
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

HyperAlloc: Efficient VM Memory De/Inflation via
Hypervisor-Shared Page-Frame Allocators

Anonymous Author(s), Submission Id: 517

Abstract
The provisioning of the right amount of DRAM to virtual
machines (VMs) is still a major challenge and cost driver
in virtualization settings. Many VMs run applications with
highly volatile memory demands, which either leads to mas-
sive overprovisioning in low-demand phases or poor QoS
in high-demand phases. Memory hotplugging and ballooning
have become established techniques (in Linux/KVMavailable
via virtio-mem and virtio-balloon) to dynamically de/inflate
the physical memory of a VM in a cooperative manner, by
having the guests give back unused memory to the hyper-
visor. However, current VM deflation techniques are either
not DMA-safe, preventing the pass-through of important
devices like GPUs or NICs, or are not flexible/fast enough to
cope with the frequently changing demands of the guest.
We present HyperAlloc, a DMA-safe and extremely effi-

cient mechanism for virtual machine de/inflation. The core
idea is to provide the hypervisor direct access to the guest’s
page-frame allocator, greatly reducing the communication
overhead. HyperAlloc can shrink virtual machines 362 times
faster than virtio-balloon and 10 times faster than virtio-
mem while having no measurable impact on the guest’s per-
formance. HyperAlloc’s automatic reclamation provides for
better memory elasticity by reducing the average memory
footprint of a clang compilation by 17 percent compared to
virtio-balloon’s free-page reporting while, again, having no
measurable impact on the guest’s performance.

1 Introduction
Physical memory is generally considered to be the scarcest
resource in cloud computing. Its provisioning remains a ma-
jor challenge for providers due to high hardware and energy
costs of DRAM on the one side and quality of service (QoS)
demands on the other side. DRAM already accounts for over
30 percent of Meta’s rack costs and power consumption [35].
Hence, a good utilization of the scarce physical memory
resources across multiple VMs is of utmost importance.
However, compared to other resources, the preemption

and virtualization costs of memory are much higher: While
it is technically easy and cheap for a hypervisor to dynam-
ically detect (and redistribute) underutilized processors or
network interfaces, it is a lot more expensive to do the same
with idling memory. This limits elasticity, as many VMwork-
loads exhibit highly fluctuating memory demands over the
different phases of their execution [24]. Fuerst et al. have
shown [19] that the memory resources of VMs running on

Azure and Alibaba could be deflated by 30–50 percent most
of their time for a performance impact of less than 1 percent.

Memory overcommitment [53] would increase utilization;
however, cloud providers often refrain from doing this ag-
gressively due to the difficulties of still providing their cus-
tomers a defined QoS [6]. Instead, they strive towards more
elasticity by finer-grained cost models for physical memory
usage. An example is Amazon, which charges customers by
GiB·s on their Lambda function-as-a-service (FaaS) infrastruc-
ture. However, compared to the on-demand microservices in
FaaS settings, VM instances running in the cloud have much
longer lifespans and much higher preemption costs, which
imposes challenges for transferring such pricing model to
infrastructure-as-a-service (IaaS) settings.
Cooperative VM Memory De/Inflation Nevertheless,
many clients would prefer to pay only for the memory they
actually need at a given time [5, 11]. Some authors have even
suggested real-time auctioning of physical memory among
VMs [6]. However, being accustomed to virtual memory,
clients usually do not know how much physical memory
they need. But their OS does! With an extra component run-
ning as a proxy inside the guest VM’s OS, the hypervisor can
approach the guest’s physical memory-management subsys-
tem to find idling (unutilized) page frames in low-demand
phases, which it then safely can reclaim. Examples of such
cooperative reclaiming techniques include memory balloon-
ing [24], memory hotplugging, [23] and memory probing
[55]. While these techniques have proven useful in practice,
we argue that they are still not flexible and fast enough to
cope with frequently changing guest demands because of
their high overheads for probing, communication, and guest-
side defragmentation. Additionally, some of them are not
DMA-safe, preventing the pass though of devices like GPUs
into VMs [55].
Our Contributions We present HyperAlloc, a new ap-
proach for virtual machine de/inflation. HyperAlloc inte-
grates the concept of cooperative memory management di-
rectly into the guest’s page-frame allocator, which it accesses
via a lock-free memory-mapped interface, greatly reducing
the communication overhead. In our evaluation with Lin-
ux/QEMU, HyperAlloc shrinks VMs up to 362 times faster
than virtio-balloon and 10 times faster than virtio-mem.
By its direct integration into the guest’s page-frame al-

locator, HyperAlloc additionally provides DMA safety by
design, providing for reclamation also in VMs that require
device pass through. Its automatic reclamationmode reduces
the memory footprint (in GiB·min) of a clang compilation by

1



111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

EUROSYS’25, March 30–April 3, 2025, Rotterdam Anon. Submission Id: 517

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

17 percent compared to virtio-balloon’s free-page reporting
without any significant impact on the guest’s performance.

2 Problem Analysis
We first discuss the fundamental challenges for the
hypervisor-guest memory interface on the example of the
existing approaches, laying the ground for our HyperAl-
loc design, as well as providing an overview of the directly
related work. Fundamentally, in all cases, the hypervisor
relies on a cooperating guest that points him to reclaimable
memory, which ideally does not contain data that has to be
migrated, saved, or restored.

In the case of memory ballooning [45, 53], the hypervisor
interacts with a guest-level kernel module (called the balloon
driver) that allocates guest-physical frames from the guest’s
page-frame allocator and reports them back to the hypervisor.
The hypervisor then can remove the respective frames from
the VM and its extended page tables (EPTs), shrinking the
amount of host-physical memory available for the guest. To
give back memory, the hypervisor instructs the guest-level
kernel module to free the previously allocated frames, which
on the next access are faulted (back) into the EPT.
Elasticity The virtio-balloon implementation [43] for Lin-
ux/QEMU provides an additional automatic mode (free page
reporting), where the balloon driver periodically reports free
frames to the hypervisor to be reclaimed, facilitating dy-
namic memory elasticity. Automatically reclaimed frames
are not allocated from the guest’s allocater, but remain logi-
cally free for the guest so that they can still be allocated. If
this happens, they are as above faulted (back) into the EPT
on the next access.

As virtio-balloon reclaims individual 4 KiB pages, it has to
issue a lot of hypercalls and subsequent unmap syscalls on
the host and may induce a lot of EPT faults. This can lead
to a substantial performance overhead. Hu et al. [24] have
shown that the overhead could be significantly improved by
increasing the granularity to 2MiB huge pages.
DMA Safety The substantial limitation of virtio-balloon
is that it cannot be used in conjunction with device pass
through. As described above, a reclaimed guest-physical
frame is logically still available to the guest’s allocator, which
itself is not aware of reclamation and, hence, might select
it upon some allocation. If this frame is then accessed by a
CPU, an EPT fault occures, in which the hypervisor actually
installs a host-physical frame for it. However, if the guest
has instead given the frame to a peripheral device for DMA,
the DMA transfer will fail, as most DMA-capable devices are
unable to trigger IO page faults [8, 51]. So due to its reliance
on page faults, virtio-balloon is inherently incompatible with
device pass through, which limits its applicability for IO-
intensive applications.

Hildenbrand and Schulz [23] suggest to use memory hot-
plugging [45] as an DMA-safe alternative to ballooning. In

virtio-mem, the hypervisor interacts with a guest-level hot-
plug driver to extend/shrink the guest-physical memory by
adding/removing virtual DIMMs at 2MiB granularity. DMA
safety is achieved by prepopulating all guest-physical frames
when adding the DIMM; hence, no EPT and IO page faults
will occur later on. However, this pre-population leads to
overprovisioning. Furtheremore, virtio-mem does not sup-
port elasticity by automatic reclamation.
To overcome this, Wang et al. [55] propose VProbe, an

automatic deflation mechanism that also provides for DMA
safety. Here, the hypervisor gets memory-mapped access to
the Linux guest’s physical-frame metadata (struct page),
which also contains the frame’s reference counter. Thereby,
VProbe can automatically detect and reclaim unused mem-
ory (refcount=0) without the need for explicit host–guest
communication. For DMA safety, VProbe needs to detect
when a reclaimed frame is allocated by the guest’s allocator.
For this, it write-protects the underlying struct page in the
EPT. As a side effect of allocation, the Linux buddy alloca-
tor increases the refcount in struct page, so an EPT fault
occurs, in which the hypervisor can repopulate the guest-
physical page. However, as the guest’s allocator remains
still agnostic to reclaimed memory, contradicting allocation
patterns may lead to a high number of faults and un/map
operations – when the guest frequently allocates reclaimed
frames even though others are available. The Linux buddy
allocator, for instance, maintains per-core caches of free
frames to reduce contention; the respective frames have a
much higher probability of being allocated next [56].

3 HyperAlloc: Bilateral Memory Allocation
Instead of such indirect interaction with the guest’s page-
frame allocator via guest-level proxies or side effects of al-
location, HyperAlloc overcomes all these limitations by the
direct integration with the guest’s allocator. In particular,
we give the hypervisor write access to the allocator state so
that it can detect and directly mark guest-physical pages as
allocated or reclaimed; the allocator is used bilaterally by
both guest and hypervisor. For our implementation, we build
upon LLFree, a scalable page-frame allocator suggested by
Wrenger et al. [56], which replaces the Linux buddy alloca-
tor. LLFree is particularly suitable for our approach due to
its lock-free and pointer-free design, which constructively
avoids control-flow dependencies between hypervisor and
guest, as all operations are implemented by atomic memory
transactions.

3.1 HyperAlloc in a Nutshell
Fig. 1 gives an overview of the HyperAlloc approach and
illustrates the process of reclaiming unused memory from
a VM without transitioning to the guest: In a QEMU/KVM
setup, the virtual-machine monitor is split into an in-kernel
part (KVM) that abstracts hardware-virtualization primitives

2



221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

HyperAlloc: Efficient VM Memory De/Inflation via Hypervisor-Shared Page-Frame Allocators EUROSYS’25, March 30–April 3, 2025, Rotterdam

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

KVM Hypervisor

exclusively attached

QEMU Monitor KVM Virtual MachinecontrolsPeripheral Devices

Guest Physical MemoryI/O Virtual Address Space

HP34 HP47HP34 HP47

GP0GP0 GP1GP1 GP2GP2 GP3GP3
Mem Objs.

