1145/3461648.3463851.

[�Pus+19] Oskar Pusz, Daniel Kiechle, Christian Dietrich, and Daniel Lohmann. “Program-Struc-
ture–Guided Approximation of Large Fault Spaces.” In: 2019 24th Pacific Rim International
Symposium on Dependable Computing (PRDC’19). Washington, DC, USA: IEEE Computer
Society Press, 2019. DOI: 10.1109/PRDC47002.2019.00044.

[�Tho+22] Tim-Marek Thomas, Christian Dietrich, Oskar Pusz, and Daniel Lohmann. “ACTOR:
Accelerating Fault Injection Campaigns using Timeout Detection based on Autocorrelation.”
In: 41st International Conference on Computer Safety, Reliability and Security (SAFECOMP
2022). Munich, Germany: Springer-Verlag, 2022. DOI: 10.1007/978-3-031-14835-4_17.

Cited Literature

[ACK70] Frances E. Allen, John Cocke, and Ken Kennedy. “A Catalog of Optimizing Transforma-
tions.” In: Proceedings of the ACM SIGPLAN Symposium on Compiler Construction. ACM. 1970,
pp. 1–19.

[AFK01] J. Aidemark, P. Folkesson, and J. Karlsson. “Path-based error coverage prediction.” In:
Proceedings Seventh International On-Line Testing Workshop. July 2001, pp. 14–20. DOI:
10.1109/OLT.2001.937811.

[AKL12] Algirdas Avizienis, Hermann Kopetz, and Jean-Claude Laprie. The Evolution of Fault-
Tolerant Computing. Vol. 1. Springer Science & Business Media, 2012. ISBN: 978-3-7091-
8871-2.

[ALR01] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. “Fundamental concepts of
dependability.” In: Department of Computing Science Technical Report Series (2001). URL:
https://eprints.ncl.ac.uk/fulltext.aspx?url=55707%2f35D90208-2D34-4C19-

BFB5-65E037791AE6.pdf&pub_id=160699&ts=637649754792360989 (visited on 2024-03-
28).

177

https://doi.org/10.1145/3195970.3196019
https://doi.org/10.1145/3195970.3196019
https://doi.org/10.1145/3461648.3463851
https://doi.org/10.1109/PRDC47002.2019.00044
https://doi.org/10.1007/978-3-031-14835-4_17
https://doi.org/10.1109/OLT.2001.937811
https://eprints.ncl.ac.uk/fulltext.aspx?url=55707%2f35D90208-2D34-4C19-BFB5-65E037791AE6.pdf&pub_id=160699&ts=637649754792360989
https://eprints.ncl.ac.uk/fulltext.aspx?url=55707%2f35D90208-2D34-4C19-BFB5-65E037791AE6.pdf&pub_id=160699&ts=637649754792360989

BIBLIOGRAPHY

[AN97] Z. Alkhalifa and V.S.S. Nair. “Design of a portable control-flow checking technique.” In:
Proceedings 1997 High-Assurance Engineering Workshop. 1997, pp. 120–123. DOI: 10.1109/
HASE.1997.648049.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Boston, MA, USA: Addison-Wesley, 1986. ISBN: 0-201-10088-6.

[AT05] Ghazanfar Asadi and Mehdi Baradaran Tahoori. “An analytical approach for soft error rate
estimation in digital circuits.” In: Circuits and Systems, 2005. ISCAS 2005. IEEE International
Symposium on. IEEE. 2005, pp. 2991–2994. DOI: 10.1109/ISCAS.2005.1465256.

[Aid+01] Joakim Aidemark, Jonny Vinter, Peter Folkesson, and Johan Karlsson. “GOOFI: Generic
Object-Oriented Fault Injection Tool.” In: Proceedings of the 31st International Conference on
Dependable Systems and Networks (DSN ’01). Washington, DC, USA: IEEE Computer Society
Press, June 2001, pp. 83–88. ISBN: 0-7695-1101-5.

[Alk+99] Z. Alkhalifa, V. S. S. Nair, N. Krishnamurthy, and J. A. Abraham. “Design and Evaluation
of System-Level Checks for On-Line Control Flow Error Detection.” In: IEEE Trans. Parallel
Distrib. Syst. 10.6 (June 1999), pp. 627–641. ISSN: 1045-9219. DOI: 10.1109/71.774911.

[All+02] A. Allan, D. Edenfeld, W.H. Joyner, A.B. Kahng, M. Rodgers, and Y. Zorian. “2001 tech-
nology roadmap for semiconductors.” In: IEEE Computer 35.1 (Jan. 2002), pp. 42–53. ISSN:
0018-9162. DOI: 10.1109/2.976918.

[All70] Frances E. Allen. “Control Flow Analysis.” In: ACM SIGPLAN Notices 5.7 (July 1970),
pp. 1–19. ISSN: 0362-1340. DOI: 10.1145/390013.808479.

[Arl+02] Jean Arlat, Jean-Charles Fabre, Manuel Rodríguez, and Frédéric Salles. “Dependability of
COTS Microkernel-Based Systems.” In: IEEE Transactions on Computers 51 (2002), pp. 138–
163.

[Arma] Arm Cortex-M3 Technical Reference Manual r2p0 - Cotext-M3 instructions. Arm Ltd. 2010.
URL: https://developer.arm.com/documentation/ddi0337/h/programmers-model/
instruction-set-summary/cortex-m3-instructions (visited on 2024-03-28).

[Armb] Arm Cortex-M33 Processor Datasheet. Arm Ltd. 2020. URL: https://developer.arm.com/-
/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm-Cortex-

M33-Processor-Datasheet.pdf?revision=8d50f1dd-f018-4d4f-a5f4-9e1c6cd4c9ea&

la=en&hash=B041C79D1C773D22CC9572C2D8FF9E554472F55B (visited on 2024-03-28).

[Arm+19] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray,
Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked
Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. “ISA Semantics for ARMv8-A, RISC-V,
and CHERI-MIPS.” In: Proc. 46th ACM SIGPLAN Symposium on Principles of Programming
Languages. Proc. ACM Program. Lang. 3, POPL, Article 71. Jan. 2019. DOI: 10.1145/3290384.

[Arm22] Arm Limited. Arm® Architecture Reference Manual for A-Profile Architecture. DDI 0487H.a.
Cambridge, England, 2022.

[Ass21] JEDEC Solid State Technology Association. “JESD85A: Methods for Calculating Failure
Rates in Units of FITs.” In: (2021). URL: https://www.jedec.org/system/files/docs/
JESD85A.pdf (visited on 2024-03-28).

178

https://doi.org/10.1109/HASE.1997.648049
https://doi.org/10.1109/HASE.1997.648049
https://doi.org/10.1109/ISCAS.2005.1465256
https://doi.org/10.1109/71.774911
https://doi.org/10.1109/2.976918
https://doi.org/10.1145/390013.808479
https://developer.arm.com/documentation/ddi0337/h/programmers-model/instruction-set-summary/cortex-m3-instructions
https://developer.arm.com/documentation/ddi0337/h/programmers-model/instruction-set-summary/cortex-m3-instructions
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm-Cortex-M33-Processor-Datasheet.pdf?revision=8d50f1dd-f018-4d4f-a5f4-9e1c6cd4c9ea&la=en&hash=B041C79D1C773D22CC9572C2D8FF9E554472F55B
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm-Cortex-M33-Processor-Datasheet.pdf?revision=8d50f1dd-f018-4d4f-a5f4-9e1c6cd4c9ea&la=en&hash=B041C79D1C773D22CC9572C2D8FF9E554472F55B
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm-Cortex-M33-Processor-Datasheet.pdf?revision=8d50f1dd-f018-4d4f-a5f4-9e1c6cd4c9ea&la=en&hash=B041C79D1C773D22CC9572C2D8FF9E554472F55B
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm-Cortex-M33-Processor-Datasheet.pdf?revision=8d50f1dd-f018-4d4f-a5f4-9e1c6cd4c9ea&la=en&hash=B041C79D1C773D22CC9572C2D8FF9E554472F55B
https://doi.org/10.1145/3290384
https://www.jedec.org/system/files/docs/JESD85A.pdf
https://www.jedec.org/system/files/docs/JESD85A.pdf

BIBLIOGRAPHY

[Avi+04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. “Basic concepts
and taxonomy of dependable and secure computing.” In: IEEE Transactions on Dependable and
Secure Computing 1.1 (Aug. 2004), pp. 11–33. ISSN: 1545-5971. DOI: 10.1109/TDSC.2004.2.

[Avi71] A. Avižienis. “Arithmetic Error Codes: Cost and Effectiveness Studies for Application in
Digital System Design.” In: IEEE Transactions on Computers C-20.11 (1971), pp. 1322–1331.
DOI: 10.1109/T-C.1971.223134.

[Avi+71] A. Avižienis, G.C. Gilley, Francis P. Mathur, D.A. Rennels, J.A. Rohr, and D.K. Rubin. “The
STAR (Self-Testing And Repairing) Computer: An Investigation of the Theory and Practice of
Fault-Tolerant Computer Design.” In: IEEE Transactions on Computers 20.11 (1971), pp. 1312–
1321. ISSN: 0018-9340. DOI: 10.1109/T-C.1971.223133.

[BCS69] W. G. Bouricius, W. C. Carter, and P. R. Schneider. “Reliability Modeling Techniques for
Self-Repairing Computer Systems.” In: Proceedings of the 1969 24th National Conference.
ACM ’69. New York, NY, USA: Association for Computing Machinery, 1969, pp. 295–309.
ISBN: 9781450374934. DOI: 10.1145/800195.805940. URL: https://doi.org/10.1145/
800195.805940.

[BJS07] Shekhar Borkar, Norman P. Jouppi, and Per Stenstrom. “Microprocessors in the Era of
Terascale Integration.” In: 2007 Design, Automation & Test in Europe Conference & Exhibition
(DATE ’07). 2007. DOI: 10.1109/DATE.2007.364597.

[BL09] Christian Bienia and Kai Li. “Parsec 2.0: A new benchmark suite for chip-multiprocessors.”
In: Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation.
Vol. 2011. 2009, p. 37. URL: http://www- mount.ece.umn.edu/∼jjyi/MoBS/2009/

program/02E-Bienia.pdf (visited on 2024-03-28).

[BP03] Alfredo Benso and Paolo Ernesto Prinetto. Fault injection techniques and tools for embedded
systems reliability evaluation. Frontiers in electronic testing. Boston, Dordrecht, London:
Kluwer Academic Publishers, 2003. ISBN: 1-4020-7589-8.

[Bal+03] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, Maurizio Peri, and
Saverio Pezzini. “Fault-tolerant platforms for automotive safety-critical applications.” In:
Proceedings of the 2003 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems. CASES ’03. San Jose, California, USA: Association for Computing
Machinery, 2003, 170–177. ISBN: 1581136765. DOI: 10.1145/951710.951734. URL: https:
//doi.org/10.1145/951710.951734.

[Bar+05] Raul Barbosa, Jonny Vinter, Peter Folkesson, and Johan Karlsson. “Assembly-Level Pre-
injection Analysis for Improving Fault Injection Efficiency.” In: Dependable Computing - EDCC 5.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 246–262. ISBN: 978-3-540-32019-7.
DOI: 10.1007/11408901_19.

[Bar+17] Christian Bartsch, Carlos Villarraga, Dominik Stoffel, and Wolfgang Kunz. “A HW/SW
Cross-Layer Approach for Determining Application-Redundant Hardware Faults in Embedded
Systems.” In: Journal of Electronic Testing 33.1 (Feb. 2017), pp. 77–92. ISSN: 0923-8174,
1573-0727. DOI: 10.1007/s10836-017-5643-3.

[Bar+90] James H. Barton, Edward W. Czeck, Zary Z. Segall, and Daniel P. Siewiorek. “Fault
Injection Experiments Using FIAT.” In: IEEE Transactions on Computers 39.4 (Apr. 1990),
pp. 575–582. DOI: 10.1109/12.54853.

179

https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/T-C.1971.223134
https://doi.org/10.1109/T-C.1971.223133
https://doi.org/10.1145/800195.805940
https://doi.org/10.1145/800195.805940
https://doi.org/10.1145/800195.805940
https://doi.org/10.1109/DATE.2007.364597
http://www-mount.ece.umn.edu/~jjyi/MoBS/2009/program/02E-Bienia.pdf
http://www-mount.ece.umn.edu/~jjyi/MoBS/2009/program/02E-Bienia.pdf
https://doi.org/10.1145/951710.951734
https://doi.org/10.1145/951710.951734
https://doi.org/10.1145/951710.951734
https://doi.org/10.1007/11408901_19
https://doi.org/10.1007/s10836-017-5643-3
https://doi.org/10.1109/12.54853

BIBLIOGRAPHY

[Bau05] Robert C Baumann. “Radiation-induced soft errors in advanced semiconductor technolo-
gies.” In: IEEE Transactions on Device and Materials Reliability 5.3 (2005), pp. 305–316. DOI:
10.1109/TDMR.2005.853449.

[Ben+00] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri. “A C/C++ source-to-source compiler
for dependable applications.” In: Proceeding International Conference on Dependable Systems
and Networks (DSN ’00). 2000, pp. 71–78. DOI: 10.1109/ICDSN.2000.857517.

[Ben+01a] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, and L. Tagliaferri. “Control-flow checking
via regular expressions.” In: Proceedings 10th Asian Test Symposium (ATS ’01). IEEE Computer
Society Press, 2001, pp. 299–303. DOI: 10.1109/ATS.2001.990300.

[Ben+01b] A. Benso, S. Di Carlo, G. Di Natale, L. Tagliaferri, and P. Prinetto. “Validation of a software
dependability tool via fault injection experiments.” In: Proceedings Seventh International On-
Line Testing Workshop. 2001, pp. 3–8. DOI: 10.1109/OLT.2001.937809.

[Ben+98a] A. Benso, P. Prinetto, M. Rebaudengo, and M. Sonza Reorda. “EXFI: A Low-Cost Fault
Injection System for Embedded Microprocessor-Based Boards.” In: ACM Trans. Des. Autom.
Electron. Syst. 3.4 (1998), 626–634. ISSN: 1084-4309. DOI: 10.1145/296333.296351. URL:
https://doi.org/10.1145/296333.296351.

[Ben+98b] A. Benso, M. Rebaudengo, L. Impagliazzo, and P. Marmo. “Fault-list collapsing for
fault-injection experiments.” In: Annual Reliability and Maintainability Symposium. 1998
Proceedings. International Symposium on Product Quality and Integrity. 1998, pp. 383–388.
DOI: 10.1109/RAMS.1998.653808.

[Ber+02] L. Berrojo, I. Gonzalez, F. Corno, M. S. Reorda, G. Squillero, L. Entrena, and C. Lopez.
“New techniques for speeding-up fault-injection campaigns.” In: Design, Automation & Test
in Europe Conference & Exhibition 2002 (DATE ’02). Washington, DC, USA: IEEE Computer
Society Press, 2002, pp. 847–852. DOI: 10.1109/DATE.2002.998398.

[Bie+08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. “The PARSEC Bench-
mark Suite: Characterization and Architectural Implications.” In: Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Techniques. PACT ’08.
Toronto, Ontario, Canada: Association for Computing Machinery, 2008, pp. 72–81. ISBN:
9781605582825. DOI: 10.1145/1454115.1454128. URL: https://doi.org/10.1145/
1454115.1454128.

[Bin+11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit
Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. “The
Gem5 Simulator.” In: SIGARCH Comput. Archit. News 39.2 (Aug. 2011), pp. 1–7. ISSN:
0163-5964. DOI: 10.1145/2024716.2024718.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning. 1st. Springer, 2006.
ISBN: 978-0-387-31073-2.

[Bon64] A. Bondi. “van der Waals Volumes and Radii.” In: The Journal of Physical Chemistry 68.3
(1964), pp. 441–451. DOI: 10.1021/j100785a001. eprint: https://doi.org/10.1021/
j100785a001. URL: https://doi.org/10.1021/j100785a001.

