
Journal of Systems Architecture 149 (2024) 103102

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Analyzing the memory ordering models of the Apple M1
Lars Wrenger ∗, Dominik Töllner, Daniel Lohmann
Leibniz Universität Hannover, Appelstr. 4, Hannover, 30167, Germany

A R T I C L E I N F O

Keywords:
TSO
Memory ordering
Apple M1
ARM

A B S T R A C T

The Apple M1 ARM processor family incorporates two memory consistency models: the conventional ARM
weak memory ordering and the Total store ordering (TSO) model from the x86 architecture utilized by Apple’s
x86 emulator, Rosetta 2. The presence of both memory ordering models on the same hardware enables us to
thoroughly benchmark and compare their performance characteristics and worst-case workloads.

In this paper, we assess the performance implications of TSO on the Apple M1 processor architecture.
Based on the multi-threading workloads of the SPEC2017 CPU FP benchmark suite, our findings indicate that
TSO is, on average, 8.94 percent slower than ARM’s weaker memory ordering. Through synthetic benchmarks,
we further explore the workloads that experience the most significant performance degradation due to TSO.
We also take a deeper look into the specific atomic instructions provided by the ARMv8.3 specification and
their synchronization overheads.
1. Introduction

On traditional uniprocessor systems, the effects of memory accesses
are observable in the same order as they were specified in the instruc-
tion stream (program order). This is still the case for multitasking on
a single core. Challenges arise when the memory is shared between
multiple participants who access it concurrently, such as other cores,
processors, or accelerators. Providing a consistent global order in which
memory accesses are visible to all observers can be particularly difficult
for multiscalar processors with instruction reordering and local caches
that buffer accesses.

Memory consistency models (MCMs) formalize how writes to shared
memory can be observed by different participants within a shareability
domain. These hardware-defined guarantees provide rules that lead to
predictable results of shared memory operations [1–3]. The strictness
of the provided guarantees varies from model to model. Even though
both x86 and ARM define MCMs that allow limited instruction re-
ordering [4–6], x86 guarantees a globally consistent order for stores
(TSO). ARM, in contrast, allows stores to different memory locations
to be observed differently from the program order. While complicat-
ing the programming model, ARM’s weaker memory ordering allows
processors to reorder instructions more freely, potentially reducing syn-
chronization overheads between caches. Seeing this tradeoff between
higher performance and simpler programming models, we ask how
extensive the performance benefits actually are.

Apple’s M1 processors implement the ARMv8.3-A Instruction set ar-
chitecture (ISA), which specifies a weak memory ordering model. With

∗ Corresponding author.
E-mail addresses: wrenger@sra.uni-hannover.de (L. Wrenger), toellner@sra.uni-hannover.de (D. Töllner), lohmann@sra.uni-hannover.de (D. Lohmann).

these SoC processors, Apple transitions from Intel-based technology to
ARM. Not only does this transition introduce an entirely new ISA, but
the ARM architecture also comes with a significantly different memory
ordering model [7]. To provide backward compatibility with their
former x86-based devices, Apple developed a translation layer called
Rosetta 2. This translation engine can emulate applications built for
x86_64 on Apple Silicon SoCs [8]. Unfortunately, a direct translation on
a per-instruction basis alone is insufficient since x86 follows a stricter
memory ordering. Every memory access could potentially rely on Total
store ordering (TSO). To produce the same behavior as under x86, each
access would have to be explicitly synchronized. Instead of paying the
accompanying performance costs, Apple implemented TSO directly into
their processors. Thus, the M1 SoC has both the ARM and the x86
memory ordering models implemented in hardware, making it the ideal
target for comparing these MCMs.

1.1. About this paper

While benchmarks for comparisons between the M1 and other
processor families exist [9,10], no research has yet evaluated the
performance impact of TSO on M1 SoCs. Additionally, to the best of
our knowledge, existing research sparsely conducts evaluations on the
M1 Ultra, which combines two M1 Max dies connected by UltraFusion,
Apple’s custom packaging architecture [11].

In this paper, we evaluate the performance impact of enabling TSO
on Apple’s M1 Ultra by running synthetic TSO-oriented benchmarks as
vailable online 4 March 2024
383-7621/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.sysarc.2024.103102
Received 13 October 2023; Received in revised form 26 January 2024; Accepted 2
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

9 February 2024

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
mailto:wrenger@sra.uni-hannover.de
mailto:toellner@sra.uni-hannover.de
mailto:lohmann@sra.uni-hannover.de
https://doi.org/10.1016/j.sysarc.2024.103102
https://doi.org/10.1016/j.sysarc.2024.103102
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2024.103102&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Systems Architecture 149 (2024) 103102L. Wrenger et al.
Fig. 1. Observable effect of stores to different memory locations. Given that 𝑋 = 0, 𝑌 =
0, each row in Figs. 1(c) and 1(b) represents an observable intermediary state for CPU1,
when CPU0 executes the two stores from Fig. 1(a).

well as the CPU benchmarks of SPEC [12]. With our evaluation, we
claim the following contributions:

(1) Apple’s M1 Ultra benchmark data for the SPEC CPU benchmark
suite.

(2) Quantification and analysis of TSO described by the benchmark
suite.

(3) Tailor-made synthetic benchmarks for shared memory access
times with these MCMs and ARM’s atomic instructions.

This paper complements our previous work [13], by taking a deeper
look into why certain SPEC CPU benchmarks benefit more from a
weaker memory model than others and by expanding the evaluation
of the synthetic benchmarks with new core-to-core measurements and
additional atomic instructions.