(un-)map
Host Physical

VFIO Objs

(un-)m
ap

Host Physic
al

LL
Fr

ee

LLFree Allocator
alloc’d
(4K)

free
(4K)

free
(2M)

evicted
+free

evicted
+alloc’d

Guest Virtual Memory
(de-)allocate

guest physical memory
(4K, 8K,...,2M,4M)

Shared
Mapping

I I S H
Reclaim State

Network Card

DMA
Access inaccessible

for devices

Reclamation

Extended Page TablesIOMMU Page Tables

➊ Evict (+ allocate) 2 MiB

➋ Unmap host phys. mem
➌ Update reclaim state

Figure 1. Overview of HyperAlloc Concept. The controlling QEMU monitor has shared-memory access to the VM’s allocator state and
marks those huge pages as evicted/allocated that it removes from the EPT and the IOMMU page table. The virtual machine requests (not
shown) evicted huge pages on allocation from the monitor, thus ensuring DMA safety.

(i.e., EPTs, virtual CPUs) for a user-space monitor process
(QEMU) that emulates devices and decides on high-level
resources (e.g., memory size).
With HyperAlloc, the QEMU monitor has shared access

to the guest-physical allocator’s state to identify unused
memory and to mark memory as reclaimed/allocated for
the guest. For example, if we want to shrink the maximally
available guest memory, we can remove the host-physical
frame 47 (HP47), which is available as guest-physical frame
1 (GP1) and currently marked as free, as follows:

➊ HyperAlloc marks GP1 as evicted and allocated in the
guest-physical allocator’s state.

➋ It unmaps the host-physical frame HP47 from the
EPT and the IOMMU page tables via standard KVM
interfaces, giving it back to the host allocator.

➌ The QEMU monitor updates HyperAlloc’s authorita-
tive reclamation state for GP1 to hard reclaimed (H),
which marks, in contrast to soft reclaimed (S), that the
frame should not be repopulated on demand.

3.2 Reclamation States
In the following, we look at the abstract state of a single
memory page frame and its state transitions during recla-
mation. While we usually reclaim memory on huge-page
granularity, our HyperAlloc concept is not restricted to this
granularity. In Sec. 4.1, we will discuss the mapping of these
states to the LLFree allocator.

Page States For HyperAlloc, the state of a page (Fig. 2) is
a tuple with four elements that consists of a host (𝑀 , 𝑅) and
a guest part (𝐸, 𝐴). Only the guest part is accessible by both
parties to ensure safety and security. On the host side, we
have:

Host State

R: I
M: 1

R: S
M: 0

R: H
M: 0

hardreclaim
in

st
al

l soft
reclaim

return

hard

reclaim
1⃝

tri
gg

er

Guest State

A: 0
E: 0

A: 0
E: 1

A: 1
E: 1

A: 1
E: 0

alloc

free

1⃝ alloc

hardreclaim

hard

reclaim

return

soft
reclaim

Guest Operation

Host Operation

Host Op. (in auto mode)

controls

(triggers)

R: S
M: 0

A: 0
E: 1EPT Mapped

Reclaim State Alloc’d Flag

Evicted Hint
Combined State for one

2 MiB Page Frame

Figure 2. State Transition Diagram for one Memory Frame

𝑀 ↦→ {0, 1}: Mapped indicates whether the page is
backed with host-physical memory in all relevant
hypervisor-level page tables (i.e., EPT, IOMMU).

𝑅 ↦→ {𝐼 , 𝑆 ,𝐻 }: In the reclamation state, HyperAlloc
keeps track whether a page is currently Installed, Soft
reclaimed, or Hard reclaimed. For a reclaimed page
𝑀 = 0 holds.

On the guest side, we additionally maintain:
𝐸 ↦→ {0, 1}: The evicted hint informs the guest that the

page was reclaimed and is not backed by physical
memory. 𝐸 is a one-way synchronized copy of ¬𝑀 .

𝐴 ↦→ {0, 1}: Allocated indicates whether the huge page,
or parts of it, is allocated within the guest.

Guest-Level Allocation The guest’s physical-memory
allocator can free and allocate non-evicted frames by tog-
gling the allocated flag (blue arrows) without hypervisor
interaction. Only for allocations of evicted pages (𝐸 = 1), the
guest has to trigger the hypervisor (via virtio-queue) once
to install a host-physical page and also remove the evicted
hint (𝐸 ← 0).

3



331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

EUROSYS’25, March 30–April 3, 2025, Rotterdam Anon. Submission Id: 517

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

Reclamation HyperAlloc can reclaim memory that is not
allocated (𝐴 = 0) by the guest in two modes: hard and soft
reclamation. For hard reclamation (𝑅 ← H), where the goal
is to remove the memory permanently (i.e., reducing the
maximal guest memory), the host marks the frame for the
guest as allocated and evicted (𝐴← 1,𝐸 ← 1). This ensures
that the frame is not available for the guest allocator. For
soft reclamation, the QEMU monitor only sets the evicted
hint (𝐴 = 0,𝐸 ← 1), keeping the frame as usable for guest
allocations but at a higher cost. After updating the guest
state, we remove (𝑀 ← 0) the frame from all guest-accessible
mappings (i.e., EPT and IOMMU), perform TLB invalidations,
return the memory to the host allocator, and update 𝑅.
In both reclamation modes, the guest is informed about

the reclaimed state of the frame, which he can use to steer
its allocation policy. In our prototype, we extended LLFree
to prefer non-evicted over evicted frames for allocations.

Return and Install The hypervisor can explicitly be in-
structed (e.g., via the management console) to return hard-
reclaimed memory to the guest by setting the state of the
respective frames to soft-reclaimed on both sides (𝐴 ← 0,
𝐸 = 1) and (𝑅 ← S). This allows us to implement a flexible
soft limit while having an adaptable hard limit.

To actually install soft-reclaimed frames, we let the guest
allocator issue a hypercall on allocation, which triggers the
hypervisor to provide host memory, map it in all guest-
accessible page tables, and update its reclamation state. In-
stalling memory on access (i.e., waiting for the EPT fault)
is not sufficient for DMA-safety, as the OS is then still free
to reclaim or remap the accessed pages at any time (see
Sec. 2). Instead, we have to explicitly pin the VM’s memory
pages when they are mapped. Still, this install-on-access
should perform equally good, as: (a) An explicit hypercall
is, performance-wise, not inherently more expensive than
an implicit EPT fault. (b) Unlike with virtual memory, page
frames requested from the guest’s physical memory alloca-
tor are likely to be accessed shortly thereafter, so we cannot
expect significant benefits from delayed provisioning.

Invalid Guest States Like with any approach for coop-
erative host–guest memory management (e.g., ballooning
[24, 45, 53], hotplugging [23, 45]), both sides have to adhere
to an interaction protocol. For our reclamation protocol, both
guest and host inspect and update the shared per-frame guest
state. Therefore, we need to discuss the potential safety/se-
curity implications of non-conforming or malicious guests:

HyperAlloc never makes decisions upon 𝐸 but has its own
frame-state tracking (𝑅), making the 𝐸 flag a mere read-only
copy of 𝐸 ← (𝑅 ≠ I). Thus, a maliciously manipulated 𝐸 has
no impact on the hypervisor. Similarly, HyperAlloc updates
𝐴 on the hard reclamation and return transition, where we
set 𝐴 ← (𝑅 = 𝐻 ). Only for the reclamation decision, the
hypervisor inspects 𝐴 to find reclaimable pages. While this

allows a non-conforming guest to resist memory reclama-
tion (i.e., to not cooperate), it bears no safety or security
implications. Given a fine-grained memory pricing model,
the guest would just have to pay for the extra memory.
Regarding safety, we must also consider concurrent

host/guest operations: As we access the shared state exclu-
sively through atomic operations, the shared state itself does
not pose a problem. However, on the host side, concurrent
reclaim, return, and install operations may impose race con-
ditions inside the monitor. In our current implementation,
the hypervisor synchronizes these operations with a per-VM
lock. We also considered per-frame locking via a “lock” recla-
mation state but left this for future work, as we could barely
notice any contention, even for highly parallel workloads.

3.3 Management Policies
HyperAlloc uses the provided reclamationmechanisms (hard
and soft) to implement two management policies:
Adaptable Memory Hard Limit QEMU already supports
an adjustable upper memory limit, whose reduction below
the initial allocation is usually implemented via memory
ballooning or hotplugging. With HyperAlloc, we use hard
reclamation to decrease the maximal memory size of a guest
if triggered from the QEMU console or QEMU’s QOM API.
In contrast to others [23, 24, 45, 53], HyperAlloc usually
does not have to transition to the guest or stop it. Only if
there is not enough free memory in the guest’s allocator, we
instruct the guest to free the remaining memory from its
caches and retry our hard reclamation afterward. To increase
the upper limit, we use the return operation to add more
soft-reclaimed guest-physical memory, delaying the actual
memory allocation until the guest triggers install. While
our current implementation does not allow growing a VM
beyond its initial memory allocation, it would be possible to
combine HyperAlloc with memory hotplugging (Sec. 6).
Soft Limit by Automatic Reclamation With automatic
reclamation enabled, HyperAlloc periodically removes un-
used frames from the running guest, shrinking the currently
attached host-physically memory. Every 5 seconds, we scan
the reclamation-state array for installed (𝑅 = 𝐼 ) pages and
inspect the guest’s allocator state if the page is free (𝐴 = 0).
Both data structures are densely packed, so this linear search
bears only a tiny cache load and, thus, minimal performance
impact. In our current implementation (2 bits for 𝑅, 16 bits
for 𝐴), we access 2·512

8·64 +
16·512
8·64 = 18 consecutive cache lines

to scan 1GiB of guest-physical memory for free huge pages.

4 HyperAlloc in Linux
To integrate HyperAlloc with Linux, we use and extend LL-
Free [56], a lock- and log-free allocator that replaces the
Linux buddy allocator and primarily focuses on multicore
scalability and fragmentation avoidance. For us, its lock-free
design enables the efficient access to the guest allocator from

4



441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

HyperAlloc: Efficient VM Memory De/Inflation via Hypervisor-Shared Page-Frame Allocators EUROSYS’25, March 30–April 3, 2025, Rotterdam

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

0

0
0

Used for
HyperAlloc

3

0
0

0

1
1

4

0
1

0

1
0

0

0
0

4

0
1

4

0
0

7

1
m

4

1
h

9

1
f

0

0
h

3

0
m

Bit Field

2 MiB Areas

Trees

512

8

Free counter

Allocated

Unmovable

Movable

Huge

- Reserved
- Kind

- Evicted Hint
- Allocated as HP

Guest: Reserved Trees Hypervisor

Figure 3. LLFree Allocator State [56]. Interlayer connections (ar-
rows) are not implemented with pointers but via offset arithmetic.

different privilege levels, while its fragmentation-awareness
improves the availability of free huge frames to reclaim.