180

https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/ICDSN.2000.857517
https://doi.org/10.1109/ATS.2001.990300
https://doi.org/10.1109/OLT.2001.937809
https://doi.org/10.1145/296333.296351
https://doi.org/10.1145/296333.296351
https://doi.org/10.1109/RAMS.1998.653808
https://doi.org/10.1109/DATE.2002.998398
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1021/j100785a001
https://doi.org/10.1021/j100785a001
https://doi.org/10.1021/j100785a001
https://doi.org/10.1021/j100785a001

BIBLIOGRAPHY

[Bor05] Shekhar Y. Borkar. “Designing reliable systems from unreliable components: the challenges
of transistor variability and degradation.” In: IEEE Micro 25.6 (2005), pp. 10–16. ISSN: 0272-
1732.

[Bur08] Australian Transport Safety Bureau. “In-flight upset-Airbus A330-303, VH-QPA, 154 km
west of Learmonth, WA, 7 October 2008.” In: Australian Transport Safety Bureau (ATSB),
Canberra (Australia). Aviation Occurrence Investigation AO-2008-070 (2008). URL: https:
//www.atsb.gov.au/publications/investigation_reports/2008/aair/ao-2008-070

(visited on 2024-03-28).

[Bur+09] Jacob Burnim, Nicholas Jalbert, Christos Stergiou, and Koushik Sen. “Looper: Lightweight
Detection of Infinite Loops at Runtime.” In: ASE 2009, 24th IEEE/ACM International Conference
on Automated Software Engineering, Auckland, New Zealand, November 16-20, 2009. IEEE
Computer Society, 2009, pp. 161–169. DOI: 10.1109/ASE.2009.87.

[Bur20] Gavin Malcolm Donald Burtt. “How An Ionizing Particle From Outer Space Helped A Mario
Speedrunner Save Time.” In: thegamer.com (Sept. 16, 2020). URL: https://www.thegamer.
com/how-ionizing-particle-outer-space-helped-super-mario-64-speedrunner-

save-time/ (visited on 2024-03-28).

[CH02] Yuhua Cheng and Chenming Hu. “Threshold Voltage Model.” In: Mosfet Modeling & BSIM3
User’s Guide. Boston, MA: Springer US, 2002, pp. 65–103. ISBN: 978-0-306-47050-9. DOI:
10.1007/0-306-47050-0_3. URL: https://doi.org/10.1007/0-306-47050-0_3.

[CMV02] P. Civera, L. Macchiarulo, and M. Violante. “A simplified gate-level fault model for crosstalk
effects analysis.” In: 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems, 2002. DFT 2002. Proceedings. 2002, pp. 31–39. DOI: 10.1109/DFTVS.2002.1173499.

[CRA06] J. Chang, G.A. Reis, and D.I. August. “Automatic Instruction-Level Software-Only Re-
covery.” In: Proceedings of the 36th International Conference on Dependable Systems and
Networks (DSN ’06). Washington, DC, USA: IEEE Computer Society Press, 2006, pp. 83–92.
DOI: 10.1109/DSN.2006.15.

[CS17] Cyril R.A. John Chelliah and Rajesh Swaminathan. “Current trends in changing the channel
in MOSFETs by III–V semiconducting nanostructures.” In: Nanotechnology Reviews 6.6 (2017),
pp. 613–623. DOI: doi:10.1515/ntrev-2017-0155. URL: https://doi.org/10.1515/
ntrev-2017-0155.

[CS90] E.W. Czeck and D.P. Siewiorek. “Effects of transient gate-level faults on program behavior.”
In: Proceedings of the 20rd International Symposium on Fault-Tolerant Computing (FTCS-20)
(Newcastle Upon Tyne, UK). Washington, DC, USA: IEEE Computer Society Press, June 1990,
pp. 236–243. DOI: 10.1109/FTCS.1990.89371.

[Car+11] Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C. Rinard. “Detecting and
Escaping Infinite Loops with Jolt.” In: ECOOP 2011 - Object-Oriented Programming - 25th Eu-
ropean Conference, Lancaster, UK, July 25-29, 2011 Proceedings. Ed. by Mira Mezini. Vol. 6813.
Lecture Notes in Computer Science. Springer, 2011, pp. 609–633. DOI: 10.1007/978-3-
642-22655-7_28.

181

https://www.atsb.gov.au/publications/investigation_reports/2008/aair/ao-2008-070
https://www.atsb.gov.au/publications/investigation_reports/2008/aair/ao-2008-070
https://doi.org/10.1109/ASE.2009.87
https://www.thegamer.com/how-ionizing-particle-outer-space-helped-super-mario-64-speedrunner-save-time/
https://www.thegamer.com/how-ionizing-particle-outer-space-helped-super-mario-64-speedrunner-save-time/
https://www.thegamer.com/how-ionizing-particle-outer-space-helped-super-mario-64-speedrunner-save-time/
https://doi.org/10.1007/0-306-47050-0_3
https://doi.org/10.1007/0-306-47050-0_3
https://doi.org/10.1109/DFTVS.2002.1173499
https://doi.org/10.1109/DSN.2006.15
https://doi.org/doi:10.1515/ntrev-2017-0155
https://doi.org/10.1515/ntrev-2017-0155
https://doi.org/10.1515/ntrev-2017-0155
https://doi.org/10.1109/FTCS.1990.89371
https://doi.org/10.1007/978-3-642-22655-7_28
https://doi.org/10.1007/978-3-642-22655-7_28

BIBLIOGRAPHY

[Car+95] Joao Carreira, Henrique Madeira, João Gabriel Silva, and João Gabriel Silva. “Xception:
Software Fault Injection and Monitoring in Processor Functional Units.” In: Proceedings of the
Conference on Dependable Computing for Critical Applications (DCCA ’95) (Urbana-Champaign,
Illinois, USA). Sept. 1995, pp. 135–149.

[Cha+19] Athanasios Chatzidimitriou, Pablo Bodmann, George Papadimitriou, Dimitris Gizopoulos,
and Paolo Rech. “Demystifying Soft Error Assessment Strategies on ARM CPUs: Microarchi-
tectural Fault Injection vs. Neutron Beam Experiments.” In: 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE,
June 2019, pp. 26–38. ISBN: 978-1-72810-057-9. DOI: 10.1109/DSN.2019.00018. URL:
https://ieeexplore.ieee.org/document/8809532/.

[Che+18] E. Cheng, S. Mirkhani, L. G. Szafaryn, C. Cher, H. Cho, K. Skadron, M. R. Stan, K. Lilja,
J. A. Abraham, P. Bose, and S. Mitra. “Tolerating Soft Errors in Processor Cores Using CLEAR
(Cross-Layer Exploration for Architecting Resilience).” In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37.9 (Sept. 2018), pp. 1839–1852. ISSN:
0278-0070. DOI: 10.1109/TCAD.2017.2752705.

[Cho+13] Hyungmin Cho, S. Mirkhani, Chen-Yong Cher, J.A. Abraham, and S. Mitra. “Quantitative
evaluation of soft error injection techniques for robust system design.” In: Proceedings of the
50th annual Design Automation Conference. 2013, pp. 1–10. DOI: 10.1145/2463209.2488859.

[Chu36] Alonzo Church. “An unsolvable problem of elementary number theory.” In: American
J. of Math. 58 (1936), pp. 345–363. URL: https://phil415.pbworks.com/f/Church.pdf
(visited on 2024-03-28).

[Cin+09] Marcello Cinque, Domenico Cotroneo, Catello Di Martino, Stefano Russo, and Alessandro
Testa. “AVR-INJECT: A tool for injecting faults in Wireless Sensor Nodes.” In: 2009 IEEE
International Symposium on Parallel & Distributed Processing. 2009, pp. 1–8. DOI: 10.1109/
IPDPS.2009.5160907.

[Com22] International Roadmap Committee. International Roadmap for Devices and Systems 2022
Update (Executive Summary). 2022. URL: https://irds.ieee.org/ (visited on 2024-03-28).

[Con03] C. Constantinescu. “Trends and challenges in VLSI circuit reliability.” In: Micro, IEEE 23.4
(July 2003), pp. 14–19. ISSN: 0272-1732. DOI: 10.1109/MM.2003.1225959.

[Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms. 3rd. MIT Press, 2009. ISBN: 978-0-262-03384-8.

[Cor13] Altera Corporation. Introduction to Single-Event Upsets, White Paper. Tech. rep. WP-01206-
1.0. 2013. URL: https://www.altera.com/en_US/pdfs/literature/wp/wp-01206-
introduction-single-event-upsets.pdf (visited on 2024-03-28).

[Cor22] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume 1:
Basic Architecture. 2022. URL: https://www.intel.com/content/www/us/en/develop/do
wnload/intel-64-and-ia-32-architectures-software-developers-manual-volume-

1-basic-architecture.html (visited on 2024-03-29).

182

https://doi.org/10.1109/DSN.2019.00018
https://ieeexplore.ieee.org/document/8809532/
https://doi.org/10.1109/TCAD.2017.2752705
https://doi.org/10.1145/2463209.2488859
https://phil415.pbworks.com/f/Church.pdf
https://doi.org/10.1109/IPDPS.2009.5160907
https://doi.org/10.1109/IPDPS.2009.5160907
https://irds.ieee.org/
https://doi.org/10.1109/MM.2003.1225959
https://www.altera.com/en_US/pdfs/literature/wp/wp-01206-introduction-single-event-upsets.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01206-introduction-single-event-upsets.pdf
https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture.html
https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture.html
https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture.html

BIBLIOGRAPHY

[DC+14] Stefano Di Carlo, Paolo Prinetto, Daniele Rolfo, and Pascal Trotta. “A fault injection
methodology and infrastructure for fast single event upsets emulation on Xilinx SRAM-based
FPGAs.” In: 2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT). 2014, pp. 159–164. DOI: 10.1109/DFT.2014.6962073.

[DH12] Björn Döbel and Hermann Härtig. “Who Watches the Watchmen? – Protecting Operating
System Reliability Mechanisms.” In: Proceedings of the 8th International Workshop on Hot Topics
in System Dependability (HotDep ’12) (Hollywood, CA, USA). Berkeley, CA, USA: USENIX
Association, 2012. URL: https://www.usenix.org/conference/hotdep12/workshop-
program/presentation/D{\"o}bel (visited on 2024-03-28).

[DH14] Björn Döbel and Hermann Härtig. “Can We Put Concurrency Back into Redundant Mul-
tithreading?” In: Proceedings of the 14th International Conference on Embedded Software.
EMSOFT ’14. New Delhi, India: Association for Computing Machinery, 2014, pp. 1–10. ISBN:
9781450330527. DOI: 10.1145/2656045.2656050. URL: https://doi.org/10.1145/
2656045.2656050.

[DHE12] Björn Döbel, Hermann Härtig, and Michael Engel. “Operating System Support for Redun-
dant Multithreading.” In: Proceedings of the 12th ACM International Conference on Embedded
Software (EMSOFT ’12). EMSOFT ’12. Tampere, Finland: Association for Computing Ma-
chinery, 2012, pp. 83–92. ISBN: 9781450314251. DOI: 10.1145/2380356.2380375. URL:
https://doi.org/10.1145/2380356.2380375.

[DL+12] Domenico Di Leo, Fatemeh Ayatolahi, Behrooz Sangchoolie, Johan Karlsson, and Roger
Johansson. “On the Impact of Hardware Faults – An Investigation of the Relationship between
Workload Inputs and Failure Mode Distributions.” In: Computer Safety, Reliability, and Security.
Ed. by Frank Ortmeier and Peter Daniel. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 198–209. ISBN: 978-3-642-33678-2.

[DMH14] Björn Döbel, Robert Muschner, and Hermann Härtig. Resource-Aware Replication on
Heterogeneous Multicores: Challenges and Opportunities. 2014. DOI: https://doi.org/10.
48550/arXiv.1405.2913. arXiv: 1405.2913 [cs.DC]. URL: http://arxiv.org/abs/1405.
2913 (visited on 2024-03-28).

[DSE13] Björn Döbel, Horst Schirmeier, and Michael Engel. “Investigating the Limitations of
PVF for Realistic Program Vulnerability Assessment.” In: Proceedings of the 5th HiPEAC
Workshop on Design for Reliability (DFR ’13). Berlin, Germany, Jan. 2013. URL: https:

//ess.cs.uos.de/danceos/publications/HiPEAC-DFR-2013-Doebel.pdf (visited on
2024-03-28).

[DW11] Anand Dixit and Alan Wood. “The impact of new technology on soft error rates.” In: 2011
International Reliability Physics Symposium. 2011, 5B.4.1–5B.4.7. DOI: 10.1109/IRPS.2011.
5784522.

[DeB+12] Nathan DeBardeleben, Sean Blanchard, Qiang Guan, Ziming Zhang, and Song Fu.
“Experimental Framework for Injecting Logic Errors in a Virtual Machine to Profile Applications
for Soft Error Resilience.” In: Euro-Par 2011: Parallel Processing Workshops. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 282–291. ISBN: 978-3-642-29740-3.

183

https://doi.org/10.1109/DFT.2014.6962073
https://www.usenix.org/conference/hotdep12/workshop-program/presentation/D{\"o}bel
https://www.usenix.org/conference/hotdep12/workshop-program/presentation/D{\"o}bel
https://doi.org/10.1145/2656045.2656050
https://doi.org/10.1145/2656045.2656050
https://doi.org/10.1145/2656045.2656050
https://doi.org/10.1145/2380356.2380375
https://doi.org/10.1145/2380356.2380375
https://doi.org/https://doi.org/10.48550/arXiv.1405.2913
https://doi.org/https://doi.org/10.48550/arXiv.1405.2913
https://arxiv.org/abs/1405.2913
http://arxiv.org/abs/1405.2913
http://arxiv.org/abs/1405.2913
https://ess.cs.uos.de/danceos/publications/HiPEAC-DFR-2013-Doebel.pdf
https://ess.cs.uos.de/danceos/publications/HiPEAC-DFR-2013-Doebel.pdf
https://doi.org/10.1109/IRPS.2011.5784522
https://doi.org/10.1109/IRPS.2011.5784522

BIBLIOGRAPHY

[Del97] Timothy J Dell. “A white paper on the benefits of chipkill-correct ECC for PC server
main memory.” In: IBM Microelectronics division 11 (1997), pp. 1–23. URL: https://api.
semanticscholar.org/CorpusID:17379018 (visited on 2024-03-28).

[Die+22] Christian Dietrich, Malte Bargholz, Yannick Loeck, Marcel Budoj, Luca Nedaskowskij,
and Daniel Lohmann. “SailFAIL: Model-Derived Simulation-Assisted ISA-Level Fault-Injection
Platforms.” In: 41st International Conference on Computer Safety, Reliability and Security
(SAFECOMP 2022). Munich, Germany: Springer-Verlag, 2022. DOI: 10.1007/978-3-031-
14835-4_14.

[Doe14] Bjoern Doebel. “Operating System Support for Redundant Multithreading.” Dissertation.
TU Dresden, 2014. URL: https://tud.qucosa.de/api/qucosa%3A28444/attachment/ATT-
1/?L=1 (visited on 2024-03-28).

[ED12] Michael Engel and Björn Döbel. “The Reliable Computing Base: A Paradigm for Software-
Based Reliability.” In: Proceedings of the 1st International Workshop on Software-Based Methods
for Robust Embedded Systems (SOBRES ’12) (Braunschweig, Germany). Lecture Notes in
Computer Science. Gesellschaft für Informatik, Sept. 2012.

[ESE14] Stephen H. Edwards, Zalia Shams, and Craig Estep. “Adaptively Identifying Non-Termi-
nating Code When Testing Student Programs.” In: Proceedings of the 45th ACM Technical
Symposium on Computer Science Education. SIGCSE ’14. Atlanta, Georgia, USA: Association
for Computing Machinery, 2014, pp. 15–20. ISBN: 9781450326056. DOI: 10.1145/2538862.
2538926. URL: https://doi.org/10.1145/2538862.2538926.