2. Memory consistency models

A Memory consistency model (MCM) defines the visible effects of
concurrent shared memory access in a distributed system. It is a con-
tract between the developer, the compiler, and the parallel system,
providing rules that, if followed, lead to predictable results of shared
memory operations. Parallel systems, like x86 or ARM, usually have a
relatively lax consistency model for their normal loads and stores and
specific instructions to enforce stricter guarantees. With them, they can
simulate a stricter MCM if needed.

2.1. Programming model

For hardware independence, most programming languages provide
an atomics abstraction, such as std::atomic in C++ or
std::sync::atomic in Rust [14,15]. These abstractions define
their own MCMs and a set of operations (e.g., atomic_fetch_add)
that ensure consistency independently from the hardware MCM. The
compiler inserts the required instructions and fences to enforce the
guarantees where necessary. Usually, atomics provide the three memory
ordering models listed below in increasing strictness:

relaxed Only loads/stores to the same location are ordered consis-
tently. No guarantees are provided for different memory loca-
tions.

acquire-release The acquire-release relation synchronizes accesses to
different memory locations for pairs of releasing stores and
acquiring loads. All other stores (to different locations) before
a releasing store are guaranteed to be visible after an acquiring
load of the same location on another processor.

sequential-consistent All sequential-consistent operations are guar-
2

anteed to be visible to all processors in the same order.
2.2. Total Store Ordering (TSO) on x86

The x86 architecture guarantees that stores are visible in a con-
sistent order, meaning that each processor observes stores from other
processors in the same order [4]. Additionally, every processor also
performs stores in program order. Therefore the case that Y is updated
before X is impossible, as shown in Fig. 1(b). This ordering is transitive.
Other processors observe stores that are causally related in an order
consistent with the causality relation. This Total store ordering (TSO)
already fulfills the acquire-release relation for regular loads and stores;
thus, no stricter instructions are needed and emitted by the compiler if
using the corresponding atomic abstractions.

On the downside, the compiled code loses the information of which
instructions are expected to be acquire-release and which could also be
relaxed. This missing information makes it challenging to emulate x86
on systems with weaker memory ordering efficiently, as the optimal
placement of fences is an undecidable problem [16]. To provide cor-
rectness, x86 emulators (e.g., QEMU) basically insert a fence after every
memory instruction.

2.3. Weak Ordering (WO) on ARM

The ARM architecture, on the other hand, has a weak memory
ordering model. In the ARMv8 ISA, the concurrency has been revised:
In contrast to ARMv7, the architecture now has a multicopy-atomic
model (MCA), guaranteeing that modifications to a cache line are
linearizable [6]. While this MCM is stricter than the non-MCA ARMv7
model, implementors did not exploit the latter [17]. This multicopy-
atomicity guarantees a consistent order of updates to the same location.
However, in contrast to x86, stores to different locations are not re-
quired to be visible consistently, meaning that every state in Fig. 1(c)
can still be observed by other processors. Stronger ordering guarantees
can only be enforced with explicit fences or memory barriers (DMB,
DSB) or load, store, compare-and-swap, fetch-add and similar instruc-
tions with acquire-release semantic (LDAR, STLR, LDADDAL, CASAL
from ARM A64 [5]). Despite being named load-acquire (LDAR) and
store-release (STLR), these instructions actually fulfill the sequential-
consistent ordering if combined. Consequently, they are relatively slow,
as discussed in Section 4.2. Thus, ARMv8.3 introduced LDAPR, which
allows reordering before STLR to different locations and does not make
the corresponding STLR globally observed [5]. Despite making acquire-
release atomics more efficient, this was introduced only recently into
compilers: clang added support for LDAPR for C/C++ atomics in ver-
sion 16 (March 2023), GCC in version 13 (April 2023), and Rustc in
1.70 (July 2023). Previously these compilers emitted the stricter LDAR
for load-acquire so that both acquire-release and sequential-consistent
loads result in the same assembly.

In general, ARMs laxer memory model gives cores more freedom
to reorder instructions, potentially increasing the overall multicore
performance for regular (relaxed) instructions. The downside of this
is the more complex programming model. Developers have to explic-
itly synchronize memory accesses if their data structures rely on a
specific order of reads and writes. However, this problem might be
neglectable, as more and more programming languages have sufficient
cross-platform abstractions for atomics.

3. The Apple M1 architecture

Apple has disclosed only limited information regarding their custom
M1 chips [11,18]. Details on core count, cache and memory sizes,
theoretical memory bandwidth, and some performance characteris-
tics have been made public. However, there is no official informa-
tion about the processor’s cache coherence, load and store buffers,
micro-operations, instruction schedulers, and execution units. Insights
into the microarchitecture stem primarily from reverse engineering
projects [19,20].