4.1 LLFree Overview
From a high-level perspective (Fig. 3), LLFree is a bitmap
allocator that uses two levels of free-counter indexes (trees
consist of areas) to speed up and steer the search for free
memory: For each base frame, a bit in the bit field indicates
whether it is free. An area covers 512 such bits, which corre-
sponds exactly to one huge frame and is associated with a
16-bit index entry. This entry includes a 9-bit counter indicat-
ing how many base frames are free and an allocated flag that
allows for the atomic allocation of the entire huge frame. If
the area counter is 512 and the flag indicates free, the covered
huge frame is entirely free and can be allocated as a huge
frame with a single compare-and-swap (CAS) operation.
A fixed number of consecutive areas (e.g., 8) form a tree,

whose index entry also contains a free-frame counter. Trees
are also essential for LLFree’s anti-fragmentation policy,
which tries to avoid allocating frames from “almost full”
trees (where most frames are free). For this, CPUs dynam-
ically reserve trees, preferring “half depleted” and “almost
depleted” over “almost full” trees, from which they allocate
memory until allocations fail. Due to this reservation pol-
icy, “almost full” trees (and areas) defragment without active
memory compaction.
For HyperAlloc, two properties of the LLFree data struc-

tures are most important: (1) Bit fields and counter indices
are stored as densely packed arrays, where frame states can
be located through simple offset arithmetic without relying
on guest-side pointers. (2) All operations on the state are
performed lock-free using atomic CPU instructions only –
there are no locks involved.

4.2 Integration with LLFree and KVM
For our integration, we chose to reclaim unused memory on
the granularity of huge frames, which reduces the reclama-
tion overhead but also ties the reclamation effectiveness to
the huge-page fragmentation behavior of the guest.

State Mapping We integrate the guest part (𝐴, 𝐸) of Hy-
perAlloc’s per-frame state (see Fig. 2) into the area-index
entry and use the existing huge-frame–allocated flag for 𝐴.
As the area counter and flag require 11 bits, we can choose
one bit for the evicted hint (𝐸) from the 5 remaining bits. By
co-locating counter, allocated flag, and evicted hint in the
same 16-bit word, it is also ensured that the host can induce
guest transitions atomically with a CAS operation.

Reservation Policy Besides using the eviction hint for
the allocation policy, we also modified the tree-reservation
policy to further improve its fragmentation avoidance: The
original LLFree uses per-core tree reservations to avoid false
sharing. In our experiments, we saw that a few long-living al-
locations (e.g., in the page cache) provoke higher huge-frame
fragmentation. Therefore, we removed the per-core reserva-
tions in favor of per-type reservations: Linux distinguishes
between three allocation types, which usually have different
lifetimes: unmovable kernel allocations, movable user allo-
cations, and huge allocations. We separate these types into
different trees by having one global reservation per type and
by introducing a 2-bit type field in the tree-index entry. Our
application-level experiments showed no negative perfor-
mance impact of removing the per-core trees. We assume
that other bottlenecks within the memory-management of
Linux, as measured by [56], dominate the results.
The per-type reservations lead to less fragmentation in

the long run. They also increase the effectiveness of Linux’s
active defragmentation (memory compaction). While Linux
developers have undertaken attempts to separate allocations,
our experiments showed that our LLFree-based type separa-
tion performs better, and increases the availability of huge
frames (see Sec. 5.5). Additionally, we reduced the tree size
from 32 areas (64MiB) to 8 areas (16MiB) to make the reser-
vation policy and its fragmentation avoidance more accurate.

Linux additionally divides the physical memory into zones
based on their physical address and NUMA locality. On
x86, there are the global DMA zone (16-bit addressable) and
DMA32 zone (32-bit addressable) plus for each NUMA node a
Normal zone. Every populated zone has its individual LLFree
instance. When reclaiming memory, the host starts with the
LLFree instances of the Normal zones before continuing with
the DMA32 zone. The tiny DMA zone (16 KiB) is ignored.

Locating the Allocator State To interact with the guest
allocator, HyperAlloc has to locate the allocator state in mem-
ory. During boot, the guest uses virtio queues to commu-
nicate the guest-physical address of the LLFree metadata
to the QEMU monitor. LLFree’s compact state, consisting
mainly of the three state arrays, is well suited for sharing
with the hypervisor as it is only accessed by LLFree and does
not contain any unrelated metadata (unlike the struct page

used by VProbe [55]). The monitor maps the state into its
own virtual address space and creates a cloned LLFree object
that works on the shared state. From then on, both sides can

5



551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

EUROSYS’25, March 30–April 3, 2025, Rotterdam Anon. Submission Id: 517

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

inspect and modify the same LLFree instance directly over
shared memory without a host-guest transition. This is done
for every memory zone of the guest and, respectively, every
LLFree instance.
KVM/QEMU Integration For our prototype, we decided
to integrate HyperAlloc into QEMU, the user-space moni-
tor for kernel-managed KVM guests (see Sec. 3.1). Thereby,
HyperAlloc requires no modifications to the host’s kernel.
The downside is that HyperAlloc, as a user-level component,
has no direct access to the related page tables but instead
has to use system calls to manipulate guest mappings. For
example, we have to use madvise(DONT_NEED) to remove
EPT mappings and VFIO for IOMMU mappings. Installing a
frame requires two mode switches (guest – QEMU – kernel),
whereas only one would be necessary if HyperAlloc were
part of KVM. To ease this issue, we aggregate huge frames
during reclamation and unmap them with a single syscall,
which has proven effective due to LLFree’s compact alloca-
tion behavior (linear scan) and anti-fragmentation policy.
Another disadvantage, which we share with all other

monitor-level deflation techniques [23, 24], is that KVM han-
dles EPT faults directly within the kernel without informing
the monitor process. This is a known limitation of KVM, by
which a non-conforming guest may allocate host-physical
memory for evicted frames without giving HyperAlloc the
possibility to update its reclamation state. The effects of such
behavior would be similar to those discussed in Sec. 3.2: The
extra memory does not imply security/safety issues, and the
host can detect it by comparing the reclamation state with
the resident-set size (RSS) of the QEMU process. Thus, in the
case of fine-grained memory accounting, the guest does not
benefit from this extra memory.

5 Evaluation
Memory reclamation techniques compete in two dimensions:
The overhead of reclamation and the elasticity, that is, how
tight we can shrink a guest to its actual memory demand.

5.1 Benchmark Competitors
We compare HyperAlloc to the state-of-the-art memory de-
flation techniques (see Tab. 1). For ballooning, we chose
virtio-balloon, which is supported by both QEMU and Linux
out of the box. As its performance is limited by its 4 KiB
page granularity, we recreated huge-page ballooning from
Hu et al. [24] (virtio-balloon-huge). Both variants support
manual and automatic memory reclamation via free-page
reporting but, as they rely on page faults, are not DMA-safe
on their own [8, 51].

For memory hotplugging, we pick virtio-mem [23], which
is also part of QEMU but is mainly designed for growing VMs
efficiently. While shrinking the VM is possible, it can only
reliably reclaim memory from the Movable zone and does
not support automatic reclamation. However, it provides

Table 1. Evaluation candidates and their properties.
Name Granu- Manual Auto DMA Implementation

larity Limit Mode Safety taken from

virtio-balloon 4 KiB � � × Debian 12
. . . -huge [24] 2MiB � � × Own reimpl.1

virtio-mem [23] 2MiB � × � Debian 12
VProbe [55] 4 KiB × � � unavailable
HyperAlloc 2MiB � � � Own1

1All artefacts are available at [redacted for double-blindness]

DMA safety, as all plug/unplug operations are explicit. To
quantify the performance impact of DMA safety, we measure
HyperAlloc and virtio-mem with and without device pass
through of a VFIO-managed network card. Although our
benchmarks do not use the card, its IO page tables must be
kept synchronized, resulting in additional runtime costs.
We also would have liked to compare against VProbe,

which provides for both auto deflation and DMA safety [55].
Unfortunately, the authors could not provide us with its
source code, as it relies on additional proprietary modifica-
tions that are only available within Alibaba’s environment.
We discuss their concept further in Sec. 6.

5.2 Environment
All experiments were conducted on a machine with two Intel
Xeon Gold 6252 CPUs (2x24 cores @ 2.1GHz) and 384GB
of DDR4 memory, split evenly across two NUMA nodes. To
increase reproducibility, we disabled Intel Hyper-Threading
and Turbo Boost, locked the cores to their maximum clock
speed, and pinned the VMs to the first node.
Both hypervisor and guest used Debian 12 (bookworm)

with a Linux 6.1 kernel and QEMU/KVM 8.2.50. While we
employed the provided Debian configuration for the host,
the guests used the default x86 kernel configuration with
enabled virtio, VFIO, and transparent huge pages. For the
HyperAlloc scenarios, we additionally replaced the buddy
allocator with LLFree [56] in the guest’s kernel and used
HyperAlloc instead of virtio-balloon/virtio-mem. For virtio-
balloon-huge, we used our reimplemented version from [24].
All kernel- and QEMU-variants were built with the LLVM
14.0.6 toolchain and the default compiler flags.

Unless specified otherwise, we used a VM with 12 vCPUs
and 20GiB of memory. For virtio-mem, we split that into
2GiB of regular and 18GiB hotpluggable system memory by
allowing virtio-mem to plug it into the movable zone, so it
can be unplugged later.

5.3 Reclamation Speed
First, we determine each candidate’s raw performance for
resizing a VM with four micro benchmarks:
Reclaim This is the speed for reclaiming and unmapping
memory. We ensure that the memory is present by writing
into 19GiB of guest pages1 before the benchmark.