[Ebr+15] Mojtaba Ebrahimi, Nour Sayed, Maryam Rashvand, and Mehdi B Tahoori. “Fault injection
acceleration by architectural importance sampling.” In: Hardware/Software Codesign and
System Synthesis (CODES+ ISSS), 2015 International Conference on. IEEE. 2015, pp. 212–219.
DOI: 10.1109/CODESISSS.2015.7331384.

[Ebr+16] Mojtaba Ebrahimi, Mohammad Hadi Moshrefpour, Mohammad Saber Golanbari, and
Mehdi B Tahoori. “Fault injection acceleration by simultaneous injection of non-interacting
faults.” In: Proceedings of the 53rd Annual Design Automation Conference. ACM. 2016, p. 25.
DOI: 10.1145/2897937.2898023.

[Ech90] Klaus Echtle. Fehlertoleranzverfahren. Berlin, Germany: Informatik Springer, 1990. ISBN:
978-0-3875-2680-5.

[Ent+12] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lindoso, M. Portela, and C.
Lopez-Ongil. “Soft Error Sensitivity Evaluation of Microprocessors by Multilevel Emulation-
Based Fault Injection.” In: IEEE Transactions on Computers 61.3 (Mar. 2012), pp. 313–322.
ISSN: 0018-9340. DOI: 10.1109/TC.2010.262.

[FGI05] Irene Finocchi, Fabrizio Grandoni, and Giuseppe F. Italiano. “Designing Reliable Algorithms
in Unreliable Memories.” In: Algorithms – ESA 2005. Ed. by Gerth Stølting Brodal and Stefano
Leonardi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 1–8. DOI: 10.1007/
11561071_1.

[FGI07] Irene Finocchi, Fabrizio Grandoni, and Giuseppe F. Italiano. “Designing reliable algorithms
in unreliable memories.” In: Computer Science Review 1.2 (2007), pp. 77–87. ISSN: 1574-0137.
DOI: 10.1016/j.cosrev.2007.10.001. URL: https://www.sciencedirect.com/science/
article/pii/S1574013707000202.

184

https://api.semanticscholar.org/CorpusID:17379018
https://api.semanticscholar.org/CorpusID:17379018
https://doi.org/10.1007/978-3-031-14835-4_14
https://doi.org/10.1007/978-3-031-14835-4_14
https://tud.qucosa.de/api/qucosa%3A28444/attachment/ATT-1/?L=1
https://tud.qucosa.de/api/qucosa%3A28444/attachment/ATT-1/?L=1
https://doi.org/10.1145/2538862.2538926
https://doi.org/10.1145/2538862.2538926
https://doi.org/10.1145/2538862.2538926
https://doi.org/10.1109/CODESISSS.2015.7331384
https://doi.org/10.1145/2897937.2898023
https://doi.org/10.1109/TC.2010.262
https://doi.org/10.1007/11561071_1
https://doi.org/10.1007/11561071_1
https://doi.org/10.1016/j.cosrev.2007.10.001
https://www.sciencedirect.com/science/article/pii/S1574013707000202
https://www.sciencedirect.com/science/article/pii/S1574013707000202

BIBLIOGRAPHY

[FGI09] Irene Finocchi, Fabrizio Grandoni, and Giuseppe F. Italiano. “Optimal resilient sorting and
searching in the presence of memory faults.” In: Theoretical Computer Science 410.44 (2009).
Automata, Languages and Programming (ICALP 2006), pp. 4457–4470. ISSN: 0304-3975. DOI:
https://doi.org/10.1016/j.tcs.2009.07.026. URL: https://www.sciencedirect.
com/science/article/pii/S0304397509005003.

[FI04] Irene Finocchi and Giuseppe F. Italiano. “Sorting and Searching in the Presence of Memory
Faults (without Redundancy).” In: Proceedings of the Thirty-Sixth Annual ACM Symposium
on Theory of Computing. STOC ’04. Chicago, IL, USA: Association for Computing Machinery,
2004, pp. 101–110. ISBN: 1581138520. DOI: 10.1145/1007352.1007375. URL: https:
//doi.org/10.1145/1007352.1007375.

[FI08] Irene Finocchi and Giuseppe F. Italiano. “Sorting and searching in in faulty memories.” In:
Algorithmica 52.3 (2008), pp. 309–332. DOI: 10.1007/s00453-007-9088-4.

[FPFI09] Umberto Ferraro-Petrillo, Irene Finocchi, and Giuseppe F Italiano. “The price of resiliency:
a case study on sorting with memory faults.” In: Algorithmica 53.4 (2009), pp. 597–620. DOI:
10.1007/s00453-008-9264-1.

[FSK98] P. Folkesson, S. Svensson, and J. Karlsson. “A comparison of simulation based and scan
chain implemented fault injection.” In: Digest of Papers. Twenty-Eighth Annual International
Symposium on Fault-Tolerant Computing (Cat. No.98CB36224). 1998, pp. 284–293. DOI:
10.1109/FTCS.1998.689479.

[FSS09] Christof Fetzer, Ute Schiffel, and Martin Süßkraut. “AN-Encoding Compiler: Building
Safety-Critical Systems with Commodity Hardware.” In: Proceedings of the 28th International
Conference on Computer Safety, Reliability, and Security (SAFECOMP ’09) (Hamburg, Germany).
Ed. by B. Buth, G. Rabe, and T. Seyfarht. Heidelberg, Germany: Springer-Verlag, 2009, pp. 283–
296. ISBN: 978-3-642-04467-0. DOI: 10.1007/978-3-642-04468-7_23.

[Fan+16] B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi. “ePVF: An Enhanced
Program Vulnerability Factor Methodology for Cross-Layer Resilience Analysis.” In: 2016
46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
June 2016, pp. 168–179. DOI: 10.1109/DSN.2016.24.

[Fid+06] André Fidalgo, Manuel Gericota, Gustavo Alves, and José Ferreira. “Using NEXUS com-
pliant debuggers for real time fault injection on microprocessors.” In: Proceedings of the 19th
International Symposium on Integrated Circuits and Systems Design (SBCCO ’06). ACM Press,
2006, pp. 214–219. DOI: 10.1145/1150343.1150397.

[Fle+17] Tino Flenker, Jan Malburg, Goerschwin Fey, Serhiy Avramenko, Massimo Violante, and
Matteo Sonza Reorda. “Towards Making Fault Injection on Abstract Models a More Accurate
Tool for Predicting RT-Level Effects.” In: 2017 IEEE Computer Society Annual Symposium
on VLSI (2017). DOI: 10.1109/ISVLSI.2017.99. URL: https://core.ac.uk/display/
86592049 (visited on 2024-03-28).

[Fuc96] Emmerich Fuchs. “An evaluation of the error detection mechanisms in MARS using
software-implemented fault injection.” In: Proceedings of the 2nd European Dependable Com-
puting Conference (EDCC ’96). Ed. by Andrzej Hlawiczka, João Gabriel Silva, and Luca
Simoncini. Springer-Verlag, 1996, pp. 73–90. DOI: 10.1007/3-540-61772-8_31.

185

https://doi.org/https://doi.org/10.1016/j.tcs.2009.07.026
https://www.sciencedirect.com/science/article/pii/S0304397509005003
https://www.sciencedirect.com/science/article/pii/S0304397509005003
https://doi.org/10.1145/1007352.1007375
https://doi.org/10.1145/1007352.1007375
https://doi.org/10.1145/1007352.1007375
https://doi.org/10.1007/s00453-007-9088-4
https://doi.org/10.1007/s00453-008-9264-1
https://doi.org/10.1109/FTCS.1998.689479
https://doi.org/10.1007/978-3-642-04468-7_23
https://doi.org/10.1109/DSN.2016.24
https://doi.org/10.1145/1150343.1150397
https://doi.org/10.1109/ISVLSI.2017.99
https://core.ac.uk/display/86592049
https://core.ac.uk/display/86592049
https://doi.org/10.1007/3-540-61772-8_31

BIBLIOGRAPHY

[GKT89] Ulf Gunneflo, Johan Karlsson, and Jan Torin. “Evaluation of Error Detection Schemes
Using Fault Injection by Heavy-ion Radiation.” In: Proceedings of the 19th International
Symposium on Fault-Tolerant Computing (FTCS-19). IEEE Computer Society Press, June 1989,
pp. 340–347. DOI: 10.1109/FTCS.1989.105590.

[GS95] Jens Guthoff and Volkmar Sieh. “Combining software-implemented and simulation-based
fault injection into a single fault injection method.” In: Proceedings of the 25rd International
Symposium on Fault-Tolerant Computing (FTCS-25). IEEE Computer Society Press, June 1995,
pp. 196–206. DOI: 10.1109/FTCS.1995.466978.

[GT07] Tarak Gandhi and Mohan Manubhai Trivedi. “Pedestrian Protection Systems: Issues, Survey,
and Challenges.” In: IEEE Transactions on Intelligent Transportation Systems 8.3 (2007),
pp. 413–430. DOI: 10.1109/TITS.2007.903444.

[GWA79] C.S. Guenzer, E.A. Wolicki, and R.G. Allas. “Single Event Upset of Dynamic Rams by
Neutrons and Protons.” In: vol. 26. 6. Dec. 1979, pp. 5048–5052. DOI: 10.1109/TNS.1979.
4330270.

[Gaw+09] Piotr Gawkowski, Maciej Ławryńczuk, Piotr M. Marusak, Piotr Tatjewski, and Janusz
Sosnowski. “On improving dependability of the numerical GPC algorithm.” In: European
Control Conference (ECC ’09). 2009, pp. 1377–1382. DOI: 10.23919/ECC.2009.7074598.

[Gla04] David Glaude. “Electronic Voting Random Spontaneous Bit Inversion Explained.” In:
Association Electronique Libre (2004). URL: https://web.archive.org/web/200709271851
55/http://wiki.ael.be/index.php/ElectronicVotingRandomSpontaneousBitInvers

ionExplained (visited on 2024-03-28).

[Gla+15] Michael Glaß, Hananeh Aliee, Liang Chen, Mojtaba Ebrahimi, Faramarz Khosravi, Veit B
Kleeberger, Alexandra Listl, Daniel Müller-Gritschneder, Fabian Oboril, Ulf Schlichtmann,
et al. “Application-aware cross-layer reliability analysis and optimization.” In: it-Information
Technology 57.3 (2015), pp. 159–169. DOI: 10.1515/itit-2014-1080.

[Gol+06] Olga Goloubeva, Maurizia Rebaudengo, Matteo Sonza Reorda, and Massimo Violante.
Software-Implemented Hardware Fault Tolerance. 1st ed. New York, NY, USA: Springer-Verlag,
2006, p. 228. ISBN: 0-387-26060-9.

[Gri+12] Johannes Grinschgl, Armin Krieg, Christian Steger, Reinhold Weiss, Holger Bock, and
Josef Haid. “Efficient fault emulation using automatic pre-injection memory access analysis.”
In: SOC Conference (SOCC), 2012 IEEE International. IEEE. 2012, pp. 277–282. DOI: 10.
1109/SOCC.2012.6398361.

[Gut+01] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
“MiBench: A free, commercially representative embedded benchmark suite.” In: Proceedings
of the Fourth Annual IEEE International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538). Dec. 2001, pp. 3–14. DOI: 10.1109/WWC.2001.990739.

[Gö31] Kurt Gödel. “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme I.” In: Monatshefte für Mathematik und Physik 38.1 (Dec. 1931), pp. 173–198. ISSN:
1436-5081. DOI: 10.1007/BF01700692. URL: https://doi.org/10.1007/BF01700692.

186

https://doi.org/10.1109/FTCS.1989.105590
https://doi.org/10.1109/FTCS.1995.466978
https://doi.org/10.1109/TITS.2007.903444
https://doi.org/10.1109/TNS.1979.4330270
https://doi.org/10.1109/TNS.1979.4330270
https://doi.org/10.23919/ECC.2009.7074598
https://web.archive.org/web/20070927185155/http://wiki.ael.be/index.php/ElectronicVotingRandomSpontaneousBitInversionExplained
https://web.archive.org/web/20070927185155/http://wiki.ael.be/index.php/ElectronicVotingRandomSpontaneousBitInversionExplained
https://web.archive.org/web/20070927185155/http://wiki.ael.be/index.php/ElectronicVotingRandomSpontaneousBitInversionExplained
https://doi.org/10.1515/itit-2014-1080
https://doi.org/10.1109/SOCC.2012.6398361
https://doi.org/10.1109/SOCC.2012.6398361
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1007/BF01700692
https://doi.org/10.1007/BF01700692

BIBLIOGRAPHY

[HA84] Kuang-Hua Huang and Jacob A. Abraham. “Algorithm-Based Fault Tolerance for Matrix
Operations.” In: IEEE Transactions on Computers C-33.6 (1984), pp. 518–528. DOI: 10.1109/
TC.1984.1676475.

[HAN12] Siva Kumar Sastry Hari, Sarita V. Adve, and Helia Naeimi. “Low-cost program-level
detectors for reducing silent data corruptions.” In: IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’12). 2012, pp. 1–12. DOI: 10.1109/DSN.2012.
6263960.

[HDL13] Martin Hoffmann, Christian Dietrich, and Daniel Lohmann. “dOSEK: A Dependable
RTOS for Automotive Applications.” In: Proceedings of the 19th International Symposium
on Dependable Computing (PRDC ’13) (Vancouver, British Columbia, Canada). Fast abstract.
Washington, DC, USA: IEEE Computer Society Press, Dec. 2013, pp. 120–121. DOI: 10.1109/
PRDC.2013.22.

[HHJ90] Robert W Horst, Richard L Harris, and Robert L Jardine. “Multiple instruction issue in the
NonStop Cyclone processor.” In: ACM SIGARCH Computer Architecture News 18.2SI (1990),
pp. 216–226.

[HK12] Olof Hannius and Johan Karlsson. “Impact of Soft Errors in a Jet Engine Controller.” In:
Computer Safety, Reliability, and Security. Ed. by Frank Ortmeier and Peter Daniel. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 223–234. ISBN: 978-3-642-33678-2.

[HSR95] Seungjae Han, K.G. Shin, and H.A. Rosenberg. “DOCTOR: an integrated software fault
injection environment for distributed real-time systems.” In: Proceedings of 1995 IEEE In-
ternational Computer Performance and Dependability Symposium. 1995, pp. 204–213. DOI:
10.1109/IPDS.1995.395831.

[Ham50] Richard W Hamming. “Error detecting and error correcting codes.” In: The Bell System
Technical Journal 29.2 (1950), pp. 147–160. DOI: 10.1002/j.1538-7305.1950.tb00463.x.

[Har+12a] Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep Ramachandran.
“Relyzer: Exploiting Application-Level Fault Equivalence to Analyze Application Resiliency to
Transient Faults.” In: Proceedings of the 17th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’12) (London, England, UK).
Vol. 47. 4. New York, NY, USA: Association for Computing Machinery, 2012, pp. 123–134.
ISBN: 978-1-4503-0759-8. DOI: 10.1145/2150976.2150990. URL: https://doi.org/10.
1145/2248487.2150990.

[Har+12b] Siva Kumar Sastry Hari, Sarita V Adve, Helia Naeimi, and Pradeep Ramachandran.
“Relyzer: Exploiting application-level fault equivalence to analyze application resiliency to
transient faults.” In: ACM SIGPLAN Notices. Vol. 47. ACM. 2012, pp. 123–134. DOI: 10.1145/
2189750.2150990.

[Har+13] Siva Kumar Sastry Hari, Sarita V Adve, Helia Naeimi, and Pradeep Ramachandran.
“Relyzer: Application resiliency analyzer for transient faults.” In: IEEE Micro 33.3 (2013),
pp. 58–66. DOI: 10.1109/MM.2013.30.

[Hen+13] Jörg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif, Muhammad Shafique,
Mehdi Tahoori, and Norbert Wehn. “Reliable on-chip systems in the nano-era: Lessons learnt
and future trends.” In: 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).
2013, pp. 1–10. DOI: 10.1145/2463209.2488857.