Journal of Systems Architecture 149 (2024) 103102L. Wrenger et al.

t
2
c
p
t
a
c
h
a
H
n
a
r
A

t
i
o
m
x
a

4

1
o
o
a
m
w

4

S
m
i
b
m
l
s
A
w
v

Fig. 2. Cache-Architecture of the M1 Apple Silicon Processor. The E-Clusters contain efficiency ‘‘Icestorm’’ cores, while the P-Clusters consist of performance ‘‘Firestorm’’ cores.
a
D
M
c
T
b
T

T
m
a
o
o

The M1 Ultra SoC consists of two M1 Max chiplets connected
hrough an UltraFusion interconnect, having a reported bandwidth of
.5 TB/s [11]. A schematic representation of the chiplets and core
lusters can be found in Fig. 2. The processor architecture has 16
erformance cores grouped in four clusters and four efficiency cores in
wo clusters. Each processor encompasses separate L1 instruction (L1i)
nd L1 data (L1d) caches, while an L2 cache is associated with each
luster. Information about a shared last-level (or system-level) cache
as not been disclosed. Experimental data indicates that the SLC sizes
re 48 MB for the M1 Max and potentially 96 MB for the M1 Ultra [21].
owever, this size was not corroborated by our benchmarks. It is also
ot known if the two SLCs are separated or combined and whether they
re shared with the GPU. Regarding cache-line size, sysctl on macOS
eports a value of 128 B, while getconf and the CTR_EL0 register on
sahi Linux returns 64 B, which is also supported by our measurements.

The M1 Ultra is no conventional ARM processor. It incorporates cus-
om instructions, accelerators, and media units, along with a hardware
mplementation for TSO, which can be enabled by setting the first bit
f the general config register (ACTLR_EL1) [20]. After that, normal
emory accesses show the same memory ordering behavior as under

86. Unfortunately, further details of this hardware implementation
nd its limitations are not publicly available.

. Evaluation

Our test system is an Apple Mac Studio with an M1 Ultra SoC,
28 GiB main memory, and 1 TiB SSD. Our software stack is based
n Asahi Linux 6.3.0, a Linux port to Apple Silicon. The TSO mem-
ry ordering was toggled on a per-process basis using the recently
dded prctl option PR_SET_MEM_MODEL_TSO. The SPEC bench-
arks were compiled with GCC 12.1, and the synthetic benchmarks
ith Rust 1.73.

.1. CPU benchmarks

To evaluate TSO impact on the M1 Ultra, we choose to run the
PEC CPU 2017 benchmark package [22]. It consists of CPU- and
emory-intensive applications, split into 4 benchmark suites with 43

ndividual benchmarks. SPEC distinguishes between rate and speed
enchmarks, which use different metrics to calculate a system’s bench-
ark score. While the former measures throughput of a system, the

atter measures execution time. A higher benchmark score for the
peed benchmarks means less time has been spent on the test system.
dditionally, both integrate integer and floating point benchmarks,
here the floating point benchmarks make use of heavy parallelism
ia OpenMP.
3

b

Fig. 3. SPECspeed 2017 parallel floating point benchmarks. Faster execution results in
a higher score.

In this evaluation, we focus on the parallel floating point bench-
marks since the memory ordering models become significant only
with concurrent access to shared memory. The integer benchmarks
are single-threaded and, hence, do not use shared memory. There-
fore, we cannot expect them to show any performance difference.
For the sake of completeness, we confirmed this experimentally but
omitted the results in Fig. 3 as they naturally do not provide any
value for discussing MCMs. We compiled the benchmarks with the
-Ofast, -fprofile-use, and -march=native flags to enable
ggressive code optimizations and -flto for link-time optimization.
uring execution, we used 20 threads to utilize all CPU cores of the
1 Ultra. The entire benchmark suite was executed three times and we

alculated the median of those runs as the documentation recommends.
he final score is calculated by computing the geometric mean of the
enchmark medians. This process is executed twice, with and without
SO. However, the benchmark binaries are exactly the same for Weak
ordering (WO) and TSO.

The results are illustrated in Fig. 3, where the impact of differ-
ent MCMs varies across individual benchmarks. For instance, in the
649.fotonik3d_s benchmark, WO achieves a score of 83.64, while

SO records a score of 83.28. Enabling TSO does not affect this bench-
ark. In contrast, for the 644.nab_s benchmark, WO scores 170.85,

nd TSO attains a significantly lower score of 137.43. In the majority
f benchmarks, the weak ordering native to the ARMv8 Apple Silicon
utperforms TSO. The geometric mean score for the TSO-disabled
enchmarks is 86.59, whereas the TSO-enabled benchmarks yield a



Journal of Systems Architecture 149 (2024) 103102L. Wrenger et al.

t
s
o
s

t
p
s
n
T
s
t
b
e
b
d
a
b

c
o
c
a
s
a
n
c
c
i
e
u
m
C
c

4

p
s
a
f
u

L
T
c
o

S
l
r
W
w
W
r
o
s
c
t
a
c
1
t

o
(
t
f
i
L
T
L
p

Fig. 4. Basic image transformation in magick. Magic creates distinct image partition
copies for each modification thread indicated by different colors. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

geometric mean score of 78.85, translating to a 8.94 percent decrease
in performance.

To understand why certain benchmarks profit from weaker mem-
ory models while others do not, requires an in-depth investigation
of each benchmark. An application can benefit from weak MCMs if
it distributes its workload across multiple threads which then ac-
cess the same memory. Less-optimal access patterns might result in
heavy cache-line bouncing between cores. In a weak MCM, cores can
reschedule their instructions more effectively to hide cache misses
while stronger MCMs might have to stall more frequently. In contrast,
applications that rarely operate on shared memory, also profit hardly
from weaker memory models. Since all our SPEC benchmarks schedule
heir workloads across threads, we chose to analyze how they access
hared memory. Particularly, we manually analyzed the source code
f 644.nab_s and 638.imagick_s because the former benefits
ignificantly from WO while the latter does not.