1Requesting all 20 GiB would trigger an OOM error.
6



661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

HyperAlloc: Efficient VM Memory De/Inflation via Hypervisor-Shared Page-Frame Allocators EUROSYS’25, March 30–April 3, 2025, Rotterdam

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

10−1 100 101 102 103 104 105

Speed [GiB/s] - logarithmic

virtio-balloon
virtio-balloon-huge

virtio-mem
virtio-mem+VFIO

HyperAlloc
HyperAlloc+VFIO

Reclaim

10−1 100 101 102 103 104 105

Speed [GiB/s] - logarithmic

virtio-balloon
virtio-balloon-huge

virtio-mem
virtio-mem+VFIO

HyperAlloc
HyperAlloc+VFIO

Reclaim
 Untouched

10−1 100 101 102 103 104 105

Speed [GiB/s] - logarithmic

virtio-balloon
virtio-balloon-huge

virtio-mem
virtio-mem+VFIO

HyperAlloc
HyperAlloc+VFIO

Return

0 1 2 3 4 5 6
Speed [GiB/s] - linear

virtio-balloon
virtio-balloon-huge

virtio-mem
virtio-mem+VFIO

HyperAlloc
HyperAlloc+VFIO

Return + Install

Figure 4. Speed of reclaiming/returning memory (logarithmic
scale). For HyperAlloc this measures the hard reclamation.

Reclaim Untouched This measures the speed for reclaim-
ing memory that was unmapped before but has not been
installed since. For this, we reclaim the VM in advance and
grow it again before starting this benchmark.
Return This measures how fast we can increase the mem-
ory limit of a virtual machine without allocating or touch-
ing the returned memory.
Return+Install This measures how fast we can increase
the VM’s memory limit and use the returned pages. For
this, we use a guest-kernel module to allocate 19GiB of
memory1 and write into each 4KiB frame.

For the reclamation, we shrunk the VM’s hard limit to 2 GiB
(from 20GiB) and vice versa for returning. We repeated this
procedure 10 times for each candidate. The guest-kernel
module in return+install was executed single-threaded. Fig. 4
shows the achieved grow/shrink rate, while the error bars
denote the 95 percent confidence interval. Please note the
logarithmic x-axis for the first three graphs.
Reclaim The reclamation of touched memory is primarily
affected by the used granularity. Virtio-balloon, due to its
4 KiB page granularity, performs poorly with a speed of only
0.95GiB/s. Here, each 4KiB page is allocated, sent to the
hypervisor2 and discarded with a madvise syscall, which
results in significant transition overheads. These also occur if
2 Even though the hypercalls are aggregated (up to 256 pages per hypercall),
the other syscalls and page operations are not.

the guest did not touch thememory. The speedup results only
from the reduced EPT-manipulation costs. Virtio-balloon-
huge with its 2MiB granularity mitigates this bottleneck,
increasing performance 143 times.
Similarly, virtio-mem also works with 2MiB huge pages.

Its performance falls in between the two previous candidates,
reaching speeds of 34GiB/s. Reclaiming untouched memory
is faster, as it is not faulted in and does not have to be un-
mapped by the hypervisor. Themain bottleneck in both cases
appears to be the hot(un)plugging infrastructure. With an
attached device, virtio-mem also has to manage the IOMMU
memory mappings with VFIO, which results in a 52 percent
slowdown. Since virtio-mem does neither interact with the
guest’s allocator nor uses a virtual IOMMU [8, 51], it only
achieves DMA safety by immediately pinning and mapping
all memory when the memory limit grows. When virtio-
mem+VFIO shrinks the VM, these operations are not only
reversed, but they also have to flush the IOTLB, even if the
memory was never touched. Because of this pre-population,
virtio-mem+VFIO shows no real difference between remov-
ing touched and untouched memory.

With a shrink rate of 344.8 GiB/s, HyperAlloc outperforms
all competitors, being 10 and 3 times faster than virtio-mem
and virtio-balloon-huge. Removing untouched memory is
even faster (4.92 TiB/s), since we only modify allocator and
reservation state, and can skip the expensive unmap oper-
ations. With an attached device, the IOMMU-management
overheads make shrinking 6.3 times slower; still HyperAl-
loc is the best DMA-safe technique. Removing untouched
memory remains unaffected, as we only have to update the
IOMMU for memory that the guest previously allocated.

Return Growing the VM’s memory limit is faster for most
candidates, as the returned pages are populated lazily (on
EPT faults / install hypercalls). Again, virtio-balloon is the
slowest competitor and can only grow the VM with 2.3 GiB/s
as deflating the balloon requires that the previously allocated
4 KiB frames are returned one-by-one2 to the guest allocator.
Virtio-balloon-huge provides a sizable performance increase
(139×), with growing being about twice as fast as shrinking.

Virtio-mem can grow the memory limit by 102GiB/s, once
again falling short of virtio-balloon-huge. The reason for
this difference is that virtio-mem makes hypercalls for ev-
ery plugged 2MiB block, while the virtio-balloon(-huge)
guest driver returns pages without extra hypercalls (both
ultimately populate on EPT-fault). Virtio-mem with VFIO is
21× slower thanwithout VFIO because it has to pre-populate
the memory for DMA-safety.

HyperAlloc outperforms all candidates by a considerable
margin, working at 84 and 26 times the speed of virtio-mem
and virtio-balloon-huge. As with removing untouched mem-
ory, returning it just modifies the respective bits in the alloca-
tor state, taking 229 ns per huge page (compared to 388 ns for
reclaiming an untouched huge page). As expected, adding a

7



771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

EUROSYS’25, March 30–April 3, 2025, Rotterdam Anon. Submission Id: 517

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

Table 2. 1st percentile for STREAM and FTQ benchmarks.
STREAM [GB/s] FTQ [𝑒6]

Threads Threads

Candidate 1 4 12 1 4 12

Baseline 10.3 26.0 69.0 9.4 10.2 30.6
virtio-balloon 6.2 10.9 30.9 5.9 7.5 24.9

virtio-balloon-huge 10.1 25.5 67.8 9.5 10.1 30.1
virtio-mem 10.2 13.1 31.9 9.5 8.6 28.7

virtio-mem+VFIO 10.3 12.6 18.4 9.4 8.4 28.3
HyperAlloc 10.3 26.3 70.1 9.5 10.2 30.7

HyperAlloc +VFIO 10.3 26.1 70.3 9.5 10.2 30.7

device to the VM does not affect the performance. Memory
is only mapped to the IOMMU once the guest allocates it.
Return+Install As ballooning, virtio-mem without VFIO,
and HyperAlloc all populate the returned memory lazily,
we also measured the speed of returning and accessing the
memory (Return+Install). Again, virtio-balloon’s 4 KiB gran-
ularity makes it the slowest candidate. Virtio-balloon-huge
reaches the highest data rate of 4.2 GiB/s, shortly followed
by both virtio-mem and HyperAlloc with 4GiB/s. To put this
into perspective: our benchmark accesses mapped pages at
17GiB/s. Even though HyperAlloc’s install hypercalls are
about 6 percent slower than virtio-mem’s EPT faults (due to
having an additional context switch to QEMU which then
uses madvise to manipulate the VM), the faster initial re-
turn time compensates for this difference. Therefore, the
combined return+install times are almost equal. The same
is true for device pass through (VFIO), where virtio-mem
prepopulates the IOMMU, thus having more upfront costs
than HyperAlloc, which pays the mapping costs on demand.

Overall, we see that HyperAlloc is significantly faster than
the competition for reclaiming and returning memory while
being DMA-safe. Only installing returned memory is slightly
slower than virtio-balloon-huge due to the additional context
switch to the QEMU monitor. However, this overhead would
probably disappear if we integrated HyperAlloc into KVM
itself, removing the extra context switch.

5.4 Guest Performance Impact
In addition to raw speed, we also analyzed the impact of
reclamation on the guest performance. To do so, we change
the VM’s memory limit while running memory- and CPU-
intensive workloads. For comparability to previous work, we
based our procedure on Hildenbrand and Schulz [23].
Experiment Procedure The VM is prepared by simulat-
ing a realistic workload: We execute 9 memory-intensive
SPECrate2017 benchmarks [49], recreating the preparation
step from [23]. For each benchmark, we start as many in-
stances as needed to consume close to 19GiB of memory and
run it for 180 seconds. This preparation grows the VM to
its maximum size and randomizes the guest’s allocator state.
After a 20 s cool-down period, we start the actual benchmark

0 50 100
Runtime [s]

0.0

2.5

5.0

7.5

10.0

Ba
nd

wi
th

 [G
B/

s]

1 thread(s)

0 50 100
Runtime [s]

0

10

20

4 thread(s)

0 50 100
Runtime [s]

0

20

40

60

12 thread(s)

virtio-balloon
virtio-balloon-huge

virtio-mem
virtio-mem+VFIO

HyperAlloc+VFIO

Figure 5.Memory bandwidth over time as reported by STREAM
running on different numbers of threads.

and decrease the VM’s hard limit to 2GiB. At 90 s, we in-
crease it back to its original 20 GiB. While we largely follow
the procedure of [23], we extended it in two ways: (1) In-
stead of running the benchmarks only single threaded, we
also explore multi-threaded workloads (4 and 12 threads)
to better understand different system loads. (2) While the
original benchmark only shrank the VM, we also include a
subsequent growing phase.
As baseline, we use the virtio-balloon configuration, but

do not resize it (Tab. 2). However, we exclude it from the
plots to improve readability. Since there were no significant
differences between HyperAlloc with and without device
pass through, the plots only include the former.
Memory Bandwidth To simulate a memory-intensive
task, we use a customized version of the STREAM [37] bench-
mark, which repeatedly measures the bandwidth of mem-
copy operations (≈1GiB per operation). We modified the
benchmark to only run one of its four measurements (Copy)
and to export per-sample memcopy bandwidth rates. As
STREAM’s iteration time varies between thread counts, we
chose the number of iterations for each thread configuration
so that the slowest candidate took 140 s.
The scatter plots in Fig. 5 show the bandwidth of each

iteration over time. To judge the impact of high-frequency
resizing on latency-sensitive tasks, Tab. 2 contains 1st per-
centile bandwidths. Running the experiment inside a vir-
tualized environment introduces some noise, particularly
for larger thread counts. However, analysis of our baseline
indicates that the influence on the 1st percentile is negligible
compared to the actual observed performance degradation.
While there are slight differences in memory bandwidth be-
tween candidates while idling (before 20 s and once resizing
is complete), they are within run-to-run variance.