187

https://doi.org/10.1109/TC.1984.1676475
https://doi.org/10.1109/TC.1984.1676475
https://doi.org/10.1109/DSN.2012.6263960
https://doi.org/10.1109/DSN.2012.6263960
https://doi.org/10.1109/PRDC.2013.22
https://doi.org/10.1109/PRDC.2013.22
https://doi.org/10.1109/IPDS.1995.395831
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1145/2150976.2150990
https://doi.org/10.1145/2248487.2150990
https://doi.org/10.1145/2248487.2150990
https://doi.org/10.1145/2189750.2150990
https://doi.org/10.1145/2189750.2150990
https://doi.org/10.1109/MM.2013.30
https://doi.org/10.1145/2463209.2488857

BIBLIOGRAPHY

[Hil00] M. Hiller. “Executable assertions for detecting data errors in embedded control systems.”
In: Proceeding International Conference on Dependable Systems and Networks (DSN ’00). 2000,
pp. 24–33. DOI: 10.1109/ICDSN.2000.857510.

[Hil99] M. Hiller. “Error recovery using forced validity assisted by executable assertions for er-
ror detection: an experimental evaluation.” In: Proceedings 25th EUROMICRO Conference.
Informatics: Theory and Practice for the New Millennium. Vol. 2. 1999, pp. 105–112. DOI:
10.1109/EURMIC.1999.794768.

[Hoe12] Bernd Hoefflinger. “ITRS: The International Technology Roadmap for Semiconductors.”
In: Chips 2020: A Guide to the Future of Nanoelectronics. Ed. by Bernd Hoefflinger. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 161–174. ISBN: 978-3-642-23096-7. DOI:
10.1007/978-3-642-23096-7_7. URL: https://doi.org/10.1007/978-3-642-23096-
7_7.

[Hof+14a] Martin Hoffmann, Christoph Borchert, Christian Dietrich, Horst Schirmeier, Rüdiger
Kapitza, Olaf Spinczyk, and Daniel Lohmann. “Effectiveness of Fault Detection Mechanisms in
Static and Dynamic Operating System Designs.” In: Proceedings of the 17th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC ’14) (Reno, Nevada,
USA). IEEE Computer Society Press, 2014, pp. 230–237. DOI: 10.1109/ISORC.2014.26.

[Hof+14b] Martin Hoffmann, Peter Ulbrich, Christian Dietrich, Horst Schirmeier, Daniel Lohmann,
and Wolfgang Schröder-Preikschat. “A Practitioner’s Guide to Software-based Soft-Error
Mitigation Using AN-Codes.” In: Proceedings of the 15th IEEE International Symposium on
High-Assurance Systems Engineering (HASE ’14) (Miami, Florida, USA). IEEE Computer Society
Press, Jan. 2014, pp. 33–40. ISBN: 978-1-4799-3465-2. DOI: 10.1109/HASE.2014.14.

[Hof+15] Martin Hoffmann, Florian Lukas, Christian Dietrich, and Daniel Lohmann. “dOSEK:
The Design and Implementation of a Dependability-Oriented Static Embedded Kernel.” In:
Proceedings of the 21st IEEE International Symposium on Real-Time and Embedded Technology
and Applications (RTAS ’15). Washington, DC, USA: IEEE Computer Society Press, 2015,
pp. 259 –270. DOI: 10.1109/RTAS.2015.7108449.

[Hof16] Martin Hoffmann. “Konstruktive Zuverlässigkeit - Eine Methodik für zuverlässige Sys-
temsoftware auf unzuverlässiger Hardware.” Dissertation. Friedrich-Alexander-Universiät
Erlangen-Nürnberg, Apr. 2016. URL: https://opus4.kobv.de/opus4-fau/files/7038/
DisserationMartinHoffmann.pdf (visited on 2024-03-28).

[Hyd10] Randall Hyde. The Art of Assembly Language. No Starch Press, 2010. ISBN: 978-1593272074.

[IEC98] IEC. IEC 61508 - Functional safety of electrical/electronic/programmable electronic safety-
related systems. International Electrotechnical Commission, Dec. 1998.

[IKP16] Andreas Ibing, Julian Kirsch, and Lorenz Panny. “Autocorrelation-Based Detection of
Infinite Loops at Runtime.” In: 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure
Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology Congress, DASC/PiCom/Data-
Com/CyberSciTech 2016, Auckland, New Zealand, August 8-12, 2016. IEEE Computer Society,
2016, pp. 368–375. DOI: 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.78.

188

https://doi.org/10.1109/ICDSN.2000.857510
https://doi.org/10.1109/EURMIC.1999.794768
https://doi.org/10.1007/978-3-642-23096-7_7
https://doi.org/10.1007/978-3-642-23096-7_7
https://doi.org/10.1007/978-3-642-23096-7_7
https://doi.org/10.1109/ISORC.2014.26
https://doi.org/10.1109/HASE.2014.14
https://doi.org/10.1109/RTAS.2015.7108449
https://opus4.kobv.de/opus4-fau/files/7038/DisserationMartinHoffmann.pdf
https://opus4.kobv.de/opus4-fau/files/7038/DisserationMartinHoffmann.pdf
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.78

BIBLIOGRAPHY

[ISO18] ISO 26262-6. ISO 26262-6:2018: Road vehicles – Functional safety – Part 6: Product
development at the software level. Geneva, Switzerland: International Organization for Stan-
dardization, 2018.

[JR21] Andrew Ayer Jeremy Rowley Andrew O’Brian. “Yeti 2022 not furnishing entries for STH
65569149.” In: Google Groups (June 30, 2021). URL: https://groups.google.com/a/
chromium.org/g/ct-policy/c/PCkKU357M2Q/?pli=1 (visited on 2024-03-28).

[JWN10] Bruce Jacob, David Wang, and Spencer Ng. Memory Systems: Cache, DRAM, disk. Morgan
Kaufmann Publishers Inc., 2010. ISBN: 978-0-12-379751-3.

[KDC05] Samuel T. King, George W. Dunlap, and Peter M. Chen. “Debugging Operating Systems
with Time-Traveling Virtual Machines (Awarded General Track Best Paper Award!)” In:
Proceedings of the 2005 USENIX Annual Technical Conference, April 10-15, 2005, Anaheim, CA,
USA. 2005, pp. 1–15. URL: http://www.usenix.org/events/usenix05/tech/general/
king.html.

[KF14] Dmitrii Kuvaiskii and Christof Fetzer. “Practical Encoded Processing.” In: 2014 IEEE 33rd
International Symposium on Reliable Distributed Systems. 2014, pp. 335–336. DOI: 10.1109/
SRDS.2014.62.

[KI94] Wei-Lun Kao and R.K. Iyer. “DEFINE: a distributed fault injection and monitoring environ-
ment.” In: Proceedings of IEEE Workshop on Fault-Tolerant Parallel and Distributed Systems.
1994, pp. 252–259. DOI: 10.1109/FTPDS.1994.494497.

[KIT93] W.-I. Kao, R.K. Iyer, and D. Tang. “FINE: A fault injection and monitoring environment for
tracing the UNIX system behavior under faults.” In: IEEE Transactions on Software Engineering
19.11 (1993), pp. 1105–1118. DOI: 10.1109/32.256857.

[KK07] Israel Koren and C Mani Krishna. Fault-tolerant systems. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2007. ISBN: 978-0-12088-5251.

[KKA95] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. “FERRARI: A Flexible
Software-Based Fault and Error Injection System.” In: IEEE Transactions on Computers 44
(1995), pp. 248–260. ISSN: 0018-9340.

[Kad+16] F. Kaddachi, M. Kooli, G. Di Natale, A. Bosio, M. Ebrahimi, and M. Tahoori. “System-
level reliability evaluation through cache-aware software-based fault injection.” In: 2016
IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits Systems
(DDECS). Washington, DC, USA: IEEE Computer Society Press, Apr. 2016, pp. 1–6. DOI:
10.1109/DDECS.2016.7482446.

[Kal+15] Manolis Kaliorakis, Sotiris Tselonis, Athanasios Chatzidimitriou, Nikos Foutris, and Dim-
itris Gizopoulos. “Differential Fault Injection on Microarchitectural Simulators.” In: 2015 IEEE
International Symposium on Workload Characterization, IISWC 2015, Atlanta, GA, USA, October
4-6, 2015. IEEE Computer Society, 2015, pp. 172–182. DOI: 10.1109/IISWC.2015.28.

[Kal+98] Z. Kalbarczyk, G. Ries, M.S. Lee, Y. Xiao, J. Patel, and R.K. Iyer. “Hierarchical approach to
accurate fault modeling for system evaluation.” In: Proceedings. IEEE International Computer
Performance and Dependability Symposium. IPDS’98 (Cat. No.98TB100248). 1998, pp. 249–
258. DOI: 10.1109/IPDS.1998.707727.

189

https://groups.google.com/a/chromium.org/g/ct-policy/c/PCkKU357M2Q/?pli=1
https://groups.google.com/a/chromium.org/g/ct-policy/c/PCkKU357M2Q/?pli=1
http://www.usenix.org/events/usenix05/tech/general/king.html
http://www.usenix.org/events/usenix05/tech/general/king.html
https://doi.org/10.1109/SRDS.2014.62
https://doi.org/10.1109/SRDS.2014.62
https://doi.org/10.1109/FTPDS.1994.494497
https://doi.org/10.1109/32.256857
https://doi.org/10.1109/DDECS.2016.7482446
https://doi.org/10.1109/IISWC.2015.28
https://doi.org/10.1109/IPDS.1998.707727

BIBLIOGRAPHY

[Kan+96] G.A. Kanawati, V.S.S. Nair, N. Krishnamurthy, and J.A. Abraham. “Evaluation of inte-
grated system-level checks for on-line error detection.” In: Proceedings of IEEE International
Computer Performance and Dependability Symposium (IPDS ’96). IEEE Computer Society Press,
1996, pp. 292–301. DOI: 10.1109/IPDS.1996.540230.

[Kar+08] Naghmeh Karimi, Michail Maniatakos, Abhijit Jas, and Yiorgos Makris. “On the Correla-
tion between Controller Faults and Instruction-Level Errors in Modern Microprocessors.” In:
2008 IEEE International Test Conference. 2008, pp. 1–10. DOI: 10.1109/TEST.2008.4700613.

[Kar+91] Johan Karlsson, Ulf Gunneflo, Peter Lidén, and Jan Torin. “Two fault injection techniques
for test of fault handling mechanisms.” In: Proceedings of the IEEE International Test Conference
(ITC’91). Oct. 1991, pp. 140–. DOI: 10.1109/TEST.1991.519504.

[Kar+94] Johan Karlsson, Peter Folkesson, Jean Arlat, Yves Crouzet, Günther Leber, and Johannes
Reisinger. “Comparison and Integration of Three Diverse Physical Fault Injection Techniques.”
In: In PDCS 2: Open Conference. 1994, pp. 615–642. DOI: 10.1007/978-3-642-79789-7_18.

[Ken38] M. G. Kendall. “A New Measure of Rank Correlation.” In: Biometrika 30.1/2 (1938),
pp. 81–93. ISSN: 00063444. URL: http://www.jstor.org/stable/2332226 (visited on
2024-03-28).

[Ker] Keras: Deep Learning for Humans. 2023. URL: https://keras.io/ (visited on 2024-03-28).

[Kon08] Kai Konrad. “Implications of microcontroller software and tooling on safety-critical au-
tomotive systems.” In: Presentation at Automotive Electronics and Electrical Systems Forum
2008. Stuttgart, 2008. URL: https://www.ukintpress-conferences.com/conf/08eac_

conf/pdf/day_3/kaikonrad.pdf (visited on 2024-03-28).

[Koo+14] M. Kooli, P. Benoit, G. Di Natale, L. Torres, and V. Sieh. “Fault injection tools based on
Virtual Machines.” In: 9th International Symposium on Reconfigurable and Communication-
Centric Systems-on-Chip (ReCoSoC ’14). Washington, DC, USA: IEEE Computer Society Press,
May 2014, pp. 1–6. DOI: 10.1109/ReCoSoC.2014.6861351.

[Koo14] Phil Koopman. “A case study of Toyota unintended acceleration and software safety.”
In: (2014). Presentation Slides. URL: http://www2.ing.unipi.it/∼a008669/didattica/
FMSS/koopman14_toyota_ua_slides.pdf (visited on 2024-03-28).

[Koo+97] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz. “Comparing operating
systems using robustness benchmarks.” In: Proceedings of SRDS’97: 16th IEEE Symposium on
Reliable Distributed Systems. 1997, pp. 72–79. DOI: 10.1109/RELDIS.1997.632800.

[Kor12] Ingo Korb. “A cross-layer analysis of error impact on the instruction execution in an 8-bit
microprocessor.” Diploma Thesis. Universität Dortmund, 2012.

[LA04] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation.” In: Proceedings of the 2004 International Symposium on Code
Generation and Optimization (CGO’04) (Palo Alto, CA, USA). Washington, DC, USA: IEEE
Computer Society Press, Mar. 2004, pp. 75–86. DOI: 10.1109/CGO.2004.1281665.

[LB17] Jens Lienig and Hans Bruemmer. Fundamentals of Electronic Systems Design. 1st ed. Springer
Cham, 2017. ISBN: 978-3-319-55840-0. DOI: 10.1007/978-3-319-55840-0.

190

https://doi.org/10.1109/IPDS.1996.540230
https://doi.org/10.1109/TEST.2008.4700613
https://doi.org/10.1109/TEST.1991.519504
https://doi.org/10.1007/978-3-642-79789-7_18
http://www.jstor.org/stable/2332226
https://keras.io/
https://www.ukintpress-conferences.com/conf/08eac_conf/pdf/day_3/kaikonrad.pdf
https://www.ukintpress-conferences.com/conf/08eac_conf/pdf/day_3/kaikonrad.pdf
https://doi.org/10.1109/ReCoSoC.2014.6861351
http://www2.ing.unipi.it/~a008669/didattica/FMSS/koopman14_toyota_ua_slides.pdf
http://www2.ing.unipi.it/~a008669/didattica/FMSS/koopman14_toyota_ua_slides.pdf
https://doi.org/10.1109/RELDIS.1997.632800
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-319-55840-0

BIBLIOGRAPHY

[LH07] Aiguo Li and Bingrong Hong. “Software implemented transient fault detection in space
computer.” In: Aerospace Science and Technology 11.2 (2007), pp. 245–252. ISSN: 1270-9638.
DOI: 10.1016/j.ast.2006.06.006. URL: https://www.sciencedirect.com/science/
article/pii/S1270963806000800.

[LJ11] Matthew Leeke and Arshad Jhumka. “An automated wrapper-based approach to the design
of dependable software.” In: 4th International Conference on Dependability (DEPEND’11).
IARIA, 2011. URL: https://wrap.warwick.ac.uk/45677/ (visited on 2024-03-28).

[LP+20] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Amslinger,
Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann, Srikant Bharadwaj, et al.
“The gem5 simulator: Version 20.0+.” In: arXiv preprint arXiv:2007.03152 (2020). DOI:
https://doi.org/10.48550/arXiv.2007.03152.

[LR22] Erich L. Lehmann and Joseph P. Romano. Testing Statistical Hypotheses. 4th. Springer, 2022.
ISBN: 978-3-030-70578-7. DOI: 10.1007/978-3-030-70578-7.

[LT13] Jianli Li and Qingping Tan. “SmartInjector: Exploiting Intelligent Fault Injection for SDC
Rate Analysis.” In: Proceedings of the International Conference on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems(DFT ’13). IEEE Computer Society Press, Oct. 2013,
pp. 236–242. DOI: 10.1109/DFT.2013.6653612.

[Lal97] Parag K Lala. Digital circuit testing and testability. Academic Press Inc, 1997. ISBN: 978-
0124343306.

[Lap+90] J.-C. Laprie, J. Arlat, C. Beounes, and K. Kanoun. “Definition and analysis of hardware-
and software-fault-tolerant architectures.” In: Computer 23.7 (July 1990), pp. 39–51. ISSN:
0018-9162. DOI: 10.1109/2.56851.