The 638.imagick_s benchmark applies various transformations
o input images. The general idea is visualized in Fig. 4 where thread-
rivate data is highlighted in different colors. For the process of a
imple 90-degree rotation, magick divides the image into distinct
on-overlapping regions that are transferred to the worker threads.
hey can then apply their transformations locally without the need for
ynchronization. After the transformation, the thread copies its chunk
o the original image in parallel. This also requires no synchronization,
ecause these regions do not overlap and the threads do not overwrite
ach other’s data. This approach allows for fast image manipulation,
ut since threads mostly do not operate on shared memory magick
oes not profit from a weaker memory ordering model. There may be
small amount of cache-line bouncing on the boundaries of the regions,
ut these effects are neglectable as shown by our results.

The 644.nab_s benchmark consists of parallel floating point cal-
ulations for molecular modeling. In contrast to magick, the authors
f this benchmark specifically optimized their data structures for the
ache hierarchy. Each worker thread operates on 64-byte chunks,
iming to eliminate false sharing. However, only resizing the data
tructures to cache lines is not enough. These chunks must also be
ligned to the start of a cache-line to really prevent false sharing. If
ot properly aligned, two cores still share the same cache-line as these
hunks span over two instead of one cache-line. As shown in Fig. 5, the
onsequence is an enormous cache-line pressure where one cache-line
s permanently bouncing between two cores. This high pressure can
nforce stalls on architectures with stronger MCMs like TSO, that wait
ntil a core can exclusively claim a cache-line for writing, while weaker
emory models are able to reschedule instructions more effectively.
onsequently, 644.nab_s performs 24.32 percent better under WO
ompared to TSO.

.2. Synthetic benchmarks

We devised two synthetic benchmarks to delve deeper into the
erformance discrepancies observed in the SPECS benchmarks: (1) a
tore benchmark and (2) a ldadd benchmark. Both benchmarks employ

shared memory buffer between two threads: a writer, responsible
or updating the buffer, and a reader, tasked with observing these
pdates. The benchmarks vary only in the instruction utilized for the
4

Fig. 5. Cacheline bouncing for misaligned data.

buffer updates: The writer thread iterates through the buffer in 64-
byte (cache-line) steps, executing either stores or ldadds to increment
the numbers within the first 8 bytes of each element as shown in
Fig. 6. Initially, all elements are zero, and in the first iteration, they
are all incremented to one, then in the second iteration to two, and so
forth. The store benchmark uses a store operation to write the number
of the current iteration (from a register) to all elements, while the
ldadd benchmark uses this instruction to increment the previous values,
resulting in the same general behavior.

Concurrently, the reader iterates through the buffer, loading and
comparing pairs of adjacent elements. It observes out-of-order updates
where the second element is larger than the first, indicating that the
stores/ldadds were perceived in a different order from the writer’s
execution. This phenomenon only occurred under weak ordering; when
TSO was enabled, no out-of-order updates were detected. Apart from
the shared buffer and a boolean value for synchronizing the beginning
and end of the measurement, the threads do not access any shared
data. They also do not synchronize between iterations; thus, the reader
usually finishes more iterations than the writer.

In these benchmarks, we counted the number of iterations each
thread could complete within one second. This value was then mul-
tiplied by the buffer length to calculate the operations per second. The
benchmarks were compiled with relaxed instructions (LDR and STR or
DADD) and the exact same binaries were executed with and without
SO enabled. The reader and writer threads were pinned to different
ores of either the same cluster, sharing an L2 cache, a separate cluster
n the same chiplet, or different chiplets.

tore benchmark. Fig. 7(a) depicts the number of parallel stores and
oads for every core combination on a shared 1 MiB buffer. The first
ow shows the number of stores, executed by the writer cores under
O and TSO. The second row documents the number of loads that
ere executed at the same time on the corresponding reader core.
hen focusing on the performance cores (2–9 and 12–19) of the second

ow for TSO, we clearly see three different performance classes: Cores
f (1) the same group as blue squares, (2) different groups on the
ame chiplet as yellow squares, and (3) different groups on different
hiplet as red squares. These three performance classes directly match
he architecture of the M1 Ultra (Section 3). The best performance is
chieved when the reader and writer threads are pinned to the same
ore groups. Here the cores share the same L2 cache, which (with its
2 MiB) is large enough to contain the whole buffer. Contrary, we see
he worst performance for cores on different chiplets.

Fig. 7(b) shows the number of parallel stores for these three classes
n different buffer sizes. The horizontal lines indicate the cache sizes
128 KiB, 12 MiB and 96 MiB as described in Section 3). Looking at
he store performance (upper row), we see that it is relatively low
or buffers that fit in the L1 cache, likely due to constant cache
nvalidations. Meanwhile, for buffers with sizes between the L1 and
2 cache, the highest number of stores occurs on the same cluster.
his performance drops significantly on different clusters where the
2 cache is not shared. For buffers larger than the L2 cache, the
erformance is similar regardless of the cores used. The limits of the



Journal of Systems Architecture 149 (2024) 103102L. Wrenger et al.
Fig. 6. Source code snippets of the reader and writer threads, with the buffer containing cache-line aligned atomic integers.
Fig. 7. Concurrent store (top) and load (bottom) operations.
Fig. 8. Perf counters for the store benchmark, executed on the same cluster with a 216

bytes (64 KiB) buffer.

L1 and L2 cache sizes are clearly visible, while the SLC is not so
apparent. We only observe that the performance stops increasing for
buffers larger than 96 MiB (the SLC size).