With STREAM running on a single thread, only shrinking
via virtio-balloon significantly impacts the guest’s perfor-
mance due to its 4 KiB page granularity and subsequent com-
munication overhead. Our virtio-balloon-huge implemen-
tation eliminates this overhead almost completely. While
virtio-mem shows a negligible spike at 20 s, HyperAlloc does
not show anymeasurable impact on performance. As a result,
with HyperAlloc STREAM finishes ≈8.9 s faster compared to

8



881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

HyperAlloc: Efficient VM Memory De/Inflation via Hypervisor-Shared Page-Frame Allocators EUROSYS’25, March 30–April 3, 2025, Rotterdam

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

0 1 2
Cycles 1e11

0
2
4
6
8

W
or

k 
[e

6]

1 thread(s)

0 1 2
Cycles 1e11

0.0

2.5

5.0

7.5

10.0
4 thread(s)

0 1 2
Cycles 1e11

0

10

20

30
12 thread(s)

virtio-balloon
virtio-balloon-huge

virtio-mem
virtio-mem+VFIO

HyperAlloc+VFIO

Figure 6. Aggregated work as measured by FTQ for different num-
bers of threads.

virtio-balloon. Apart from virtio-balloon, the 1st percentiles
show no significant performance degradation.
On multiple threads, resizing the VM becomes increas-

ingly noticeable. In addition to shrinking, virtio-balloon
starts to cause slowdowns while growing the VM as well.
Virtio-mem has a noticeable impact while shrinking, per-
forming even worse than virtio-balloon for ≈10 s with lows
reaching 31.9 GB/s. When unplugging memory, virtio-mem
removes blocks in decreasing address order, requiring the
guest OS to migrate used subblocks to other memory lo-
cations. Still, growing has no immediate effect on memory
bandwidth. New memory blocks are plugged in, but no mem-
ory is preallocated on the host. However, when passing a
device to the VM, the memory needs to be populated and
pinned, resulting in an even larger performance degradation
than virtio-balloon (1.7×). Virtio-balloon-huge outperforms
virtio-mem but still shows a small impact while shrinking.
Even under full system load, HyperAlloc does not have a sig-
nificant impact on memory bandwidth, with its 1st percentile
bandwidth being 2.3 and 2.2 times higher than virtio-balloon
and virtio-mem. In contrast to the other evaluated solutions,
reclaiming and returning memory from/to the guest does
not involve fine granular guest-hypervisor communication
or expensive memory migration.

CPU Utilization To assess the impact on CPU-intensive
workloads, we employed the Fixed-Time-Quantum (FTQ) [29]
benchmark. It samples the amount of work performed by
a CPU thread within a fixed time interval by repeatedly
incrementing a counter. Usually, each thread is measured
independently, but to present the data more clearly, we aggre-
gate the work of all threads. This approach could introduce
inaccuracies due to desynchronization. In practice, however,
the sampling interval was sufficiently large to ensure that
the overall noise was negligible for all our experiments. We
sampled 1096 times at 228-cycle intervals (≈140 s total).
The scatter plots in Fig. 6 show the amount of work per-

formed per time interval. For easy comparison, we have
chosen the number of samples so that the runtime is equal
to the STREAM runs. The impact on CPU performance ap-
pears closely related to memory bandwidth, though far less

noticeable, as evidenced by the 1st percentiles (Tab. 2). Virtio-
balloon causes the most significant performance degrada-
tion, with shrinking being more expensive than growing.
Both virtio-mem and virtio-balloon with huge pages have a
negligible impact at higher thread counts, even though the
duration is much shorter than in the previous experiment.
Notably, virtio-mem with device pass through generates no
extra CPU overhead, regardless of memory pinning. Hyper-
Alloc has no significant effect. Even under full system load,
its 1 percent lows are above the baseline. As a result, its min-
imum CPU performance is 23 and 6.8 percent higher than
virtio-balloon and virtio-mem.

5.5 Automatic Soft Reclamation
Continuous Integration (CI) jobs often require large and
varying amounts of memory for short bursts of time. Build-
farm VMs, which provide strict isolation, must accommodate
the peak memory demand regardless of the job frequency. If
we can deflate these VMs dynamically and efficiently, more
VMs could run on the same physical host. We evaluate Hy-
perAlloc’s suitability for this scenario by compiling Clang
16.0.0. To increase memory pressure, we reduce the VM’s
memory to 16GiB for our measurements, which is the ob-
served maximum of the workload. As the automatic recla-
mation mechanisms were designed to have no significant
performance impact, we focus on the memory footprint (in
GiB·min), which is calculated from the resident set size (RSS)
of the QEMU process, representing its actually consumed
memory (sampled at 1Hz). Similar metrics are also used by
cloud providers (e.g., AWS Lambda) to price memory usage.

HyperAlloc and virtio-balloon (with free-page-reporting)
can automatically reclaim memory. As virtio-mem lacks an
automatic reclaim mechanism, we simulated one: We track
the number of free huge pages in the guest and (un-)plug
memory with a granularity of 1GiB with a frequency of
1 s. Frequency and granularity were hand tuned for this
benchmark to minimize the overhead while still avoiding
out-of-memory errors. If directly integrated into virtio-mem,
automatic reclamation would most likely be more efficient,
but our simulation already shows that it is also limited by
huge-page availability, like virtio-balloon.

Fig. 7 compares the Buddy and LLFree allocator baselines
against virtio-balloon’s free-page-reporting, virtio-mem and
HyperAlloc. The baselines, which statically use 16GiB for the
entire runtime, have the highest memory footprint. LLFree’s
footprint is slightly smaller because of its shorter runtime.
The different auto-reclamation techniques can reduce the
memory footprint from 24 to 45 percent, usually without no-
ticeable runtime overheads (which is by design). HyperAlloc
has the lowest memory footprint, followed by the differ-
ent configurations of virtio-balloon and lastly the simulated
virtio-mem mechanism.

The right most columns contain the total CPU times of all
12 threads of the QEMU processes, separated into user and

9



991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

EUROSYS’25, March 30–April 3, 2025, Rotterdam Anon. Submission Id: 517

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

Buddy
LLFreebaseline

o=9 d=2000 c=32
o=9 d=2000 c=512

o=9 d=100 c=32
o=9 d=100 c=512
o=0 d=2000 c=32

o=0 d=2000 c=512
o=0 d=100 c=32

o=0 d=100 c=512

vi
rti

o-
ba

llo
on

0 500
Footprint [GiB·min]

virtio-mem
virtio-mem+VFIO

HyperAlloc
HyperAlloc+VFIO

0 50
Runtime [min]

0 500
CPU User [min]

0 100
CPU System [min]

Figure 7. Average memory footprint, total runtime, and user/sys-
tem CPU times of the QEMU process for a clang compilation (re-
peated 6 times per candidate). For virtio-balloon, we compare dif-
ferent parameters with the default configuration in bold.

system (page faults, KVM exits, and other syscalls). We see
that system and user time of LLFree-based benchmarks is
shorter than Buddy-based ones. An in-depth investigation
revealed that those runs incur about half as much EPT faults
and TLB misses. LLFree’s contiguous allocation pattern ap-
pears to be more suitable for VMs that are often backed by
huge pages. As the user time also includes the VM work-
load, we can infer the reclamation overheads by comparing
it to their respective baselines. The overhead of HyperAl-
loc (0.51 ± 0.18%) is a minimally higher than virtio-balloon
(default: 0.15 ± 0.42%). This is because HyperAlloc reclaims
more memory, leading to more work in the QEMU process
and more madvise syscalls.

The default configuration for virtio-balloon (Fig. 7 in bold)
reduces the memory footprint by 34 percent. We tuned the
configuration parameters of virtio-balloon to see if we can in-
crease its efficiency. These parameters include the REPORT-
ING_ORDER (o), denoting the size of reclaimed memory
blocks (we used 4 KiB and 2MiB), the REPORTING_DELAY
(d), specifying the delay between the freeing of chunk of the
specified order and the subsequent reclamation (from 2 s to
100ms), and the REPORTING_CAPACITY (c), denoting the
size of the reclaim buffer that is sent to the host (from 32
to 512). If the mechanism uses huge pages (o=9) we see no
significant difference between the delay (d) and capacity (c)
values. Only for 4 KiB pages (o=0), they have a noticeable
effect. Two configurations can even further reduce the mem-
ory footprint (by 42% for d=2 s and c=512). However, they
also increase the runtime by 19 percent. Similarly, the user
and system CPU times are significantly higher.
In-depth Analysis To better understand the mechanisms,
we extend on the Clang benchmark: On the time axis, we
wait for 200 s after the build finished and run make clean

to remove any build artifacts; after another 200 s, we drop
the guest’s page cache to see how much memory can be
reclaimed at best. We sample four memory-usage metrics
(see Fig. 8) with a frequency of 1Hz: (1) The memory con-
sumed by (partially) used huge pages in the guest allocator.
(2) The memory consumed by actually allocated small pages
(4 KiB) in the guest. The difference between small and huge

0 10 20 30 40 50
Time [min]

0
2
4
6
8

10
12
14
16

M
em

or
y 

co
ns

um
pt

io
n 

[G
iB

]

virtio-balloon

0 10 20 30 40 50
Time [min]

HyperAlloc

VM memory small huge cached

Figure 8. Clang compilation with virtio-balloon’s free-page-
reporting (default) and HyperAlloc’s automatic soft-reclamation.

0 10 20 30 40 50
Time [min]

0
2
4
6
8

10
12
14
16

M
em

or
y 

co
ns

um
pt

io
n 

[G
iB

]

virtio-mem+VFIO

0 10 20 30 40 50
Time [min]

HyperAlloc+VFIO

VM memory small huge cached

Figure 9. Clang compilation with HyperAlloc and virtio-mem with
VFIO-based DMA safety.

is an indicator of the degree of fragmentation within the
page allocator. (3) The size of the guest’s page cache. (4) The
amount of assigned VM memory (RSS) which reclamation
reduces. As small and cached are defined by the workload,
they are expected to remain the same across all candidates.
In the best-case scenario, the assigned VM memory, the used
huge pages, and the allocated small pages would all be equal,
showing perfect memory efficiency.
Fig. 8 shows the results of a single run for virtio-balloon

(o=9, d=2000, c=32) and HyperAlloc. As expected, the size
of the page cache and the guest’s memory utilization are
consistent. However, one minor difference in the page cache
size can be observed at around 29min: The VM with virtio-
balloon reaches its hard memory limit, resulting in page
cache eviction. As HyperAlloc has less fragmentation, it
does not suffer from this. Over the entire runtime, HyperAl-
loc’s VM memory follows the guest’s memory consumption
(small) much more closely due to LLFree’s efficient fragmen-
tation avoidance. This decreases the memory footprint by
17 percent compared to virtio-balloon, without noticeable
runtime costs.