[Lap92] J. C. Laprie. “Dependability: Basic Concepts and Terminology.” In: Dependability: Basic
Concepts and Terminology: In English, French, German, Italian and Japanese. Ed. by J. C. Laprie.
Vienna: Springer Vienna, 1992, pp. 3–245. ISBN: 978-3-7091-9170-5. DOI: 10.1007/978-3-
7091-9170-5_1. URL: https://doi.org/10.1007/978-3-7091-9170-5_1.

[Law96] Kevin P. Lawton. “Bochs: A Portable PC Emulator for Unix/X.” In: Linux Journal 1996.29es
(1996), p. 7. URL: https://dl.acm.org/doi/fullHtml/10.5555/326350.326357 (visited
on 2024-03-28).

[Lev+09] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. “Statistical Fault Injection: Quan-
tified Error and Confidence.” In: Proceedings of the Conference on Design, Automation and
Test in Europe. DATE ’09. Nice, France: European Design and Automation Association, 2009,
pp. 502–506. ISBN: 978-3-9810801-5-5. DOI: 10.1109/DATE.2009.5090716. URL: http:
//dl.acm.org/citation.cfm?id=1874620.1874743.

[Li+07] Xin Li, Kai Shen, Michael C Huang, and Lingkun Chu. “A Memory Soft Error Measurement
on Production Systems.” In: Proceedings of the 2007 USENIX Annual Technical Conference
(Santa Clara, CA, USA). Berkeley, CA, USA: USENIX Association, 2007, pp. 1–14. ISBN: 999-
8888-77-6.

191

https://doi.org/10.1016/j.ast.2006.06.006
https://www.sciencedirect.com/science/article/pii/S1270963806000800
https://www.sciencedirect.com/science/article/pii/S1270963806000800
https://wrap.warwick.ac.uk/45677/
https://doi.org/https://doi.org/10.48550/arXiv.2007.03152
https://doi.org/10.1007/978-3-030-70578-7
https://doi.org/10.1109/DFT.2013.6653612
https://doi.org/10.1109/2.56851
https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1007/978-3-7091-9170-5_1
https://dl.acm.org/doi/fullHtml/10.5555/326350.326357
https://doi.org/10.1109/DATE.2009.5090716
http://dl.acm.org/citation.cfm?id=1874620.1874743
http://dl.acm.org/citation.cfm?id=1874620.1874743

BIBLIOGRAPHY

[Li+10] Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu. “A Realistic Evaluation of Memory
Hardware Errors and Software System Susceptibility.” In: 2010 USENIX Annual Technical
Conference, Boston, MA, USA, June 23-25, 2010. 2010. URL: https://www.usenix.org/
conference/usenix-atc-10/realistic-evaluation-memory-hardware-errors-and-

software-system.

[Li+13] Dong Li, Zizhong Chen, Panruo Wu, and Jeffrey S. Vetter. “Rethinking algorithm-based fault
tolerance with a cooperative software-hardware approach.” In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis (SC ’13). ACM
Press, 2013, pp. 1–12. DOI: 10.1145/2503210.2503226.

[Li+18] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai. “Modeling Soft-Error Propa-
gation in Programs.” In: 2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). June 2018, pp. 27–38. DOI: 10.1109/DSN.2018.00016.

[Lov+02] M.N. Lovellette, K.S. Wood, D.L. Wood, J.H. Beall, P.P. Shirvani, N. Oh, and E.J. McCluskey.
“Strategies for fault-tolerant, space-based computing: Lessons learned from the ARGOS
testbed.” In: Proceedings, IEEE Aerospace Conference. Vol. 5. 2002, pp. 5–5. DOI: 10.1109/
AERO.2002.1035377.

[Lu+15] Qining Lu, M. Farahani, Jiesheng Wei, A. Thomas, and K. Pattabiraman. “LLFI: An Inter-
mediate Code-Level Fault Injection Tool for Hardware Faults.” In: Software Quality, Reliability
and Security (QRS), 2015 IEEE International Conference on. Aug. 2015, pp. 11–16. DOI:
10.1109/QRS.2015.13.

[Luk+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. “Pin: building customized program
analysis tools with dynamic instrumentation.” In: Acm sigplan notices 40.6 (2005), pp. 190–
200. DOI: 10.1145/1064978.1065034.

[MAM84] A. Mahmood, D. Andrews, and E. McCluskey. “Executable assertions and flight software.”
In: Digital Avionics Systems Conference (DASC ’84). 1984, pp. 346–351. DOI: 10.2514/6.1984-
2726. URL: https://arc.aiaa.org/doi/abs/10.2514/6.1984-2726 (visited on 2024-03-
28).

[MBC10] Paul D. Marinescu, Radu Banabic, and George Candea. “An extensible technique for
high-precision testing of recovery code.” In: Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference. USENIXATC’10. Boston, MA: USENIX Association, 2010,
p. 23.

[MT95] G. Miremadi and J. Torin. “Evaluating processor-behavior and three error-detection mecha-
nisms using physical fault-injection.” In: IEEE Transactions on Reliability 44.3 (1995), pp. 441–
454. DOI: 10.1109/24.406580.

[MV12] Wassim Mansour and Raoul Velazco. “SEU fault-injection in VHDL-based processors: A
case study.” In: 13th Latin American Test Workshop, LATW 2012, Quito, Ecuador, April 10-13,
2012. IEEE Computer Society, 2012, pp. 1–5. DOI: 10.1109/LATW.2012.6261258.

[MW79] T.C. May and Murray H. Woods. “Alpha-particle-induced soft errors in dynamic memories.”
In: IEEE Transactions on Electron Devices 26.1 (Jan. 1979), pp. 2–9. ISSN: 0018-9383. DOI:
10.1109/T-ED.1979.19370.

192

https://www.usenix.org/conference/usenix-atc-10/realistic-evaluation-memory-hardware-errors-and-software-system
https://www.usenix.org/conference/usenix-atc-10/realistic-evaluation-memory-hardware-errors-and-software-system
https://www.usenix.org/conference/usenix-atc-10/realistic-evaluation-memory-hardware-errors-and-software-system
https://doi.org/10.1145/2503210.2503226
https://doi.org/10.1109/DSN.2018.00016
https://doi.org/10.1109/AERO.2002.1035377
https://doi.org/10.1109/AERO.2002.1035377
https://doi.org/10.1109/QRS.2015.13
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.2514/6.1984-2726
https://doi.org/10.2514/6.1984-2726
https://arc.aiaa.org/doi/abs/10.2514/6.1984-2726
https://doi.org/10.1109/24.406580
https://doi.org/10.1109/LATW.2012.6261258
https://doi.org/10.1109/T-ED.1979.19370

BIBLIOGRAPHY

[Mad+94] Henrique Madeira, Mário Rela, Francisco Moreira, and João Gabriel Silva. “RIFLE:
A general purpose pin-level fault injector.” In: Proceedings of the 1st European Dependable
Computing Conference (EDCC ’94). Ed. by Klaus Echtle, Dieter Hammer, and David Powell.
Springer-Verlag, 1994, pp. 197–216. ISBN: 978-3-540-58426-1. DOI: 10.1007/3-540-58426-
9_132.

[Man+11] Michail Maniatakos, Naghmeh Karimi, Chandra Tirumurti, Abhijit Jas, and Yiorgos
Makris. “Instruction-Level Impact Analysis of Low-Level Faults in a Modern Microprocessor
Controller.” In: IEEE Transactions on Computers 60.9 (2011), pp. 1260–1273. DOI: 10.1109/
TC.2010.60.

[McP07] J.W. McPherson. “Reliability trends with advanced CMOS scaling and The implications
for design.” In: Proceedings of the IEEE 2007 Custom Integrated Circuits Conference (CICC ’07)
(San Jose, CA, USA). Sept. 2007, pp. 405–412. DOI: 10.1109/CICC.2007.4405763.

[Mez+15] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. “Revisiting Memory Errors in
Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field.”
In: 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.
2015, pp. 415–426. DOI: 10.1109/DSN.2015.57.

[Mic+05] S.E. Michalak, K.W. Harris, N.W. Hengartner, B.E. Takala, and S.A. Wender. “Predicting
the number of fatal soft errors in Los Alamos national laboratory’s ASC Q supercomputer.”
In: IEEE Transactions on Device and Materials Reliability 5.3 (Sept. 2005), pp. 329–335. ISSN:
1530-4388. DOI: 10.1109/TDMR.2005.855685.

[Mir+92] G. Miremadi, J. Harlsson, U. Gunneflo, and J. Torin. “Two software techniques for on-
line error detection.” In: [1992] Digest of Papers. FTCS-22: The Twenty-Second International
Symposium on Fault-Tolerant Computing. Vol. 22. 1992, pp. 328–335. DOI: 10.1109/FTCS.
1992.243568.

[Mit14] Sparsh Mittal. “A survey of techniques for improving energy efficiency in embedded
computing systems.” In: International Journal of Computer Aided Engineering and Technology
6.4 (2014), pp. 440–459. DOI: 10.1504/IJCAET.2014.065419. URL: https://www.inders
cienceonline.com/doi/abs/10.1504/IJCAET.2014.065419 (visited on 2024-03-28).

[Muc97] Steven S. Muchnick. Advanced compiler design and implementation. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1997. ISBN: 1-55860-320-4.

[Muk+03a] S.S. Mukherjee, C.T. Weaver, J. Emer, S.K. Reinhardt, and T. Austin. “A systematic
methodology to compute the architectural vulnerability factors for a high-performance
microprocessor.” In: Proceedings. 36th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, 2003. MICRO-36. 2003, pp. 29–40. DOI: 10.1109/MICRO.2003.1253181.

[Muk+03b] S.S. Mukherjee, C.T. Weaver, J. Emer, S.K. Reinhardt, and T. Austin. “Measuring
architectural vulnerability factors.” In: IEEE Micro 23.6 (2003), pp. 70–75. DOI: 10.1109/MM.
2003.1261389.

[Muk08] Shubu Mukherjee. Architecture Design for Soft Errors. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2008. ISBN: 978-0-12-369529-1.

[NX06] V. Narayanan and Y. Xie. “Reliability concerns in embedded system designs.” In: Computer
39.1 (2006), pp. 118–120. DOI: 10.1109/MC.2006.31.

193

https://doi.org/10.1007/3-540-58426-9_132
https://doi.org/10.1007/3-540-58426-9_132
https://doi.org/10.1109/TC.2010.60
https://doi.org/10.1109/TC.2010.60
https://doi.org/10.1109/CICC.2007.4405763
https://doi.org/10.1109/DSN.2015.57
https://doi.org/10.1109/TDMR.2005.855685
https://doi.org/10.1109/FTCS.1992.243568
https://doi.org/10.1109/FTCS.1992.243568
https://doi.org/10.1504/IJCAET.2014.065419
https://www.inderscienceonline.com/doi/abs/10.1504/IJCAET.2014.065419
https://www.inderscienceonline.com/doi/abs/10.1504/IJCAET.2014.065419
https://doi.org/10.1109/MICRO.2003.1253181
https://doi.org/10.1109/MM.2003.1261389
https://doi.org/10.1109/MM.2003.1261389
https://doi.org/10.1109/MC.2006.31

BIBLIOGRAPHY

[Nic10] M. Nicolaidis. Soft Errors in Modern Electronic Systems. Frontiers in Electronic Testing.
Springer US, 2010. ISBN: 9781441969934.

[Nor96a] E. Normand. “Single event upset at ground level.” In: IEEE Transactions on Nuclear
Science 43.6 (Dec. 1996), pp. 2742–2750. ISSN: 0018-9499. DOI: 10.1109/23.556861.

[Nor96b] E. Normand. “Single event upset at ground level.” In: IEEE Transactions on Nuclear
Science 43.6 (1996), pp. 2742–2750. DOI: 10.1109/23.556861.

[Nul98] Frank Nullmeier. “Input, Output, Outcome, Effektivität und Effizienz.” In: Handbuch zur
Verwaltungsreform. Wiesbaden: VS Verlag für Sozialwissenschaften, 1998, pp. 314–322. ISBN:
978-3-322-83673-1. DOI: 10.1007/978-3-322-83673-1_35. URL: https://doi.org/10.
1007/978-3-322-83673-1_35.

[OR95] J. Ohlsson and M. Rimen. “Implicit signature checking.” In: Proceedings of the 25th Inter-
national Symposium on Fault-Tolerant Computing (FTCS ’95)). Vol. 25. 1995, pp. 218–227.
DOI: 10.1109/FTCS.1995.466976.

[OSM02] N. Oh, P.P. Shirvani, and E.J. McCluskey. “Error detection by duplicated instructions in
super-scalar processors.” In: IEEE Transactions on Reliability 51.1 (2002), pp. 63–75. ISSN:
0018-9529. DOI: 10.1109/24.994913.

[Ose] OSEK/VDX Group Homepage. http://www.osek-vdx.org/.

[PG21] George Papadimitriou and Dimitris Gizopoulos. “Demystifying the System Vulnerability
Stack: Transient Fault Effects Across the Layers.” In: 48th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2021, Valencia, Spain, June 14-18, 2021. 2021,
pp. 902–915. DOI: 10.1109/ISCA52012.2021.00075.

[PGZ08] Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn. “Samurai: Protecting Criti-
cal Data in Unsafe Languages.” In: Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008 (EuroSys ’08). Eurosys ’08. Glasgow, Scotland UK:
Association for Computing Machinery, 2008, pp. 219–232. ISBN: 9781605580135. DOI:
10.1145/1352592.1352616. URL: https://doi.org/10.1145/1352592.1352616.

[PH21] David A. Patterson and John L. Hennessy. Computer Organization and Design: The Hard-
ware/Software Interface. 6th ed. Morgan Kaufmann Publishers Inc., 2021. ISBN: 978-0-12-
823716-8.

[PRSR98] P. Prinetto, M. Rebaudengo, and M. Sonza Reorda. “Exploiting the background debugging
mode in a fault injection system.” In: Proceedings. IEEE International Computer Performance
and Dependability Symposium. IPDS’98 (Cat. No.98TB100248). 1998, pp. 277–. DOI: 10.
1109/IPDS.1998.707736.

[Pal+19] Lucas Palazzi, Guanpeng Li, Bo Fang, and Karthik Pattabiraman. “A Tale of Two Injectors:
End-to-End Comparison of IR-Level and Assembly-Level Fault Injection.” In: 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE). 2019, pp. 151–162.
DOI: 10.1109/ISSRE.2019.00024.

194

https://doi.org/10.1109/23.556861
https://doi.org/10.1109/23.556861
https://doi.org/10.1007/978-3-322-83673-1_35
https://doi.org/10.1007/978-3-322-83673-1_35
https://doi.org/10.1007/978-3-322-83673-1_35
https://doi.org/10.1109/FTCS.1995.466976
https://doi.org/10.1109/24.994913
http://www.osek-vdx.org/
https://doi.org/10.1109/ISCA52012.2021.00075
https://doi.org/10.1145/1352592.1352616
https://doi.org/10.1145/1352592.1352616
https://doi.org/10.1109/IPDS.1998.707736
https://doi.org/10.1109/IPDS.1998.707736
https://doi.org/10.1109/ISSRE.2019.00024

BIBLIOGRAPHY

[Par+00a] B. Parrotta, M. Rebaudengo, M. Sonza Reorda, and M. Violante. “Speeding-Up Fault
Injection Campaigns in VHDL Models.” In: Computer Safety, Reliability and Security. Ed. by
Floor Koornneef and Meine van der Meulen. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 27–36. ISBN: 978-3-540-40891-8. DOI: 10.1007/3-540-40891-6_3.

[Par+00b] B. Parrotta, M. Rebaudengo, M.S. Reorda, and M. Violante. “New techniques for accel-
erating fault injection in VHDL descriptions.” In: Proceedings 6th IEEE International On-Line
Testing Workshop (Cat. No. PR00646). IEEE. IEEE Computer Society Press, 2000, pp. 61–66.
DOI: 10.1109/OLT.2000.856613.