The read performance (bottom row), with TSO enabled, is higher
for buffers smaller than the L1 cache. This seems to be a pattern
when comparing weak stores and loads on small buffers: The lower
the store performance is, the faster loads tend to become. This inverse
effect might be attributed to fewer cache invalidations, as TSO writes
are considerably slower. The performance counters, shown in Fig. 8,
support this observation: The number of load and store misses is higher
on weak ordering, where the number of writes is also significantly
5

higher. For buffers between the L1 and L2 cache sizes, the highest
number of loads occurs on the same cluster. The performance drop is
not as significant for different clusters on the same chiplet but is more
pronounced between chiplets. Also, TSO loads are slightly faster for L2-
sized buffers on different clusters. For buffers larger than the L2 cache,
the performance is again very similar across different configurations.

Ldadd benchmark. The second synthetic benchmark uses LDADD in-
structions in the writer thread to increment the buffer elements. When
comparing the ldadd benchmark (Fig. 9) with the store benchmark
(Fig. 7), we see that ldadds (first row) are, at best, only half as fast
as stores. Also, enabling TSO decreases the ldadd performance even
further. Weakly-ordered ldadds are up to twice as fast as their TSO
counterpart, especially on the same cluster for buffers between the L1
and L2 cache sizes. Again, the instructions are far slower for L1- and
L2-sized buffers on different clusters. However, this difference is even
more pronounced compared to the store benchmark.

The load performance also changed significantly from the store
benchmark. With TSO enabled, this time, the read performance is
slower for small buffers but faster for buffers between the L1 and L2
cache sizes on the same cluster. On different clusters, TSO reads are
now consistently slower than weakly ordered ones. We again see that
lower ldadd performance generally results in higher load performance,
possibly again due to the lower cache miss rate.



Journal of Systems Architecture 149 (2024) 103102L. Wrenger et al.
Fig. 9. Concurrent ldadd (top) and load (bottom) operations.
Fig. 10. Concurrent store and load operations, comparing different atomic instructions.

Stricter atomic instructions. The ARMv8.3 architecture also provides
instructions with stricter memory ordering guarantees, namely STLR,
LDADDAL, LDAR, and LDAPR (Section 2.3). These instructions are
emitted by compilers for the acquire-release and sequential-consistent
atomic operations. For completeness, we also evaluated the perfor-
mance of these instructions in our synthetic benchmarks. As illustrated
in Fig. 10, we see the performance of these atomic orderings compared
with the standard relaxed instructions (STR, LDR). The stricter instruc-
tions are consistently slower than the relaxed instructions and their
performance is independent of WO and TSO. The latter is to be expected
as they enable even less instruction reordering than TSO. This perfor-
mance gap also might give insight into Apple’s decision to fully support
TSO in their SOCs. Notable is also the acquire-release operations do
not show improved performance on the Apple M1, even with newer
compilers emitting the supposedly more optimized LDAPR instructions.
These trends are similar in the ldadd benchmark. In summary, our
analysis of the store and ldadd benchmarks reveals several performance
nuances based on buffer sizes and the relationship between the reader
and writer threads. We see that stores and ldadds are generally and
sometimes drastically slower under TSO. With a few exceptions, the
load performance also seems to be faster on weak ordering.

5. Discussion

The measurable effects of different types of Memory consistency
models highly depend on the access patterns to shared memory as
well as the system’s cache hierarchy. Looking back at Section 4.1, we
see that the impact of different MCMs on the individual benchmark
fluctuates. Without more detailed information about the inner workings
6

of the M1 architecture, its microarchitecture, and cache hierarchy, we
can only speculate on the reasons for these performance variations: The
primary performance advantage applications might gain from running
under weaker memory ordering models like WO is due to greater
instruction reordering capabilities. Therefore, the performance benefit
vanishes if the hardware architecture cannot sufficiently reorder the
instructions (e.g., due to data dependencies).

Furthermore, the synthetic benchmarks suggest that the perfor-
mance difference highly depends on the size of the application’s work-
ing set and the cores accessing the shared memory. The write (store,
ldadd) performance is consistently higher on weak ordering. However,
the load performance might be faster under TSO when the correspond-
ing write performance is very low, and consequently, fewer cache
invalidations happen. Instructions with acquire-release semantics are
significantly slower on the M1 than both WO and TSO, which explains
Apple’s decision to implement TSO for the x86 emulation instead of
relying on these instructions. Unfortunately, the cache implementation
is not public, which limits the interpretability of these results.

Strict models like sequential consistency prohibit hardware from
reordering instructions but make it easier for developers and compil-
ers to reason about parallel code. Or, from another perspective, the
freedom of hardware reordering instructions requires developers and
compilers to thoroughly reason about the order in which the emitted
code is executed to ensure the program’s semantics remain correct. In
this setting, the novel feature of the Apple M1, where the MCM is
configurable at run time, provides interesting flexibility for software
developers and compilers.