By the end of compilation, the page cache occupies a sub-
stantial part of the guest’s total memory. This prevents many
poorly utilized huge pages from being freed and reclaimed.
Running make clean, thereby removing all build artifacts,
reduces the cache size significantly. As a result, HyperAlloc

10



1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

HyperAlloc: Efficient VM Memory De/Inflation via Hypervisor-Shared Page-Frame Allocators EUROSYS’25, March 30–April 3, 2025, Rotterdam

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

0 10 20 30
Time [min]

0
2
4
6
8

10
12
14
16

M
em

or
y 

co
ns

um
pt

io
n 

[G
iB

]

virtio-balloon

0 10 20 30
Time [min]

HyperAlloc

VM memory small huge cached

Figure 10. Repeated SPEC2017 blender runs with auto deflation.

can shrink the VM by 3.8 GiB. In contrast, virtio-balloon only
reduces the size by 0.7 GiB, due to internal fragmentation of
the buddy allocator. Even when dropping the entire cache,
virtio-balloon only decreases the VM size to 8GiB compared
to HyperAlloc’s 1.9 GiB. Generally, in these file-intensive
workloads, we see that the page cache has a major impact on
the memory footprint. We discuss its role further in Sec. 6.

Regarding DMA-safety, we compared virtio-mem and Hy-
perAlloc in Fig. 9, both using VFIO for device pass through.
Even though both mechanisms have no significant runtime
costs, virtio-mem has a 39.8 percent higher memory foot-
print than HyperAlloc. For virtio-mem, we track the number
of free huge pages and resize accordingly. We also tried to
follow the free base pages, which leads to more aggressive
reclamation. However, in this case, virto-mem has to com-
pact and migrate memory, which turned out to be too slow,
and virtio-mem was unable to resize the VM fast enough to
prevent OOMs. Therefore, our virtio-mem-based reclama-
tion is still limited by the availability of huge pages, which
is a significant advantage of basing HyperAlloc on the LL-
Free allocator. Virtio-mem without VFIO is 3.7 percent more
efficient because it does not pre-populate memory. For Hy-
perAlloc, the additional overhead to maintain the IO page
tables is negligible.
RepeatedWorkloads Another common use case for VMs
is (micro-) services that are executed on demand or period-
ically. Here, the VMs might idle for significant amounts of
time between runs. Even though the host can easily detect
idle vCPUs and schedule accordingly, detecting idle memory
is not so simple and an ideal use-case for memory recla-
mation. We simulated such a repeated workload with idle
periods using the Blender benchmark from SPEC2017. We
executed three consecutive runs with 4min idle time in be-
tween. The page cache was dropped once at the end, again
to see its impact on the VM’s memory consumption.
The two candidates in Fig. 10 perform roughly the same

while Blender is running due to its static allocation behav-
ior. However, a huge difference can be observed in between
runs. After the first iteration, HyperAlloc reduces memory
consumption by 43 percent compared to virtio-balloon. This

difference increases to 55 percent after the third iteration.
Overall, this leads to an overall reduction in memory foot-
print from 202GiB·min to 159GiB·min. This difference be-
comes even more pronounced if the idle times increase.

After dropping the page cache, the memory consumption
drops to 1.28GiB for HyperAlloc and 4.37GiB for virtio-
balloon. This large difference can be attributed to LLFree’s
better fragmentation characteristics and shows that Hyper-
Alloc allows for greater elasticity of VMs.

6 Discussion
VProbe Due to the discussed availability issues (see
Sec. 5.1), we could not compare HyperAlloc quantitatively to
the seemingly similar VProbe [55] approach. VProbe avoids
explicit communication, achieves DMA-safe auto deflation,
and gives the hypervisor access to the guest state. However,
VProbe aims to be transparent for the guest and tracks the
guest-side page-frame allocations only indirectly by write-
protecting the guest’s page-frame metadata (struct page).
Thereby, VProbe tracks the same guest events as HyperAlloc
but relies on the side effects of these events, which has two
disadvantages: (1) VProbe’s coupling to the guest allocator
is fragile when (newer) guest kernels perform different steps
on allocation, resulting in unreliable allocation detection. (2)
The hypervisor has to back the page-frame metadata with
host-physical base frames instead of huge frames, inducing
higher TLB pressure. In contrast, HyperAlloc’s explicit install
hypercall evolves with the guest kernel code and requires
no fine-grained backing of struct page.
Adoption in Production HyperAlloc requires the user to
replace the guest’s page allocator, so our co-design approach
can be considered as more intrusive as having only an extra
balloon or hotplug driver within the guest. Therefore, the
question arises if HyperAlloc is a viable solution for produc-
tion environments – and why would customers switch to Hy-
perAlloc? We expect that economic reasoning will become a
good argument: In the longer term, IaaS will follow the trend
of FaaS [46] and start billing memory by the second, giving
customers amonetary incentive to give back unusedmemory
immediately. Up to now, memory often becomes a stranded
asset [32] for cloud providers when they are confronted with
a CPU-intense workload mix, as they cannot shift memory
between VM hosts. However, the emerging CXL [16] tech-
nology allows building disaggregated memory pools [32],
making physical memory not only an expensive [35] but also
more valuable commodity, as unused memory could be re-
distributed among the complete rack. Compared to existing
techniques, HyperAlloc achieves higher reclamation rates at
basically no interference (Sec. 5.5), making it an ideal feature
for the disaggregated cloud.
Concept Generalization Since HyperAlloc requires
offset-addressable access to per-frame data, integration with
other guest allocators is challenging, as they usually rely on

11



1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

EUROSYS’25, March 30–April 3, 2025, Rotterdam Anon. Submission Id: 517

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

lock-based synchronization and pointer-linked data. Letting
the hypervisor directly participate in those guest protocols
poses a safety and security risk. Nevertheless, if host and
guest agree on an auxiliary memory-mapped interface to
exchange 𝐴 and 𝐸, HyperAlloc is applicable.
More generally, we believe that lock-free write access to

the guest state is a promising direction to improve resource
management in IaaS settings without introducing (much) in-
terference and latency variations. For example, a logical next
step could be to also expose the page cache to HyperAlloc,
which could then shrink the VM from the outside. Although
this requires rethinking even more kernel components, the
resulting lock-free kernel structures often prove to be more
scalable than the existing mechanisms [56].
Beyond Memory Reclamation Our prototype can scale
a VM between its initial size and the currently allocated
memory.While we share the later boundary with many recla-
mation techniques [23, 53, 55], virtio-mem [55] can grow the
VM beyond the initial size. HyperAlloc could also support
this, either by hotplugging integration or by starting with a
large guest-physical memory but low hard limit.
HyperAlloc could also enable better swapping strategies

for VMs [10, 47] as the tree index entries contain the alloca-
tion type (see Sec. 4.2). Furthermore, with the six remaining
area-entry bits, the guest could expose even more useful
information about data-filled frames (e.g., hotness).
If fine-grained memory pricing models are just over the

horizon, we have to develop efficient guest methods that
actively react to memory-price pressure (i.e., executed via
auctioning [6]). For example, with a price tag at each frame,
we have an objective measure to decide if starting memory
compaction is actually worth it. Suddenly, actively shrinking
the page cache instead of caching as much as possible could
make economic sense.

7 Related Work
Dynamic paging has been a challenging topic for OS devel-
opers for a long time, especially regarding memory recla-
mation [17, 25, 27], TLB invalidation [7, 9, 30], and the frag-
mentation of huge pages [21, 40, 41, 50, 56]. These chal-
lenges become even more relevant in combination with vir-
tual machines, where we have an additional interaction and
EPT/NPF walks are more expensive [4, 12, 28, 38, 54].
Memory Reclamation The problem of detecting idle
memory and estimating working sets is more difficult for
the OS [17, 18, 57] than detecting idle CPUs. This, again,
is even more complicated for a hypervisor with even less
information about the running workloads [26, 38, 53]. Con-
sequently, transparent VM deflation techniques, like swap-
ping [10, 22, 42, 53] or content-based sharing [15, 53], face
challenges to determine what to reclaim. Cooperative de-
flation techniques, like ballooning [24, 45, 53], hotplug-
ging [23, 44, 45], or transient memory [20, 33], try to solve

the reclamation-information deficit by indirectly interacting
with the guest’s OS frame allocator. However, the interaction
via in-guest proxy drivers is costly [24, 55]. By integrating
reclamation directly into the guest’s frame allocator, Hyper-
Alloc drastically reduces this overhead and enables the guest
to improve its allocation policy based on the reclamation
state.

DMA safety With the emergence of the IOMMU [1–3],
the OS got another virtual memory component to keep in
sync [13]. Moreover, most devices cannot [31, 55] trigger IO
page faults, which are, however, necessary for most deflation
techniques [24, 38, 45, 53]. Only a few techniques [23, 55]
have been designed for DMA safety, while the others require
further IOMMU virtualization [8, 51], which comes with
its own costs for tracking DMA buffers and invalidating
IOTLBs. Still, HyperAlloc could be combined with IOMMU
virtualization to reduce the VFIO overhead further.

Resource Orchestration Deciding how to manage these
different deflation techniques at a large scale is a topic on
its own. Several policies and heuristics have been proposed
for VM monitoring [26, 53], resource distribution [19, 34,
39, 48, 52], and market-like pricing models [6, 36]. They
usually combine transparent and cooperative deflation and
sometimes even interface with applications [14, 48]. With
HyperAlloc, these orchestration mechanisms could moni-
tor memory utilization more precisely and reclaim memory
faster with less latency.

8 Conclusion
For the hypervisor, memory is, until now, a “viscous” re-
source that is hard to add to the guest and even harder to
reclaim. But with the emergence of CXL and disaggregated
memory pools, both cloud provider and customer get a mon-
etary incentive to de/inflate VMs faster and more frequently.
However, existing techniques often fall short with device
pass through or induce disruptive overheads and latency
spikes. For example, virtio-mem results in a throughput dis-
ruption of up to −73 percent for the STREAM benchmark.