[Par+14] Konstantinos Parasyris, Georgios Tziantzoulis, Christos D. Antonopoulos, and Nikolaos
Bellas. “GemFI: A Fault Injection Tool for Studying the Behavior of Applications on Unreliable
Substrates.” In: 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014. IEEE Computer Society, 2014,
pp. 622–629. DOI: 10.1109/DSN.2014.96.

[Par72] David Lorge Parnas. “On the Criteria to be used in Decomposing Systems into Modules.”
In: Communications of the ACM 15.12 (Dec. 1972), pp. 1053–1058. ISSN: 0001-0782. DOI:
10.1145/361598.361623.

[Pau04] Paul. “Electronic Elections in Belgium: a look at the sourcecode.” In: Afront.be (2004).
URL: https://web.archive.org/web/20080107081704/http://www.afront.be/lib/
vote.html (visited on 2024-03-28).

[Pro22] Community Project. gem5 Computer Architecture Research Project. 2022. URL: https:
//gem5.googlesource.com/public/gem5 (visited on 2024-03-28).

[Pro23a] Community Project. Bochs IA-32 Emulator Project. 2023. URL: https://github.com/
bochs-emu/Bochs (visited on 2024-03-28).

[Pro23b] Research Project. Sail. 2023. URL: https://www.cl.cam.ac.uk/∼pes20/sail/ (visited
on 2024-03-28).

[RBQ96] C. Rabejac, J.-P. Blanquart, and J.-P. Queille. “Executable assertions and timed traces for
on-line software error detection (FTCS ’96).” In: Proceedings of Annual Symposium on Fault
Tolerant Computing. 1996, pp. 138–147. DOI: 10.1109/FTCS.1996.534602.

[RCE02] M. Redeker, B.F. Cockburn, and D.G. Elliott. “An investigation into crosstalk noise in DRAM
structures.” In: Proceedings of the 2002 IEEE International Workshop on Memory Technology,
Design and Testing (MTDT2002). 2002, pp. 123–129. DOI: 10.1109/MTDT.2002.1029773.

[RGF23] Federico Reghenzani, Zhishan Guo, and William Fornaciari. “Software Fault Tolerance
in Real-Time Systems: Identifying the Future Research Questions.” In: ACM Comput. Surv.
55.14s (2023), pp. 1–30. ISSN: 0360-0300. DOI: 10.1145/3589950.

[RM00] Steven K. Reinhardt and Shubhendu S. Mukherjee. “Transient Fault Detection via Simul-
taneous Multithreading.” In: Proceedings of the 27th International Symposium on Computer
Architecture (ISCA ’00). Vancouver, British Columbia, Canada: ACM Press, 2000, pp. 25–36.
ISBN: 1-58113-232-8. DOI: 10.1145/339647.339652.

195

https://doi.org/10.1007/3-540-40891-6_3
https://doi.org/10.1109/OLT.2000.856613
https://doi.org/10.1109/DSN.2014.96
https://doi.org/10.1145/361598.361623
https://web.archive.org/web/20080107081704/http://www.afront.be/lib/vote.html
https://web.archive.org/web/20080107081704/http://www.afront.be/lib/vote.html
https://gem5.googlesource.com/public/gem5
https://gem5.googlesource.com/public/gem5
https://github.com/bochs-emu/Bochs
https://github.com/bochs-emu/Bochs
https://www.cl.cam.ac.uk/~pes20/sail/
https://doi.org/10.1109/FTCS.1996.534602
https://doi.org/10.1109/MTDT.2002.1029773
https://doi.org/10.1145/3589950
https://doi.org/10.1145/339647.339652

BIBLIOGRAPHY

[RSR99] M. Rebaudengo and M. Sonza Reorda. “Evaluating the fault tolerance capabilities of em-
bedded systems via BDM.” In: Proceedings 17th IEEE VLSI Test Symposium (Cat. No.PR00146).
1999, pp. 452–457. DOI: 10.1109/VTEST.1999.766703.

[Ram+08] P. Ramachandran, P. Kudva, J. Kellington, J. Schumann, and P. Sanda. “Statistical Fault
Injection.” In: 2008 IEEE International Conference on Dependable Systems and Networks With
FTCS and DCC (DSN). June 2008, pp. 122–127. DOI: 10.1109/DSN.2008.4630080.

[Ram21] (pseudonym) Ramble_Khron. “An Eight Year Mystery Solved After Speedrunner Gets Help
From Space.” In: ebaumsworld.com (Sept. 15, 2021). URL: https://gaming.ebaumsworld.
com/articles/how-cosmic-rays-helped-a-mario-speedrunner-do-the-impossible/

86984570/ (visited on 2024-03-28).

[Rat04] David Ratter. “FPGAs on mars.” In: Xcell J 50 (2004), pp. 8–11. URL: https://www.
xilinx.com/publications/archives/xcell/Xcell50.pdf (visited on 2024-03-28).

[Rei+05a] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August. “SWIFT: software im-
plemented fault tolerance.” In: International Symposium on Code Generation and Optimization
(CGO ’05). 2005, pp. 243–254. DOI: 10.1109/CGO.2005.34.

[Rei+05b] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, D.I. August, and S.S. Mukherjee.
“Software-controlled fault tolerance.” In: ACM Transactions on Architecture and Code Optimiza-
tion (TACO ’05) 2.4 (2005), pp. 366–396. ISSN: 1544-3566. DOI: 10.1145/1113841.1113843.

[Ros+11] Daniele Rossi, Nicola Timoncini, Michael Spica, and Cecilia Metra. “Error correcting code
analysis for cache memory high reliability and performance.” In: 2011 Design, Automation &
Test in Europe. IEEE. 2011, pp. 1–6. DOI: 10.1109/DATE.2011.5763257.

[Rot99] E. Rotenberg. “AR-SMT: a microarchitectural approach to fault tolerance in microproces-
sors.” In: Digest of Papers. Twenty-Ninth Annual International Symposium on Fault-Tolerant
Computing (FTCS ’99). Vol. 29. Washington, DC, USA: IEEE Computer Society Press, 1999,
pp. 84–91. DOI: 10.1109/FTCS.1999.781037.

[SB19] Horst Schirmeier and Mark Breddemann. “Quantitative Cross-Layer Evaluation of Transient-
Fault Injection Techniques for Algorithm Comparison.” In: 15th European Dependable Comput-
ing Conference, EDCC 2019, Naples, Italy, September 17-20, 2019 (Naples, Italy). Piscataway,
NJ, USA: IEEE Press, Sept. 2019, pp. 15–22. DOI: 10.1109/EDCC.2019.00016.

[SBK10] D. Skarin, R. Barbosa, and J. Karlsson. “GOOFI-2: A tool for experimental dependability
assessment.” In: Proceedings of the 39th International Conference on Dependable Systems and
Networks (DSN ’09). IEEE Computer Society Press, June 2010, pp. 557–562. DOI: 10.1109/
DSN.2010.5544265.

[SBS14] Horst Schirmeier, Christoph Borchert, and Olaf Spinczyk. “Rapid Fault-Space Exploration
by Evolutionary Pruning.” In: International Conference on Computer Safety, Reliability, and Se-
curity. Ed. by Andrea Bondavalli and Felicita Di Giandomenico. Cham: Springer International
Publishing, 2014, pp. 17–32. ISBN: 978-3-319-10506-2.

[SH+14] Siva Kumar Sastry Hari, Radha Venkatagiri, Sarita V. Adve, and Helia Naeimi. “GangES:
Gang Error Simulation for Hardware Resiliency Evaluation.” In: SIGARCH Comput. Archit.
News 42.3 (June 2014), pp. 61–72. ISSN: 0163-5964. DOI: 10.1145/2678373.2665685. URL:
https://doi.org/10.1145/2678373.2665685.

196

https://doi.org/10.1109/VTEST.1999.766703
https://doi.org/10.1109/DSN.2008.4630080
https://gaming.ebaumsworld.com/articles/how-cosmic-rays-helped-a-mario-speedrunner-do-the-impossible/86984570/
https://gaming.ebaumsworld.com/articles/how-cosmic-rays-helped-a-mario-speedrunner-do-the-impossible/86984570/
https://gaming.ebaumsworld.com/articles/how-cosmic-rays-helped-a-mario-speedrunner-do-the-impossible/86984570/
https://www.xilinx.com/publications/archives/xcell/Xcell50.pdf
https://www.xilinx.com/publications/archives/xcell/Xcell50.pdf
https://doi.org/10.1109/CGO.2005.34
https://doi.org/10.1145/1113841.1113843
https://doi.org/10.1109/DATE.2011.5763257
https://doi.org/10.1109/FTCS.1999.781037
https://doi.org/10.1109/EDCC.2019.00016
https://doi.org/10.1109/DSN.2010.5544265
https://doi.org/10.1109/DSN.2010.5544265
https://doi.org/10.1145/2678373.2665685
https://doi.org/10.1145/2678373.2665685

BIBLIOGRAPHY

[SJK17] Behrooz Sangchoolie, Roger Johansson, and Johan Karlsson. “Light-Weight Techniques for
Improving the Controllability and Efficiency of ISA-Level Fault Injection Tools.” In: Dependable
Computing (PRDC), 2017 IEEE 22nd Pacific Rim International Symposium on. IEEE. 2017,
pp. 68–77. DOI: 10.1109/PRDC.2017.18.

[SK08a] Daniel Skarin and Johan Karlsson. “Software Implemented Detection and Recovery of
Soft Errors in a Brake-by-Wire System.” In: 2008 Seventh European Dependable Computing
Conference (EDCC ’08). 2008, pp. 145–154. DOI: 10.1109/EDCC-7.2008.24.

[SK08b] Vilas Sridharan and David R. Kaeli. “Quantifying software vulnerability.” In: WREFT
’08: Proceedings of the 2008 workshop on Radiation effects and fault tolerance in nanometer
technologies (Ischia, Italy). New York, NY, USA: ACM Press, 2008, pp. 323–328. ISBN: 978-1-
60558-092-9. DOI: 10.1145/1366224.1366225.

[SK09] V. Sridharan and D. R. Kaeli. “Eliminating microarchitectural dependency from Architectural
Vulnerability.” In: 2009 IEEE 15th International Symposium on High Performance Computer
Architecture. Feb. 2009, pp. 117–128. DOI: 10.1109/HPCA.2009.4798243.

[SL12] Vilas Sridharan and Dean Liberty. “A study of DRAM failures in the field.” In: SC’12:
Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE. 2012, pp. 1–11. DOI: 10.1109/SC.2012.13.

[SM98] Philip P. Shirvani and Edward J. McCluskey. Fault-Tolerant Systems in a Space Environment:
The CRC ARGOS project. Tech. rep. 2. Stanford, CA, USA, 1998.

[SRS14] Horst Schirmeier, Lars Rademacher, and Olaf Spinczyk. “Smart-Hopping: Highly Efficient
ISA-Level Fault Injection on Real Hardware.” In: Proceedings of the 19th IEEE European Test
Symposium (ETS ’14). Paderborn, Germany: IEEE Computer Society Press, May 2014. DOI:
10.1109/ETS.2014.6847803.

[SSM00] P. P. Shirvani, N. R. Saxena, and E. J. McCluskey. “Software-implemented EDAC protection
against SEUs.” In: IEEE Transactions on Reliability 49.3 (Sept. 2000), pp. 273–284. ISSN:
0018-9529. DOI: 10.1109/24.914544.

[STB97] Volkmar Sieh, Oliver Tschäche, and Frank Balbach. “VERIFY: Evaluation of Reliability
Using VHDL-Models with Embedded Fault Descriptions.” In: Proceedings of the 27rd Inter-
national Symposium on Fault-Tolerant Computing (FTCS-27). June 1997, pp. 32–36. DOI:
10.1109/FTCS.1997.614074.

[SWP13] Jiguo Song, J. Wittrock, and G. Parmer. “Predictable, Efficient System-Level Fault Toler-
ance in C3.” In: Proceedings of the 34th IEEE International Symposium on Real-Time Systems
(RTSS ’13) (Vancouver, Canada, Dec. 3–6, 2013). IEEE Computer Society Press, Dec. 2013,
pp. 21–32. ISBN: 978-1-4799-2007-5. DOI: 10.1109/RTSS.2013.11.

[Sai77] S.H. Saib. “Executable Assertions - An Aid To Reliable Software.” In: 1977 11th Asilomar
Conference on Circuits, Systems and Computers, 1977. Conference Record. 1977, pp. 277–281.
DOI: 10.1109/ACSSC.1977.748932.

[San+14] T. Santini, P. Rech, G. Nazar, L. Carro, and F. Rech Wagner. “Reducing embedded software
radiation-induced failures through cache memories.” In: Proceedings of the 19th IEEE European
Test Symposium (ETS ’14). Paderborn, Germany: IEEE Computer Society Press, May 2014,
pp. 1–6. DOI: 10.1109/ETS.2014.6847793.

197

https://doi.org/10.1109/PRDC.2017.18
https://doi.org/10.1109/EDCC-7.2008.24
https://doi.org/10.1145/1366224.1366225
https://doi.org/10.1109/HPCA.2009.4798243
https://doi.org/10.1109/SC.2012.13
https://doi.org/10.1109/ETS.2014.6847803
https://doi.org/10.1109/24.914544
https://doi.org/10.1109/FTCS.1997.614074
https://doi.org/10.1109/RTSS.2013.11
https://doi.org/10.1109/ACSSC.1977.748932
https://doi.org/10.1109/ETS.2014.6847793

BIBLIOGRAPHY

[Sch+10a] Ute Schiffel, André Schmitt, Martin Süßkraut, and Christof Fetzer. “ANB- and ANBDmem-
encoding: detecting hardware errors in software.” In: Proceedings of the 29th International
Conference on Computer Safety, Reliability, and Security (SAFECOMP ’10) (Vienna, Austria).
Ed. by Erwin Schoitsch. Heidelberg, Germany: Springer-Verlag, 2010, pp. 169–182. ISBN:
978-3-642-15650-2. DOI: 10.1007/978-3-642-15651-9_13.

[Sch+10b] Ute Schiffel, André Schmitt, Martin Süßkraut, and Christof Fetzer. “Slice Your Bug:
Debugging Error Detection Mechanisms Using Error Injection Slicing.” In: 2010 European
Dependable Computing Conference. 2010, pp. 13–22. DOI: 10.1109/EDCC.2010.12.

[Sch11] Ute Schiffel. “Hardware Error Detection Using AN-Codes.” PhD thesis. Technische Uni-
versität Dresden, Fakultät Informatik, 2011. URL: https://tud.qucosa.de/api/qucosa%
3A25596/attachment/ATT-0/?L=1 (visited on 2024-03-28).

[Sch+13] Bernard Schmidt, Carlos Villarraga, Thomas Fehmel, Jörg Bormann, Markus Wedler,
Minh Nguyen, Dominik Stoffel, and Wolfgang Kunz. “A New Formal Verification Approach for
Hardware-Dependent Embedded System Software.” In: IPSJ Transactions on System LSI Design
Methodology 6.0 (2013), pp. 135–145. ISSN: 1882-6687. DOI: 10.2197/ipsjtsldm.6.135.

[Sch+15] Horst Schirmeier, Martin Hoffmann, Christian Dietrich, Michael Lenz, Daniel Lohmann,
and Olaf Spinczyk. “FAIL*: An Open and Versatile Fault-Injection Framework for the As-
sessment of Software-Implemented Hardware Fault Tolerance.” In: Proceedings of the 11th
European Dependable Computing Conference (EDCC ’15). Ed. by Pierre Sens. Paris, France,
Sept. 2015, pp. 245–255. DOI: 10.1109/EDCC.2015.28.

[Sch16] Horst Schirmeier. “Efficient Fault-Injection-based Assessment of Software-Implemented
Hardware Fault Tolerance.” Dissertation. Technische Universität Dortmund, July 2016. DOI:
10.17877/DE290R-17222. URL: https://eldorado.tu-dortmund.de/bitstream/2003/
35175/1/Dissertation.pdf (visited on 2024-03-29).