6. Related work

The field of memory consistency models has been under active
research for a couple of decades. With the emergence of multiprocessor
systems, the sequentiality properties of those systems needed to be
properly formalized. In a seminal paper from 1979, Lamport describes
sequential consistency as the property of a multiprocessor system to
run all instructions of all processors in some sequential order and that
each processor strictly follows its program instruction order [23]. In-
struction reordering, however, can provide a considerable performance
benefit if the CPU can reschedule instructions to reach a higher cache
hit rate. Therefore, over the following years, many different other
consistency models have been established, such as WO [2], processor
consistency [24], partial store ordering, TSO, and many others. While
most hardware commonly follows a specific consistency model, there
are a few systems in the wild next to the M1 that allow toggling
between different MCMs dynamically, during runtime and in hard-
ware. Notably, all architectures that include a SPARC v8 Reference
MMU implementation allow to switch between PSO and TSO during
runtime by toggling the PSO bit in the MMU control register of a



Journal of Systems Architecture 149 (2024) 103102L. Wrenger et al.

s
W
c
s
L
t

D

c
i

A

w
R

R

specific processor [25]. The key difference between SPARC systems
and the M1 is that the latter can switch to WO as an alternative
MCM, which is more relaxed compared to PSO and therefore allows
further instruction reordering. With the new release of SPARC v9, the
successor to SPARC v8, a new in-hardware toggleable MCM has been
added: relaxed ordering [26]. Relaxed ordering under SPARC v9 is even
closer to WO on ARM compared to parallel store ordering, as it allows
further instruction rescheduling. SPARC v9 systems and ARM, however,
provide different synchronization primitives if instruction rescheduling
needs to be prohibited. While the former provides more coarse-grained,
global synchronization primitives, ARM comes with smaller, distinct
shareability domains to limit the necessity of synchronization.

To investigate the performance impact of these consistency models,
several benchmarks have been conducted. Gharachorloo et al. [27]
measured the effect of different MCMs on a simulated Stanford DASH
multiprocessor architecture. Their results have shown that stricter or-
dering models performed significantly worse than less strict models
for architectures with blocking reads. A more recent study by Naeem
et al. [28] draws the same conclusion on network-on-chip-based dis-
tributed shared memory systems, improving their system performance
when transitioning from stricter to weaker memory consistency models.

Moving from stricter to weaker models shifts the responsibility of
sequentiality from the hardware to the software and software toolchain.
This inherently enforces research on how to express program sequen-
tiality as a developer and how to emit appropriate instructions as a
compiler. In the paper of Boehm et al. [29], the authors describe a
divergence between C/C++ being single-threaded programming lan-
guages while giving additional multithread support via an additional
library. Since the language itself does not provide intrinsic support for
multithreaded code, it is up to the libraries to offer synchronization
primitives for concurrent access to shared resources, such as a shared
address space, that enforce a specific order for particular instructions.
Enforcing a specific order is achieved by properly placing memory
barriers, guaranteeing that certain load/store operations execute be-
fore/after surrounding instructions. Shaked et al. [30] investigate the
impact of memory barriers on mixed-size memory accesses of different
data widths. Today’s processors commonly allow accessing memory
at granularities of 1, 2, 4, or 8 bytes. Placing barriers for mixed use
of those granularities should enforce the same ordering as for data
accesses of equal width. This general assumption, however, proves to be
wrong for ARMv8 and POWER architectures, as the authors’ evaluation
clarifies. While placing a strong memory barrier between every memory
access of equal width for architectures implementing WO results in
a sequential-consistent behavior, this is not the case for mixed-size
memory accesses.

Other research regarding Apple’s M1 processors is sparse. [9] bench-
marked the M1 and M1 Ultra for high-performance scientific comput-
ing and compared its GPU performance against two Nvidia-equipped
servers, while [10] studied their energy efficiency. ARM systems, in
general, have been evaluated against x86 systems on different, primar-
ily HPC-based workloads [31–33]. Kodama et al. [34] evaluated the
performance of the ARM A64FX against a dual-socket Xeon using the
SPEC CPU and OMP benchmarks. Nevertheless, none of these works
focused specifically on memory-ordering differences.

7. Conclusion

The Apple M1 is the first processor that implements both, ARM’s
weak memory ordering and Intel’s TSO, as a software-configurable
feature. This also makes it possible for the first time to compare the
performance impact of the different memory models on real hard- and
software.

Our results show a significant difference in the multicore perfor-
mance when comparing both models. Despite being more challenging
to program for, the weak model is generally faster: 8.94 percent on
average running SPEC CPU and more than twice as fast in some of
7

our synthetic benchmarks. However, the lack of knowledge about the
internals of the M1 architecture makes it hard to fully explain all effects
of TSO on this SoC. Our results suggest that these are deeply entangled
with the caching hierarchy and memory access path. Nonetheless, we
think that this work is an essential step toward understanding the actual
runtime effects of the memory ordering models.

CRediT authorship contribution statement

Lars Wrenger: Conceptualization, Data curation, Formal analy-
is, Investigation, Methodology, Visualization, Writing – original draft,
riting – review & editing. Dominik Töllner: Conceptualization, Data

uration, Formal analysis, Investigation, Methodology, Validation, Vi-
ualization, Writing – original draft, Writing – review & editing. Daniel
ohmann: Conceptualization, Funding acquisition, Project administra-
ion, Supervision, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

We thank our reviewers for their valuable feedback. This work
as funded by the Deutsche Forschungsgemeinschaft (DFG, German
esearch Foundation) – LO 1719/8-1.

eferences

[1] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, J. Hennessy, Mem-
ory consistency and event ordering in scalable shared-memory multiprocessors,
SIGARCH Comput. Archit. News 18 (2SI) (1990) 15–26, http://dx.doi.org/10.
1145/325096.325102.

[2] M. Dubois, C. Scheurich, F. Briggs, Memory access buffering in multiprocessors,
in: Proceedings of the 13th Annual International Symposium on Computer
Architecture, ISCA ’86, IEEE Computer Society Press, Washington, DC, USA,
1986, pp. 434–442.