With HyperAlloc, we propose a novel VM memory recla-
mation technique based on sharing the guest’s page-frame
allocator with the hypervisor. Without a mode switch, we
can, thereby, mark frames as allocated or reclaimed within
the guest, allowing its allocator to prefer regions already
backed by host-physical memory. Still, our bilateral state
management is safe and secure as we build upon LLFree, an
existing lock-free page-frame allocator with good scalabil-
ity and huge-frame fragmentation properties. HyperAlloc
shrinks, without measurable disruption, the hard limit of a
virtual machine faster (362× virtio-balloon, 10× virtio-mem).
With its automatic reclamation, we reclaim 17 percent more
memory than virtio-balloon’s free-page reporting for a real-
istic workload; resulting in a tighter resource assignment.

12



1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

HyperAlloc: Efficient VM Memory De/Inflation via Hypervisor-Shared Page-Frame Allocators EUROSYS’25, March 30–April 3, 2025, Rotterdam

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

References
[1] 2022. Intel® 64 and IA-32 Architectures Software Developer’s Manual,

Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. https:
//cdrdv2.intel.com/v1/dl/getContent/671200

[2] 2024. AMD64 Architecture Programmer’s Manual Volume 2: System Pro-
gramming. https://www.amd.com/content/dam/amd/en/documents/
processor-tech-docs/programmer-references/24593.pdf

[3] 2024. Arm System Memory Management Unit Architecture Specification
- Version 3. https://developer.arm.com/documentation/ihi0070/latest

[4] Keith Adams and Ole Agesen. 2006. A comparison of software and
hardware techniques for x86 virtualization. In Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems (San Jose, California, USA) (ASPLOS
XII). Association for Computing Machinery, New York, NY, USA, 2–13.
https://doi.org/10.1145/1168857.1168860

[5] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan
Tsafrir. 2014. The rise of RaaS: the resource-as-a-service cloud. Com-
mun. ACM 57, 7 (jul 2014), 76–84. https://doi.org/10.1145/2627422

[6] Orna Agmon Ben-Yehuda, Eyal Posener, Muli Ben-Yehuda, Assaf
Schuster, and Ahuva Mu’alem. 2014. Ginseng: market-driven memory
allocation. In Proceedings of the 10th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments (Salt Lake City,
Utah, USA) (VEE ’14). Association for Computing Machinery, New
York, NY, USA, 41–52. https://doi.org/10.1145/2576195.2576197

[7] Nadav Amit. 2017. Optimizing the {TLB} Shootdown Algorithm with
Page Access Tracking. In 2017 USENIX Annual Technical Conference
(USENIX ATC ’17). 27–39.

[8] Nadav Amit, Muli Ben-Yehuda, IBM Research, Dan Tsafrir, and Assaf
Schuster. 2011. vIOMMU: Efficient IOMMU Emulation. In 2011 USENIX
Annual Technical Conference (USENIX ATC 11). USENIX Associa-
tion, Portland, OR. https://www.usenix.org/conference/usenixatc11/
viommu-efficient-iommu-emulation

[9] Nadav Amit, Amy Tai, and Michael Wei. 2020. Don’t shoot down TLB
shootdowns!. In Proceedings of the Fifteenth European Conference on
Computer Systems (EuroSys’20). 1–14.

[10] Nadav Amit, Dan Tsafrir, and Assaf Schuster. 2014. VSwapper: a
memory swapper for virtualized environments. In Proceedings of the
19th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Salt Lake City, Utah, USA)
(ASPLOS ’14). Association for Computing Machinery, New York, NY,
USA, 349–366. https://doi.org/10.1145/2541940.2541969

[11] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. 2010. A view of cloud comput-
ing. Commun. ACM 53, 4 (apr 2010), 50–58. https://doi.org/10.1145/
1721654.1721672

[12] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003.
Xen and the Art of Virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03) (ACM SIGOPS
Operating Systems Review, Vol. 37, 5). ACM Press, New York, NY, USA,
164–177. https://doi.org/10.1145/945445.945462

[13] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski, Karl Rister, Alexis
Bruemmer, and Leendert Van Doorn. 2007. The price of safety: Evalu-
ating IOMMU performance. In Proceedings of the Linux Symposium.
9–20.

[14] Callum Cameron, Jeremy Singer, and David Vengerov. 2015. The
judgment of forseti: economic utility for dynamic heap sizing of
multiple runtimes. In Proceedings of the 2015 International Sympo-
sium on Memory Management (Portland, OR, USA) (ISMM ’15). As-
sociation for Computing Machinery, New York, NY, USA, 143–156.
https://doi.org/10.1145/2754169.2754180

[15] Chao-Rui Chang, Jan-Jan Wu, and Pangfeng Liu. 2011. An Empirical
Study on Memory Sharing of Virtual Machines for Server Consoli-
dation. In 2011 IEEE Ninth International Symposium on Parallel and
Distributed Processing with Applications. USENIX Association, USA,
244–249. https://doi.org/10.1109/ISPA.2011.31

[16] Compute Express Link Consortium, Inc. 2020. CXL Specification,
Revision 2.0.

[17] P.J. Denning. 1980. Working Sets Past and Present. IEEE Transactions
on Software Engineering SE-6, 1 (1980), 64–84. https://doi.org/10.1109/
TSE.1980.230464

[18] Peter J. Denning. 1967. Theworking setmodel for program behavior. In
Proceedings of the First ACM Symposium on Operating System Principles
(SOSP ’67). Association for Computing Machinery, New York, NY, USA,
15.1–15.12. https://doi.org/10.1145/800001.811670

[19] Alexander Fuerst, Ahmed Ali-Eldin, Prashant Shenoy, and Prateek
Sharma. 2020. Cloud-scale VM-deflation for Running Interactive Ap-
plications On Transient Servers. In Proceedings of the 29th International
Symposium on High-Performance Parallel and Distributed Computing
(Stockholm, Sweden) (HPDC ’20). Association for Computing Machin-
ery, New York, NY, USA, 53–64. https://doi.org/10.1145/3369583.
3392675

[20] Luis A. Garrido, Rajiv Nishtala, and Paul Carpenter. 2019. SmarTmem:
Intelligent Management of Transcendent Memory in a Virtualized
Server. In 2019 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 911–920. https://doi.org/10.1109/
IPDPSW.2019.00151

[21] Mel Gorman and Patrick Healy. 2008. Supporting superpage alloca-
tion without additional hardware support. In Proceedings of the 7th
international symposium on Memory management - ISMM ’08. ACM
Press, Tucson, AZ, USA, 41. https://doi.org/10.1145/1375634.1375641

[22] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosen-
blum. 1999. Cellular Disco: resourcemanagement using virtual clusters
on shared-memory multiprocessors. In Proceedings of the Seventeenth
ACM Symposium on Operating Systems Principles (Charleston, South
Carolina, USA) (SOSP ’99). Association for Computing Machinery,
New York, NY, USA, 154–169. https://doi.org/10.1145/319151.319162

[23] David Hildenbrand and Martin Schulz. 2021. virtio-mem: paravir-
tualized memory hot(un)plug. In Proceedings of the 17th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (Virtual, USA) (VEE 2021). Association for Computing Ma-
chinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3453933.
3454010

[24] Jingyuan Hu, Xiaokuang Bai, Sai Sha, Yingwei Luo, Xiaolin Wang,
and Zhenlin Wang. 2018. HUB: hugepage ballooning in kernel-
based virtual machines. In Proceedings of the International Sympo-
sium on Memory Systems (Alexandria, Virginia, USA) (MEMSYS ’18).
Association for Computing Machinery, New York, NY, USA, 31–37.
https://doi.org/10.1145/3240302.3240420

[25] Song Jiang and Xiaodong Zhang. 2001. Adaptive Page Re-
placement to Protect Thrashing in Linux. In 5th Annual Linux
Showcase & Conference (ALS 01). USENIX Association, Oakland,
CA. https://www.usenix.org/conference/als-01/adaptive-page-
replacement-protect-thrashing-linux

[26] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2006. Geiger: monitoring the buffer cache in a virtual ma-
chine environment. In Proceedings of the 12th International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems (San Jose, California, USA) (ASPLOS XII). Associa-
tion for Computing Machinery, New York, NY, USA, 14–24. https:
//doi.org/10.1145/1168857.1168861

[27] T. Kilburn, D.B.G. Edwards, M.J. Lanigan, and F.H. Sumner. 1962. One-
Level Storage System. IRE Transactions on Electronic Computers EC-11,
2 (April 1962), 223–235. https://doi.org/10.1109/TEC.1962.5219356

13

https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://developer.arm.com/documentation/ihi0070/latest
https://doi.org/10.1145/1168857.1168860
https://doi.org/10.1145/2627422
https://doi.org/10.1145/2576195.2576197
https://www.usenix.org/conference/usenixatc11/viommu-efficient-iommu-emulation
https://www.usenix.org/conference/usenixatc11/viommu-efficient-iommu-emulation
https://doi.org/10.1145/2541940.2541969
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/2754169.2754180
https://doi.org/10.1109/ISPA.2011.31
https://doi.org/10.1109/TSE.1980.230464
https://doi.org/10.1109/TSE.1980.230464
https://doi.org/10.1145/800001.811670
https://doi.org/10.1145/3369583.3392675
https://doi.org/10.1145/3369583.3392675
https://doi.org/10.1109/IPDPSW.2019.00151
https://doi.org/10.1109/IPDPSW.2019.00151
https://doi.org/10.1145/1375634.1375641
https://doi.org/10.1145/319151.319162
https://doi.org/10.1145/3453933.3454010
https://doi.org/10.1145/3453933.3454010
https://doi.org/10.1145/3240302.3240420
https://www.usenix.org/conference/als-01/adaptive-page-replacement-protect-thrashing-linux
https://www.usenix.org/conference/als-01/adaptive-page-replacement-protect-thrashing-linux
https://doi.org/10.1145/1168857.1168861
https://doi.org/10.1145/1168857.1168861
https://doi.org/10.1109/TEC.1962.5219356


1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

EUROSYS’25, March 30–April 3, 2025, Rotterdam Anon. Submission Id: 517

1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

[28] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
2007. kvm: the Linux virtual machine monitor. In Proceedings of the
Linux symposium, Vol. 1. Dttawa, Dntorio, Canada, 225–230.