[Sch97] R.R. Schaller. “Moore’s law: past, present and future.” In: IEEE Spectrum 34.6 (1997),
pp. 52–59. DOI: 10.1109/6.591665.

[Shi+00] Philip P Shirvani, Namsuk Oh, Edward J Mccluskey, DL Wood, Michael N Lovellette, and
KS Wood. “Software-implemented hardware fault tolerance experiments: COTS in space.”
In: Processings of the 30th IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN ’00). IEEE Computer Society Press, 2000, B56–B57.

[Shi+02] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug Burger, and Lorenzo
Alvisi. “Modeling the Effect of Technology Trends on the Soft Error Rate of Combinational
Logic.” In: Proceedings of the 32nd International Conference on Dependable Systems and
Networks (DSN ’02) (Bethesda, MD, USA). Washington, DC, USA: IEEE Computer Society
Press, June 2002, pp. 389–398. DOI: 10.1109/DSN.2002.1028924.

[Shy+07] Alex Shye, Tipp Moseley, Vijay Janapa Reddi, Joseph Blomstedt, and Daniel A. Connors.
“Using Process-Level Redundancy to Exploit Multiple Cores for Transient Fault Tolerance.”
In: Proceedings of the 37th International Conference on Dependable Systems and Networks
(DSN ’07) (Edinburgh, UK). Washington, DC, USA: IEEE Computer Society Press, June 2007,
pp. 297–306. ISBN: 0-7695-2855-4. DOI: 10.1109/DSN.2007.98.

198

https://doi.org/10.1007/978-3-642-15651-9_13
https://doi.org/10.1109/EDCC.2010.12
https://tud.qucosa.de/api/qucosa%3A25596/attachment/ATT-0/?L=1
https://tud.qucosa.de/api/qucosa%3A25596/attachment/ATT-0/?L=1
https://doi.org/10.2197/ipsjtsldm.6.135
https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.17877/DE290R-17222
https://eldorado.tu-dortmund.de/bitstream/2003/35175/1/Dissertation.pdf
https://eldorado.tu-dortmund.de/bitstream/2003/35175/1/Dissertation.pdf
https://doi.org/10.1109/6.591665
https://doi.org/10.1109/DSN.2002.1028924
https://doi.org/10.1109/DSN.2007.98

BIBLIOGRAPHY

[Shy+09] Alex Shye, Joseph Blomstedt, Tipp Moseley, Vijay Janapa Reddi, and Daniel A. Connors.
“PLR: A Software Approach to Transient Fault Tolerance for Multicore Architectures.” In: IEEE
Transactions on Dependable and Secure Computing 6.2 (2009), pp. 135–148. DOI: 10.1109/
TDSC.2008.62.

[Sle+99] T. J. Slegel, R. M. Averill, M. A. Check, B. C. Giamei, B. W. Krumm, C. A. Krygowski, W. H.
Li, J. S. Liptay, J. D. MacDougall, T. J. McPherson, J. A. Navarro, E. M. Schwarz, K. Shum,
and C. F. Webb. “IBM’s S/390 G5 microprocessor design.” In: IEEE Micro 19.2 (Mar. 1999),
pp. 12–23. ISSN: 0272-1732. DOI: 10.1109/40.755464.

[Smi+95] D Todd Smith, Barry W Johnson, Joseph A Profeta, and Daniele G Bozzolo. “A method
to determine equivalent fault classes for permanent and transient faults.” In: Reliability
and Maintainability Symposium, 1995. Proceedings., Annual. IEEE. 1995, pp. 418–424. DOI:
10.1109/RAMS.1995.513278.

[Sri+04] Jayanth Srinivasan, Sarita V Adve, Pradip Bose, and Jude A Rivers. “The impact of
technology scaling on lifetime reliability.” In: Proceedings of the 34th International Conference
on Dependable Systems and Networks (DSN ’04) (Florence, Italy). Washington, DC, USA: IEEE
Computer Society Press, June 2004, pp. 177–186. DOI: 10.1109/DSN.2004.1311888.

[Sri+13] Vilas Sridharan, Jon Stearley, Nathan DeBardeleben, Sean Blanchard, and Sudhanva
Gurumurthi. “Feng Shui of Supercomputer Memory: Positional Effects in DRAM and SRAM
Faults.” In: Proceedings of SC13: International Conference for High Performance Computing,
Networking, Storage and Analysis. SC ’13. Denver, Colorado: ACM Press, 2013, 22:1–22:11.
ISBN: 978-1-4503-2378-9. DOI: 10.1145/2503210.2503257.

[Sri+15] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira, Jon Stearley,
John Shalf, and Sudhanva Gurumurthi. “Memory Errors in Modern Systems: The Good, The
Bad, and The Ugly.” In: Proceedings of the 20th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’15). Istanbul, Turkey:
ACM, 2015. DOI: 10.1145/2694344.2694348.

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. “Simultaneous multithreading:
Maximizing on-chip parallelism.” In: Proceedings of the 22nd annual international symposium
on Computer architecture (ISCA’95). 1995, pp. 392–403. DOI: 10.1145/223982.224449.

[TI95] Timothy K. Tsai and Ravishankar K. Iyer. “Measuring Fault Tolerance with the FTAPE fault
injection tool.” In: Quantitative Evaluation of Computing and Communication Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1995, pp. 26–40. ISBN: 978-3-540-44789-4.

[TN93] A. Taber and E. Normand. “Single event upset in avionics.” In: IEEE Transactions on Nuclear
Science 40.2 (Apr. 1993), pp. 120–126. ISSN: 0018-9499. DOI: 10.1109/23.212327.

[TP13] Anna Thomas and Karthik Pattabiraman. “LLFI : An Intermediate Code Level Fault Injector
For Soft Computing Applications.” In: Workshop on Silicon Errors in Logic System Effects
(SELSE). 2013. URL: https://api.semanticscholar.org/CorpusID:202726208 (visited
on 2024-03-28).

[Tri08] Kishor S Trivedi. Probability & statistics with reliability, queuing and computer science
applications. John Wiley & Sons, 2008. ISBN: 9780471333418.

199

https://doi.org/10.1109/TDSC.2008.62
https://doi.org/10.1109/TDSC.2008.62
https://doi.org/10.1109/40.755464
https://doi.org/10.1109/RAMS.1995.513278
https://doi.org/10.1109/DSN.2004.1311888
https://doi.org/10.1145/2503210.2503257
https://doi.org/10.1145/2694344.2694348
https://doi.org/10.1145/223982.224449
https://doi.org/10.1109/23.212327
https://api.semanticscholar.org/CorpusID:202726208

BIBLIOGRAPHY

[Tur37] A. M. Turing. “On Computable Numbers, with an Application to the Entscheidungsprob-
lem.” In: Proceedings of the London Mathematical Society. Proceedings of the London Mathe-
matical Society s2-42.1 (1937), pp. 230–265. ISSN: 0024-6115, 1460-244X. DOI: 10.1112/
plms/s2-42.1.230.

[Tyr96] A.M. Tyrrell. “Recovery blocks and algorithm-based fault tolerance.” In: Proceedings of
EUROMICRO 96. 22nd Euromicro Conference. Beyond 2000: Hardware and Software Design
Strategies. Vol. 22. IEEE Computer Society Press, 1996, pp. 292–299. DOI: 10.1109/EURMIC.
1996.546394.

[Ulb+12] Peter Ulbrich, Martin Hoffmann, Rüdiger Kapitza, Daniel Lohmann, Wolfgang Schröder-
Preikschat, and Reiner Schmid. “Eliminating Single Points of Failure in Software-Based
Redundancy.” In: Proceedings of the 9th European Dependable Computing Conference (EDCC
’12) (Sibiu, Romania). Washington, DC, USA: IEEE Computer Society Press, May 2012, pp. 49–
60. ISBN: 978-1-4673-0938-7. DOI: 10.1109/EDCC.2012.21.

[Ulb14] Peter Ulbrich. “Ganzheitliche Fehlertoleranz in eingebetteten Softwaresystemen.” PhD
thesis. Erlangen: Friedrich-Alexander-Universität Erlangen-Nürnberg, 2014.

[VPC02] T.N. Vijaykumar, I. Pomeranz, and K. Cheng. “Transient-fault recovery using simultaneous
multithreading.” In: Proceedings 29th Annual International Symposium on Computer Architec-
ture (ISCA ’02). Vol. 29. IEEE Computer Society Press, 2002, pp. 87–98. DOI: 10.1109/ISCA.
2002.1003565.

[Val+15] A. Vallero, S. Tselonis, N. Foutris, M. Kaliorakis, M. Kooli, A. Savino, G. Politano, A. Bosio,
G. Di Natale, D. Gizopoulos, and S. Di Carlo. “Cross-layer Reliability Evaluation, Moving
from the Hardware Architecture to the System Level.” In: Microprocess. Microsyst. 39.8 (Nov.
2015), pp. 1204–1214. ISSN: 0141-9331. DOI: 10.1016/j.micpro.2015.06.003.

[Val21] [@FiloSottile] Filippo Valsorda. A cosmic ray just murdered a Certificate Transparency log.
X (formerly known as Twitter). July 4, 2021. URL: https://x.com/FiloSottile/status/
1411583960115814401 (visited on 2024-03-28).

[Vel+99] R. Velazco, P. Cheynet, A. Tissot, J. Haussy, J. Lambert, and R. Ecoffet. “Evidences of
SEU tolerance for digital implementations of artificial neural networks: one year MPTB
flight results.” In: 1999 5th European Conference on Radiation and Its Effects on Components
and Systems (RADECS ’99). Vol. 5. IEEE Computer Society Press, 1999, pp. 565–568. DOI:
10.1109/RADECS.1999.858648.

[Ven+16] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve. “Approxilyzer: Towards a
systematic framework for instruction-level approximate computing and its application to
hardware resiliency.” In: 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). 2016, pp. 1–14. DOI: 10.1109/MICRO.2016.7783745.

[Ven+19] R. Venkatagiri, K. Ahmed, A. Mahmoud, S. Misailovic, D. Marinov, C. W. Fletcher, and S. V.
Adve. “gem5-Approxilyzer: An Open-Source Tool for Application-Level Soft Error Analysis.”
In: 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). 2019, pp. 214–221. DOI: 10.1109/DSN.2019.00033.

200

https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1109/EURMIC.1996.546394
https://doi.org/10.1109/EURMIC.1996.546394
https://doi.org/10.1109/EDCC.2012.21
https://doi.org/10.1109/ISCA.2002.1003565
https://doi.org/10.1109/ISCA.2002.1003565
https://doi.org/10.1016/j.micpro.2015.06.003
https://x.com/FiloSottile/status/1411583960115814401
https://x.com/FiloSottile/status/1411583960115814401
https://doi.org/10.1109/RADECS.1999.858648
https://doi.org/10.1109/MICRO.2016.7783745
https://doi.org/10.1109/DSN.2019.00033

BIBLIOGRAPHY

[WA19] Andrew Waterman and Krste Asanović, eds. The RISC-V Instruction Set Manual, Volume I:
Unpriviledged ISA – Document Version 20191213. Dec. 2019. URL: https://drive.google.
com/file/d/1s0lZxUZaa7eV_O0_WsZzaurFLLww7ou5/view?usp=drive_link (visited on
2024-03-28).

[WAH21] Andrew Waterman, Krste Asanovic, and John Hauser, eds. The RISC-V Instruction Set
Manual – Volume II: Privileged Architecture, Document Version 20211203”. Dec. 2021. URL:
https://drive.google.com/file/d/1EMip5dZlnypTk7pt4WWUKmtjUKTOkBqh/view?

usp=drive_link (visited on 2024-03-28).

[WF07] Ute Wappler and Christof Fetzer. “Software Encoded Processing: Building Dependable
Systems with Commodity Hardware.” In: Proceedings of the 26th International Conference on
Computer Safety, Reliability, and Security (SAFECOMP ’07) (Nuremberg, Germany). Ed. by
Francesca Saglietti and Norbert Oster. Heidelberg, Germany: Springer-Verlag, 2007, pp. 356–
369. ISBN: 978-3-540-75100-7. DOI: 10.1007/978-3-540-75101-4_34.

[WH11] N.H.E. Weste and D.M. Harris. CMOS VLSI Design: A Circuits and Systems Perspective.
Addison Wesley, 2011. ISBN: 9780321547743.

[Wei84] Reinhold P Weicker. “Dhrystone: a synthetic systems programming benchmark.” In:
Communications of the ACM 27.10 (1984), pp. 1013–1030. DOI: 10.1145/358274.358283.

[Wil02a] Dennis J Wilkins. “The Bathtub Curve and Product Failure Behavior Part One - The
Bathtub Curve, Infant Mortality and Burn-in.” In: Reliability HotWire 21 (2002). URL: https:
//www.maths.tcd.ie/∼donmoore/project/project/Write%20up/22%20mar%202006/

hottopics21.htm (visited on 2024-03-28).

[Wil02b] Dennis J Wilkins. “The Bathtub Curve and Product Failure Behavior Part Two - Normal
Life and Wear-Out.” In: Reliability HotWire 22 (2002). URL: https://www.maths.tcd.ie/
∼donmoore/project/project/Write%20up/22%20mar%202006/hottopics22.htm (visited
on 2024-03-28).

[Win+13] Stefan Winter, Michael Tretter, Benjamin Sattler, and Neeraj Suri. “simFI: From single
to simultaneous software fault injections.” In: 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 2013, pp. 1–12. DOI: 10.1109/DSN.
2013.6575310.

[Win+15] Stefan Winter, Thorsten Piper, Oliver Schwahn, Roberto Natella, Neeraj Suri, and
Domenico Cotroneo. “GRINDER: On Reusability of Fault Injection Tools.” In: 2015 IEEE/ACM
10th International Workshop on Automation of Software Test. 2015, pp. 75–79. DOI: 10.1109/
AST.2015.22.

[XL12] Xin Xu and Man-Lap Li. “Understanding soft error propagation using efficient vulnerability-
driven fault injection.” In: IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2012). IEEE. 2012, pp. 1–12. DOI: 10.1109/DSN.2012.6263923.

[XTS08] Jianjun Xu, Qingping Tan, and Rui Shen. “A Novel Optimum Data Duplication Approach
for Soft Error Detection.” In: 2008 15th Asia-Pacific Software Engineering Conference (APSEC
’08). 2008, pp. 161–168. DOI: 10.1109/APSEC.2008.46.

201

https://drive.google.com/file/d/1s0lZxUZaa7eV_O0_WsZzaurFLLww7ou5/view?usp=drive_link
https://drive.google.com/file/d/1s0lZxUZaa7eV_O0_WsZzaurFLLww7ou5/view?usp=drive_link
https://drive.google.com/file/d/1EMip5dZlnypTk7pt4WWUKmtjUKTOkBqh/view?usp=drive_link
https://drive.google.com/file/d/1EMip5dZlnypTk7pt4WWUKmtjUKTOkBqh/view?usp=drive_link
https://doi.org/10.1007/978-3-540-75101-4_34
https://doi.org/10.1145/358274.358283
https://www.maths.tcd.ie/~donmoore/project/project/Write%20up/22%20mar%202006/hottopics21.htm
https://www.maths.tcd.ie/~donmoore/project/project/Write%20up/22%20mar%202006/hottopics21.htm
https://www.maths.tcd.ie/~donmoore/project/project/Write%20up/22%20mar%202006/hottopics21.htm
https://www.maths.tcd.ie/~donmoore/project/project/Write%20up/22%20mar%202006/hottopics22.htm
https://www.maths.tcd.ie/~donmoore/project/project/Write%20up/22%20mar%202006/hottopics22.htm
https://doi.org/10.1109/DSN.2013.6575310
https://doi.org/10.1109/DSN.2013.6575310
https://doi.org/10.1109/AST.2015.22
https://doi.org/10.1109/AST.2015.22
https://doi.org/10.1109/DSN.2012.6263923
https://doi.org/10.1109/APSEC.2008.46

BIBLIOGRAPHY

[YC80] S.S. Yau and Fu-Chung Chen. “An Approach to Concurrent Control Flow Checking.” In:
IEEE Transactions on Software Engineering SE-6.2 (Mar. 1980), pp. 126–137. ISSN: 0098-5589.
DOI: 10.1109/TSE.1980.234478.