[3] L. Higham, J. Kawash, N. Verwaal, Defining and Comparing Memory Consistency
Models, University of Calgary, 1997.

[4] Intel 64 and IA-32 Architectures Software Developer’s Manual - Com-
bined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4, 2022,
Intel. https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html. (Accessed 30 May 2023).

[5] ARM Cortex-A Series – Programmer’s Guide for ARMv8-A, ARM Limited, 2015.
[6] Learn the Architecture – Memory Systems, Ordering, and Barriers, ARM Lim-

ited, 2022, https://developer.arm.com/documentation/102336/0100. (Accessed
30 May 2023).

[7] Apple announces Mac transition to Apple silicon, 2020, https://nr.apple.com/
d2O2Y718J3. (Accessed 22 March 2023).

[8] Rosetta translation environment, 2023, https://developer.apple.com/
documentation/apple-silicon/about-the-rosetta-translation-environment.
(Accessed 22 March 2023).

[9] C. Kenyon, C. Capano, Apple silicon performance in scientific computing, in:
2022 IEEE High Performance Extreme Computing Conference, HPEC, 2022, pp.
1–10, http://dx.doi.org/10.1109/HPEC55821.2022.9926315.

[10] Z. Ali, T. Tanveer, S. Aziz, M. Usman, A. Azam, Reassessing the performance
of ARM vs x86 with recent technological shift of apple, in: 2022 International
Conference on IT and Industrial Technologies, ICIT, 2022, pp. 01–06, http:
//dx.doi.org/10.1109/ICIT56493.2022.9988933.

[11] Apple M1 ultra, 2022, https://www.apple.com/newsroom/2022/03/apple-
unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/. (Ac-
cessed 22 March 2023).

[12] The standard performance evaluation corporation, 2023, https://www.spec.org/
(Accessed 22 March 2023).

[13] L. Wrenger, D. Töllner, D. Lohmann, TOSTING: Investigating total store ordering
on ARM, in: Proceedings of the 36th GI/ITG International Conference on
Architecture of Computing Systems, ARCS 23, Springer International Publishing,
Athens, Greece, 2023, http://dx.doi.org/10.1007/978-3-031-42785-5_10.

[14] C++ Atomic operations library, 2023, https://en.cppreference.com/w/cpp/
atomic (Accessed 26 March 2023).

[15] Rust Standard Library – Module std::sync::atomic, 2023, https://doc.rust-lang.
org/std/sync/atomic/index.html. (Accessed 26 March 2023).

http://dx.doi.org/10.1145/325096.325102
http://dx.doi.org/10.1145/325096.325102
http://dx.doi.org/10.1145/325096.325102
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb3
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb5
https://developer.arm.com/documentation/102336/0100
https://nr.apple.com/d2O2Y718J3
https://nr.apple.com/d2O2Y718J3
https://nr.apple.com/d2O2Y718J3
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
http://dx.doi.org/10.1109/HPEC55821.2022.9926315
http://dx.doi.org/10.1109/ICIT56493.2022.9988933
http://dx.doi.org/10.1109/ICIT56493.2022.9988933
http://dx.doi.org/10.1109/ICIT56493.2022.9988933
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://www.spec.org/
http://dx.doi.org/10.1007/978-3-031-42785-5_10
https://en.cppreference.com/w/cpp/atomic
https://en.cppreference.com/w/cpp/atomic
https://en.cppreference.com/w/cpp/atomic
https://doc.rust-lang.org/std/sync/atomic/index.html
https://doc.rust-lang.org/std/sync/atomic/index.html
https://doc.rust-lang.org/std/sync/atomic/index.html


Journal of Systems Architecture 149 (2024) 103102L. Wrenger et al.
[16] M.F. Atig, A. Bouajjani, S. Burckhardt, M. Musuvathi, What’s decidable about
weak memory models? in: H. Seidl (Ed.), ESOP, in: Lecture Notes in Computer
Science, Springer-Verlag, 2021, pp. 26–46.

[17] C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, P. Sewell, Simplifying ARM
concurrency: Multicopy-atomic axiomatic and operational models for ARMv8,
Proc. ACM Program. Lang. 2 (POPL) (2017) http://dx.doi.org/10.1145/3158107.

[18] M. Mattioli, Meet the FaM1ly, IEEE Micro 42 (3) (2022) 78–84, http://dx.doi.
org/10.1109/MM.2022.3169245.

[19] D. Johnson, Apple M1 microarchitecture research, 2023, https://dougallj.github.
io/applecpu/firestorm.html. (Accessed 22 March 2023).

[20] Asahi linux wiki, 2023, https://github.com/AsahiLinux/docs/wiki. (Accessed 22
March 2023).

[21] Apple’s M1 pro, M1 max SoCs investigated: New performance and effi-
ciency heights, 2021, https://www.anandtech.com/show/17024/apple-m1-max-
performance-review. (Accessed 22 March 2023).

[22] SPEC CPU benchmark package, 2023, https://www.spec.org/cpu2017/ (Accessed
27 March 2023).

[23] Lamport, How to make a multiprocessor computer that correctly executes
multiprocess programs, IEEE Trans. Comput. C-28 (9) (1979) 690–691, http:
//dx.doi.org/10.1109/TC.1979.1675439.

[24] J.R. Goodman, Cache Consistency and Sequential Consistency, University of
Wisconsin-Madison Department of Computer Sciences, 1991, http://digital.
library.wisc.edu/1793/59442.