[29] Lawrence Livermore National Laboratory. 2014. CORAL Benchmark
Codes. https://asc.llnl.gov/coral-benchmarks, visited 2024-05-04.

[30] Viktor Leis, AdnanAlhomssi, Tobias Ziegler, Yannick Loeck, and Chris-
tian Dietrich. 2023. Virtual-Memory Assisted Buffer Management. In
Proceedings of the ACM SIGMOD/PODS International Conference on
Management of Data (Seattle, WA, USA). ACM, New York, NY, USA.
https://doi.org/10.1145/3588687

[31] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grim-
berg, Liran Liss, Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. 2017.
Page Fault Support for Network Controllers. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2017, Xi’an,
China, April 8-12, 2017. 449–466. https://doi.org/10.1145/3037697.
3037710

[32] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bian-
chini. 2023. Pond: CXL-Based Memory Pooling Systems for Cloud
Platforms. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS ’23), Volume 2 (Vancouver, BC, Canada). As-
sociation for Computing Machinery, New York, NY, USA, 574–587.
https://doi.org/10.1145/3575693.3578835

[33] Dan Magenheimer, Chris Mason, Dave McCracken, and Kurt Hackel.
2009. Transcendent memory and linux. In Proceedings of the Linux
Symposium. Citeseer, 191–200.

[34] Sunilkumar S. Manvi and Gopal Krishna Shyam. 2014. Resource
management for Infrastructure as a Service (IaaS) in cloud computing:
A survey. Journal of Network and Computer Applications 41 (2014),
424–440. https://doi.org/10.1016/j.jnca.2013.10.004

[35] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent
Page Placement for CXL-Enabled Tiered-Memory. In Proceedings of
the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’23), Volume 3
(Vancouver, BC, Canada). Association for Computing Machinery, New
York, NY, USA, 742–755. https://doi.org/10.1145/3582016.3582063

[36] Hasan Al Maruf, Yuhong Zhong, HongyiWang, Mosharaf Chowdhury,
Asaf Cidon, and Carl Waldspurger. 2023. Memtrade: Marketplace for
Disaggregated Memory Clouds. Proc. ACM Meas. Anal. Comput. Syst.
7, 2, Article 41 (may 2023), 27 pages. https://doi.org/10.1145/3589985

[37] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance
in Current High Performance Computers. IEEE Computer Society
Technical Committee on Computer Architecture (TCCA) Newsletter 2
(Dec. 1995), 19–25.

[38] Debadatta Mishra and Purushottam Kulkarni. 2018. A survey of
memory management techniques in virtualized systems. Computer
Science Review 29 (2018), 56–73. https://doi.org/10.1016/j.cosrev.2018.
06.002

[39] Germán Moltó, Miguel Caballer, and Carlos de Alfonso. 2016. Au-
tomatic memory-based vertical elasticity and oversubscription on
cloud platforms. Future Generation Computer Systems 56 (2016), 1–10.
https://doi.org/10.1016/j.future.2015.10.002

[40] Ashish Panwar, Naman Patel, and K. Gopinath. 2016. A Case for
Protecting Huge Pages from the Kernel. In Proceedings of the 7th ACM
SIGOPS Asia-Pacific Workshop on Systems (Hong Kong, Hong Kong)
(APSys ’16). Association for Computing Machinery, New York, NY,
USA, Article 15, 8 pages. https://doi.org/10.1145/2967360.2967371

[41] Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge
Pages Actually Useful. In Proceedings of the Twenty-Third International

Conference on Architectural Support for Programming Languages and
Operating Systems (Williamsburg, VA, USA) (ASPLOS ’18). Association
for Computing Machinery, New York, NY, USA, 679–692. https:
//doi.org/10.1145/3173162.3173203

[42] Jan S. Rellermeyer, Maher Amer, Richard Smutzer, and Karthick Raja-
mani. 2018. Container Density Improvements with Dynamic Memory
Extension using NAND Flash. In Proceedings of the 9th Asia-Pacific
Workshop on Systems (Jeju Island, Republic of Korea) (APSys ’18). As-
sociation for Computing Machinery, New York, NY, USA, Article 10,
7 pages. https://doi.org/10.1145/3265723.3265740

[43] Rusty Russell. 2008. virtio: towards a de-facto standard for virtual
I/O devices. SIGOPS Oper. Syst. Rev. 42, 5 (jul 2008), 95–103. https:
//doi.org/10.1145/1400097.1400108

[44] Joel Schopp, Dave Hansen, Mike Kravetz, Hirokazu Takahashi, Toshi-
hiro Iwamoto, Yasunori Goto, Hiroyuki Kamezawa, Matt Tolentino,
and Bob Picco. 2005. Hotplug memory redux. In Proceedings of the
Linux Symposium. 151.

[45] Joel H Schopp, Keir Fraser, and Martine J Silbermann. 2006. Resiz-
ing memory with balloons and hotplug. In Proceedings of the Linux
Symposium, Vol. 2. 313–319.

[46] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019.
Architectural Implications of Function-as-a-Service Computing. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association
for Computing Machinery, New York, NY, USA, 1063–1075. https:
//doi.org/10.1145/3352460.3358296

[47] Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy. 2019. Re-
source Deflation: A New Approach For Transient Resource Reclama-
tion. In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden,
Germany) (EuroSys ’19). Association for Computing Machinery, New
York, NY, USA, Article 33, 17 pages. https://doi.org/10.1145/3302424.
3303945

[48] Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy. 2019. Re-
source Deflation: A New Approach For Transient Resource Reclama-
tion. In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden,
Germany) (EuroSys ’19). Association for Computing Machinery, New
York, NY, USA, Article 33, 17 pages. https://doi.org/10.1145/3302424.
3303945

[49] SPEC. 2022. SPEC CPU® 2017. https://www.spec.org/cpu2017/,
visited 2024-05-03.

[50] Matthias Springer and Hidehiko Masuhara. 2019. Massively parallel
GPU memory compaction. In Proceedings of the 2019 ACM SIGPLAN
International Symposium on Memory Management. 14–26.

[51] Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, and Yaozu Dong. 2020.
coIOMMU: A Virtual IOMMUwith Cooperative DMA Buffer Tracking
for Efficient Memory Management in Direct I/O. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20). USENIX Association,
479–492. https://www.usenix.org/conference/atc20/presentation/tian

[52] Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg. 2018.
Tableau: a high-throughput and predictable VM scheduler for high-
density workloads. In Proceedings of the Thirteenth EuroSys Conference
(Porto, Portugal) (EuroSys ’18). Association for Computing Machinery,
New York, NY, USA, Article 28, 16 pages. https://doi.org/10.1145/
3190508.3190557

[53] Carl A. Waldspurger. 2003. Memory resource management in VMware
ESX server. SIGOPS Oper. Syst. Rev. 36, SI (dec 2003), 181–194. https:
//doi.org/10.1145/844128.844146

[54] Xiaolin Wang, Jiarui Zang, Zhenlin Wang, Yingwei Luo, and Xiaom-
ing Li. 2011. Selective hardware/software memory virtualization. In
Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (Newport Beach, California, USA)
(VEE ’11). Association for Computing Machinery, New York, NY, USA,
217–226. https://doi.org/10.1145/1952682.1952710

14

https://asc.llnl.gov/coral-benchmarks
https://doi.org/10.1145/3588687
https://doi.org/10.1145/3037697.3037710
https://doi.org/10.1145/3037697.3037710
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1016/j.jnca.2013.10.004
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1145/3589985
https://doi.org/10.1016/j.cosrev.2018.06.002
https://doi.org/10.1016/j.cosrev.2018.06.002
https://doi.org/10.1016/j.future.2015.10.002
https://doi.org/10.1145/2967360.2967371
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3265723.3265740
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/3352460.3358296
https://doi.org/10.1145/3352460.3358296
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1145/3302424.3303945
https://www.spec.org/cpu2017/
https://www.usenix.org/conference/atc20/presentation/tian
https://doi.org/10.1145/3190508.3190557
https://doi.org/10.1145/3190508.3190557
https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/1952682.1952710


1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595

HyperAlloc: Efficient VM Memory De/Inflation via Hypervisor-Shared Page-Frame Allocators EUROSYS’25, March 30–April 3, 2025, Rotterdam

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650

[55] Yaohui Wang, Ben Luo, and Yibin Shen. 2023. Efficient Memory Over-
commitment for I/O Passthrough Enabled VMs via Fine-grained Page
Meta-data Management. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23). USENIX Association, Boston, MA, 769–783. https:
//www.usenix.org/conference/atc23/presentation/wang-yaohui

[56] Lars Wrenger, Florian Rommel, Alexander Halbuer, Christian Dietrich,
and Daniel Lohmann. 2023. LLFree: Scalable and Optionally-Persistent
Page-Frame Allocation. In 2023 USENIX Annual Technical Conference
(USENIX ’23). USENIX Association, Boston, MA, 897–914. https:

//www.usenix.org/conference/atc23/presentation/wrenger
[57] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,

Yuanyuan Zhou, and Sanjeev Kumar. 2004. Dynamic tracking of page
miss ratio curve for memory management. In Proceedings of the 11th
International Conference on Architectural Support for Programming
Languages and Operating Systems (Boston, MA, USA) (ASPLOS XI).
Association for Computing Machinery, New York, NY, USA, 177–188.
https://doi.org/10.1145/1024393.1024415

15

https://www.usenix.org/conference/atc23/presentation/wang-yaohui
https://www.usenix.org/conference/atc23/presentation/wang-yaohui
https://www.usenix.org/conference/atc23/presentation/wrenger
https://www.usenix.org/conference/atc23/presentation/wrenger
https://doi.org/10.1145/1024393.1024415

	Abstract
	1 Introduction
	2 Problem Analysis
	3 HyperAlloc: Bilateral Memory Allocation
	3.1 HyperAlloc in a Nutshell
	3.2 Reclamation States
	3.3 Management Policies

	4 HyperAlloc in Linux
	4.1 LLFree Overview
	4.2 Integration with LLFree and KVM

	5 Evaluation
	5.1 Benchmark Competitors
	5.2 Environment
	5.3 Reclamation Speed
	5.4 Guest Performance Impact
	5.5 Automatic Soft Reclamation

	6 Discussion
	7 Related Work
	8 Conclusion
	References