[YE10] Doe Hyun Yoon and Mattan Erez. “Virtualized and flexible ECC for main memory.” In:
Proceedings of the Fifteenth International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS XV. Pittsburgh, Pennsylvania, USA: Association for
Computing Machinery, 2010, pp. 397–408. ISBN: 9781605588391. DOI: 10.1145/1736020.
1736064.

[Yeh96] Y.C. Yeh. “Triple-triple redundant 777 primary flight computer.” In: Proceedings of the
1996 IEEE Aerospace Applications Conference (Aspen, CO, USA). Washington, DC, USA: IEEE
Computer Society Press, Feb. 1996, pp. 293–307. ISBN: 978-0780331969. DOI: 10.1109/
AERO.1996.495891.

[Yos13] Junko Yoshida. Toyota Case: Single Bit Flip That Killed. 2013. URL: https://www.eetimes.
com/toyota-case-single-bit-flip-that-killed/ (visited on 2024-03-28).

[ZL79] J. F. Ziegler and W. A. Lanford. “Effect of Cosmic Rays on Computer Memories.” In: Science
206.4420 (1979), pp. 776–788. DOI: 10.1126/science.206.4420.776. URL: https:

//www.science.org/doi/abs/10.1126/science.206.4420.776 (visited on 2024-03-28).

[Zie+96] J.F. Ziegler, H.W. Curtis, H.P. Muhlfeld, C.J. Montrose, B. Chin, M. Nicewicz, C.A. Russell,
W.Y. Wang, L.B. Freeman, P. Hosier, L.E. LaFave, J.L. Walsh, J.M. Orro, G.J. Unger, J.M. Ross,
T.J. O’Gorman, B. Messina, T.D. Sullivan, A.J. Sykes, H. Yourke, T.A. Enger, V. Tolat, T.S. Scott,
A.H. Taber, R.J. Sussman, W.A. Klein, and C.W. Wahaus. “IBM experiments in soft fails in
computer electronics (1978–1994).” In: IBM Journal of Research and Development 40.1 (Jan.
1996), pp. 3–18. ISSN: 0018-8646. DOI: 10.1147/rd.401.0003.

202

https://doi.org/10.1109/TSE.1980.234478
https://doi.org/10.1145/1736020.1736064
https://doi.org/10.1145/1736020.1736064
https://doi.org/10.1109/AERO.1996.495891
https://doi.org/10.1109/AERO.1996.495891
https://www.eetimes.com/toyota-case-single-bit-flip-that-killed/
https://www.eetimes.com/toyota-case-single-bit-flip-that-killed/
https://doi.org/10.1126/science.206.4420.776
https://www.science.org/doi/abs/10.1126/science.206.4420.776
https://www.science.org/doi/abs/10.1126/science.206.4420.776
https://doi.org/10.1147/rd.401.0003

List of Figures

1.1 Iterative Reliability Evaluation using Fault Injection . 5

2.1 Dependability Tree . 11
2.2 Relations of the Dependability Attributes . 12
2.3 The Bathtub Curve as the Life Cycle of Hardware . 14
2.E1 Functionality of an n-Channel Enhancement Mode MOSFET 17
2.E2 Influence of an Environmental Effect in a MOSFET . 19
2.4 Fault Propagation Chain . 20
2.5 Fault Propagation Chain in Exemplary System Layers . 21
2.6 Relations of the Dependability Means . 24
2.7 Fault Space . 34
2.8 Universal Fault-Injection–Campaign Process . 35
2.9 System-Layers Evaluation Trade-Off . 42
2.10 Def/Use Pruning to Reduce the Number of Fault-Injection Experiments 47

3.1 FAIL* Assessment Cycle . 54
3.2 Focus of this Dissertation Regarding the FAIL*’s Assessment Cycle 58
3.3 Determining the Ground Truth with FAIL* . 64

4.1 Instruction-Aware Fault-Equivalence Sets . 74
4.2 Value-Aware Failure Equivalence Sets . 74
4.3 Application of Def/Use Pruning to Example Code with Multiple Instructions 75
4.4 Visualizing Fault Space with Data-Flow–Aware Fault-Equivalence Sets 76
4.5 Data-Flow Graph . 78
4.6 Visualizing the Carry of Exemplary ADD Instruction . 81
4.7 Concatenation of Instruction-Local Fault-Equivalence Sets 83
4.8 Initialization of the Fault-Injection–Symbol Propagation 84
4.9 Fault-Injection–Symbol Propagation . 87
4.10 Mismatch of Symbol Equalization: Impact of Multiple Value Readers 88
4.11 Epsilon-Transition Chain . 88
4.12 Data-Flow Graph with Epsilon Transitions . 89
4.13 Benchmark Portfolio’s Instruction Distribution Stacked Bar Plot 92
4.14 Comparison of a Fault Space After Applying Def/Use Pruning and Data-Flow Pruning 94
4.15 Data-Flow–Pruning Single Step’s Overhead . 95

5.1 Control Flow Graph for Listing 5.1 . 103
5.2 Potential Bit-Flip–Propagation Flow Through Loop Iterations 104
5.3 Exemplary Illustration of a Fault-Space Region . 105
5.4 Deviations in Local Results for the Whole Fault Space per Benchmark 118
5.5 Deviations in Local Results for the Whole Fault Space per Failure Class 119

6.1 Fault-Injection Experiment Time Line . 123
6.2 Distributions of Experiment Results and Instructions After Fault Injection 125
6.3 Temporal Distribution of Experiments Segmented by Failure Classes for the Benchmark

MiBench Quicksort . 126

203

LIST OF FIGURES

6.4 Two Possibillities for Defining Timeout-Detection Thresholds 128
6.5 Binary-Classification Combinations for Timeout-Detection Evaluation 131
6.6 Influence of Timeout-Detector Quality on the Campaign’s Correctness and Runtime

Savings . 134
6.7 Exemplary Autocorrelation Timeout Detection . 138

204

List of Tables

2.1 Overview of the Fault-Injection Techniques and its Assessed Criteria 41

3.1 Overview of the Benchmark Portfolio Characteristics . 69

4.1 Benchmark Portfolio’s Instruction Distribution . 92
4.2 Comparison of Def/Use Pruning and Data-Flow Pruning 96
4.3 Pilot Reduction per Failure Class [%] . 97

5.1 Evaluation Overview of all MiBench Benchmarks . 112
5.2 Evaluation Overview of all Micro Benchmarks . 113
5.3 Detailed Results of the Whole Fault Space for each MiBench Benchmark 115
5.4 Detailed Results of the Memory Fault Space for each MiBench Benchmark 116
5.5 Detailed Results of the Register Fault Space for each MiBench Benchmark 116

6.1 Percentages of Post-FI Instructions in Timeout Experiments 133
6.2 Quality of the Timeout Detection . 141
6.3 ACTOR Quantifications and Overall Campaign-Runtime Savings 142

205

List of Listings

2.1 Example of a Recorded Trace on the ISA Layer . 36

3.1 FAIL*’s Code of a Fault Injection . 55
3.2 Exemplary Fibonacci SUT Program Code for FAIL* . 65

4.1 Determining Instruction-Local Fault-Equivalence Sets for an Arbitrary Function 82
4.2 Data-Flow Graph Backward Breadth-First Analysis with Instruction-Local Fault-Equivalence

Set Mapping Application . 86
4.3 Exemplary Code for Highlighting the Impact of a Value’s Lifetime 88
4.4 Examplary Code for the Fault-Injection–Planning Step of the Data-Flow Pruning . . . 91

5.1 Objdump Snippet of Benchmark µQSI . 102
5.2 Determination of Basic-Block–Region Borders . 106

207

	1 Introduction
	1.1 Motivation
	1.2 Research Context
	1.3 Purpose of this Dissertation
	1.4 Structure
	1.5 Typographical Conventions

	2 Dependable Computing and Fault Injection
	2.1 Dependable Computing
	2.1.1 Attributes of Dependability
	2.1.2 Growing Danger to Hardware Reliability
	2.1.2.1 Transistor Trends
	2.1.2.2 Observed Occurrences of Transient Hardware Faults

	2.1.3 The Fault Propagation Chain - Fault, Error, Failure
	2.1.4 Dependability Metrics
	2.1.5 Enhance the Dependability

	2.2 Fault Injection
	2.2.1 Fault Space
	2.2.2 Fault-Injection–Campaign Process
	2.2.3 Types of Fault-Injection Techniques
	2.2.3.1 Criteria of Fault-Injection Techniques
	2.2.3.2 Hardware-Based Fault Injection
	2.2.3.3 Software-Implemented Fault Injection
	2.2.3.4 Simulation-based Fault Injection
	2.2.3.5 Summary of the Fault-Injection Techniques

	2.2.4 Fault Model
	2.2.4.1 Components of the Fault Model
	2.2.4.2 Fault-Model Summary

	2.3 Accelerating Fault-Injection Campaigns
	2.3.1 Fault-Injection–Campaign Runtime Explosion
	2.3.2 Pre-Injection Analysis
	2.3.2.1 Def/Use Pruning
	2.3.2.2 Heuristical Fault-Space Pruning

	2.3.3 Dynamic Fault-Injection–Experiment Acceleration
	2.3.4 Summary of Accelerating Fault-Injection Campaigns

	3 Implementation and Evaluation Process
	3.1 The Fault-Injection Framework FAIL*
	3.1.1 FAIL* Procedure
	3.1.2 Failure Classification
	3.1.3 FAIL* Plugins and Tools

	3.2 Evaluating Fault-Injection–Campaign Improvements
	3.2.1 Fault-Injection–Campaign Acceleration Effectiveness and Efficiency
	3.2.1.1 Ground Truth
	3.2.1.2 Fault-Injection Framework Effectiveness and Efficiency
	3.2.1.3 Fault-Injection Campaign Acceleration Effectiveness and Efficiency
	3.2.1.4 Summary of Effectiveness and Efficiency

	3.2.2 Estimating the Ground Truth with FAIL*
	3.2.3 Experimental Setup
	3.2.3.1 Benchmark Portfolio
	3.2.3.2 Technical Setup

	3.3 Summary of Implementation and Evaluation Process

	4 Data-Flow–Sensitive Fault-Space Pruning
	4.1 Data-Flow–Aware Fault-Equivalence Set
	4.1.1 Instruction Awareness
	4.1.2 Value Sensitivity
	4.1.3 Exemplary Data-Flow–Aware Fault-Equivalence Sets

	4.2 Data-Flow–Sensitive Fault-Space Pruning Process
	4.2.1 Data-Flow Graph
	4.2.2 Instruction-Local Fault-Equivalence Set
	4.2.2.1 Instruction-Local Fault-Equivalence Set Mapping
	4.2.2.2 Instruction-Local Fault-Equivalence Set Mappings in this Thesis
	4.2.2.3 Generic Algorithm for Determining Instruction-Local Fault-Equivalence Sets

	4.2.3 Injection-Symbol Propagation
	4.2.3.1 Initiation
	4.2.3.2 Symbol Equalization
	4.2.3.3 Conditions for Symbol Equalization

	4.2.4 Fault-Injection–Campaign Planning

	4.3 Evaluation
	4.3.1 Distribution of Instructions in the Benchmarks
	4.3.2 Validation of the Data-Flow Pruning
	4.3.2.1 Comparison of Def/Use Pruning and Data-Flow Pruning
	4.3.2.2 Validation Procedure

	4.3.3 Results
	4.3.3.1 Data-Flow–Pruning Efficiency: Overhead
	4.3.3.2 Data-Flow–Pruning Effectiveness: Reduction of the Number of Pilots

	4.4 Summary of Data-Flow–Sensitive Fault-Space Pruning

	5 Program-Structure–Guided Approximation of Fault Spaces
	5.1 Program Control Flow in the Context of This Dissertation
	5.1.1 Control Flow: Order and Execution of Instructions
	5.1.2 Dynamic Control Flow

	5.2 Fault-Space Region
	5.2.1 Determining Region Borders
	5.2.1.1 Basic-Block Region
	5.2.1.2 Function-Call Region

	5.2.2 Distinguishing Inner and Outer Fault-Equivalence Set
	5.2.3 Defining Fault-Space Region Pilots
	5.2.3.1 Weight of a Fault-Space Region
	5.2.3.2 Evolved Weight Functions for the Fault-Space Region Pilots

	5.2.4 Summary of Applying Fault-Space Regions

	5.3 Evaluation
	5.3.1 Fault-Space–Region Effectiveness and Result Deviation
	5.3.2 Results Overview
	5.3.2.1 MiBench Benchmarks
	5.3.2.2 Micro Benchmarks
	5.3.2.3 Overview Summary

	5.3.3 Fault-Space–Separated Results
	5.3.3.1 Whole Fault Space
	5.3.3.2 Memory Fault Space
	5.3.3.3 Register Fault Space

	5.3.4 Locality of the Results
	5.3.4.1 Benchmark- and Fault-Space Sensitivity
	5.3.4.2 Failure-Class Sensitivity

	5.3.5 Validation

	5.4 Summary of Program-Structure–Guided Approximation of Fault Spaces

	6 Timeout-Detection Methods for Fault-Injection–Experiment Acceleration
	6.1 Fault-Injection Experiment Time
	6.1.1 Experiment Time Line
	6.1.2 Fault-Injection Campaign Workload
	6.1.2.1 Number of Fault-Injection Experiments and its Simulated Instructions
	6.1.2.2 Instructions over Fault-Injection Campaign Time
	6.1.2.3 Conclusions

	6.2 Timeouts in Fault-Injection Campaigns
	6.2.1 Common Timeout Handling
	6.2.1.1 Timeout Thresholds
	6.2.1.2 Detector Decision Logics
	6.2.1.3 Summary

	6.2.2 Quality of Timeout Detectors
	6.2.2.1 Campaign Runtime and Timeout-Detection–Quality Trade-Off
	6.2.2.2 Statistical Binary Classification

	6.2.3 Potential Fault-Injection–Campaigns Runtime Savings
	6.2.3.1 Ground Truth in this Dissertation
	6.2.3.2 Optimal Timeout Detector
	6.2.3.3 Analysis

	6.3 Initial Timeout-Detector Research
	6.3.1 Jump-Address Histograms
	6.3.2 Adaptive Timeout Thresholds

	6.4 Autocorrelation Timeout Detection
	6.4.1 Autocorrelation
	6.4.2 Implementation
	6.4.2.1 Timing of ACTOR
	6.4.2.2 Jump-History–List Length
	6.4.2.3 Set of Lags
	6.4.2.4 Jump-Counter Threshold

	6.4.3 Evaluation
	6.4.3.1 Evaluation's Ground Truth
	6.4.3.2 Results
	6.4.3.3 Summary of ACTOR

	6.5 Summary of Early Timeout-Detection Mechanisms

	7 Discussion and Related Work
	7.1 Fault Model
	7.1.1 ISA-Layer
	7.1.2 Single-Fault Assumption

	7.2 Contributed Fault-Injection–Campaign Acceleration Methods
	7.2.1 Data-Flow–Sensitive Fault-Space Pruning
	7.2.2 Program-Structure–Guided Approximation of Fault Spaces
	7.2.3 Early Timeout-Detection Mechanisms for Fault-Injection–Experiment Acceleration
	7.2.3.1 ACTOR: Autocorrelation-based Timeout Restriction
	7.2.3.2 Initial Timeout-Detector Research

	7.3 Experimental Setup
	7.3.1 Simulated Hardware
	7.3.2 Benchmarks for Fault-Injection–Campaigns Improvements

	7.4 Related Work

	8 Conclusion
	8.1 Summary
	8.2 Conclusion

	Lists
	Acronyms
	Mathematical Symbols
	Bibliography
	List of Figures
	List of Tables
	List of Listings