[25] C. SPARC International, Inc., The SPARC Architecture Manual: Version 8,
Prentice-Hall, Inc., USA, 1992.

[26] C. SPARC International, Inc., The SPARC Architecture Manual: Version 9,
Prentice-Hall, Inc., USA, 1994.

[27] K. Gharachorloo, A. Gupta, J. Hennessy, Performance evaluation of memory
consistency models for shared-memory multiprocessors, in: Proceedings of the
Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, in: ASPLOS IV, Association for Computing
Machinery, New York, NY, USA, 1991, pp. 245–257, http://dx.doi.org/10.1145/
106972.106997.
8

[28] A. Naeem, X. Chen, Z. Lu, A. Jantsch, Realization and performance comparison of
sequential and weak memory consistency models in network-on-chip based multi-
core systems, in: 16th Asia and South Pacific Design Automation Conference,
ASP-DAC 2011, 2011, pp. 154–159, http://dx.doi.org/10.1109/ASPDAC.2011.
5722176.

[29] H.-J. Boehm, S.V. Adve, Foundations of the C++ concurrency memory model, in:
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’08, Association for Computing Machinery,
New York, NY, USA, 2008, pp. 68–78, http://dx.doi.org/10.1145/1375581.
1375591.

[30] S. Flur, S. Sarkar, C. Pulte, K. Nienhuis, L. Maranget, K.E. Gray, A. Sezgin, M.
Batty, P. Sewell, Mixed-size concurrency: ARM, POWER, C/C++11, and SC, in:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL ’17, Association for Computing Machinery, New York, NY, USA,
2017, pp. 429–442, http://dx.doi.org/10.1145/3009837.3009839.

[31] N. Gupta, R. Ashiwal, B. Brank, S.K. Peddoju, D. Pleiter, Performance evaluation
of ParalleX execution model on arm-based platforms, in: 2020 IEEE International
Conference on Cluster Computing, CLUSTER, 2020, pp. 567–575, http://dx.doi.
org/10.1109/CLUSTER49012.2020.00080.

[32] P. Ouro, U. Lopez-Novoa, M.F. Guest, On the performance of a highly-scalable
Computational Fluid Dynamics code on AMD, ARM and Intel processor-based
HPC systems, Comput. Phys. Comm. 269 (2021) 108105, http://dx.doi.org/10.
1016/j.cpc.2021.108105.

[33] J. Xia, C. Cheng, X. Zhou, Y. Hu, P. Chun, Kunpeng 920: The first 7-nm chiplet-
based 64-core ARM SoC for cloud services, IEEE Micro 41 (5) (2021) 67–75,
http://dx.doi.org/10.1109/MM.2021.3085578.

[34] Y. Kodama, M. Kondo, M. Sato, Evaluation of SPEC CPU and SPEC OMP on the
A64FX, in: 2021 IEEE International Conference on Cluster Computing, CLUSTER,
2021, pp. 553–561, http://dx.doi.org/10.1109/Cluster48925.2021.00088.

http://refhub.elsevier.com/S1383-7621(24)00039-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb16
http://dx.doi.org/10.1145/3158107
http://dx.doi.org/10.1109/MM.2022.3169245
http://dx.doi.org/10.1109/MM.2022.3169245
http://dx.doi.org/10.1109/MM.2022.3169245
https://dougallj.github.io/applecpu/firestorm.html
https://dougallj.github.io/applecpu/firestorm.html
https://dougallj.github.io/applecpu/firestorm.html
https://github.com/AsahiLinux/docs/wiki
https://www.anandtech.com/show/17024/apple-m1-max-performance-review
https://www.anandtech.com/show/17024/apple-m1-max-performance-review
https://www.anandtech.com/show/17024/apple-m1-max-performance-review
https://www.spec.org/cpu2017/
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://digital.library.wisc.edu/1793/59442
http://digital.library.wisc.edu/1793/59442
http://digital.library.wisc.edu/1793/59442
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00039-0/sb26
http://dx.doi.org/10.1145/106972.106997
http://dx.doi.org/10.1145/106972.106997
http://dx.doi.org/10.1145/106972.106997
http://dx.doi.org/10.1109/ASPDAC.2011.5722176
http://dx.doi.org/10.1109/ASPDAC.2011.5722176
http://dx.doi.org/10.1109/ASPDAC.2011.5722176
http://dx.doi.org/10.1145/1375581.1375591
http://dx.doi.org/10.1145/1375581.1375591
http://dx.doi.org/10.1145/1375581.1375591
http://dx.doi.org/10.1145/3009837.3009839
http://dx.doi.org/10.1109/CLUSTER49012.2020.00080
http://dx.doi.org/10.1109/CLUSTER49012.2020.00080
http://dx.doi.org/10.1109/CLUSTER49012.2020.00080
http://dx.doi.org/10.1016/j.cpc.2021.108105
http://dx.doi.org/10.1016/j.cpc.2021.108105
http://dx.doi.org/10.1016/j.cpc.2021.108105
http://dx.doi.org/10.1109/MM.2021.3085578
http://dx.doi.org/10.1109/Cluster48925.2021.00088

	Analyzing the memory ordering models of the Apple M1
	Introduction
	About this paper

	Memory Consistency Models
	Programming Model
	Total Store Ordering (TSO) on x86
	Weak Ordering (WO) on ARM

	The Apple M1 Architecture
	Evaluation
	CPU Benchmarks
	Synthetic Benchmarks

	Discussion
	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


