
HyperAlloc: Efficient VM Memory De/Inflation via
Hypervisor-Shared Page-Frame Allocators
Lars Wrenger

wrenger@sra.uni-hannover.de
Leibniz Universität Hannover

Hannover, Germany

Kenny Albes
albes@sra.uni-hannover.de
Leibniz Universität Hannover

Hannover, Germany

Marco Wurps
marco.wurps@proton.me

Leibniz Universität Hannover
Hannover, Germany

Christian Dietrich
dietrich@ibr.cs.tu-bs.de

Technische Universität Braunschweig
Braunschweig, Germany

Daniel Lohmann
lohmann@sra.uni-hannover.de
Leibniz Universität Hannover

Hannover, Germany

Abstract
The provisioning of the right amount of DRAM to virtual
machines (VMs) is still a major challenge and cost driver
in virtualization settings. Many VMs run applications with
highly volatile memory demands, which either leads to mas-
sive overprovisioning in low-demand phases or poor QoS
in high-demand phases. Memory hotplugging and ballooning
have become established techniques (in Linux/KVMavailable
via virtio-mem and virtio-balloon) to dynamically de/inflate
the physical memory of a VM cooperatively, by having the
guests give back unused memory to the hypervisor. However,
current VM deflation techniques are either not DMA-safe,
preventing the passthrough of important devices like GPUs
or NICs, or are not flexible or fast enough to cope with the
frequently changing demands of the guest.
We present HyperAlloc, a DMA-safe and extremely effi-

cient mechanism for virtual machine de/inflation. The core
idea is to provide the hypervisor direct access to the guest’s
page-frame allocator, greatly reducing the communication
overhead. HyperAlloc can shrink virtual machines 362 times
faster than virtio-balloon and 10 times faster than virtio-
mem while having no measurable impact on the guest’s per-
formance. HyperAlloc’s automatic reclamation provides for
better memory elasticity by reducing the average memory
footprint of a clang compilation by 17 percent compared to
virtio-balloon’s free-page reporting while, again, having no
measurable impact on the guest’s performance.

CCS Concepts: • Software and its engineering→Virtual
machines; Cloud computing; Allocation / deallocation
strategies; Virtual memory; • Computing methodologies
→ Shared memory algorithms.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
EuroSys ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1196-1/2025/03
https://doi.org/10.1145/3689031.3717484

Keywords: Virtual Machines, Ballooning, Overcommitment,
Allocators

ACM Reference Format:
Lars Wrenger, Kenny Albes, Marco Wurps, Christian Dietrich,
and Daniel Lohmann. 2025. HyperAlloc: Efficient VM Memory
De/Inflation via Hypervisor-Shared Page-Frame Allocators. In
Twentieth European Conference on Computer Systems (EuroSys ’25),
March 30-April 3, 2025, Rotterdam, Netherlands. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3689031.3717484

1 Introduction
Physical memory is generally considered to be the scarcest re-
source in cloud computing. Its provisioning remains a major
challenge for providers due to the high hardware and energy
costs of DRAM on the one side and quality of service (QoS)
demands on the other. DRAM already accounts for over 30
percent of Meta’s rack costs and power consumption [35].
Hence, good utilization of the scarce physical memory re-
sources across multiple VMs is of utmost importance.
However, compared to other resources, the preemption

and virtualization costs of memory are much higher: While
it is technically easy and cheap for a hypervisor to dynam-
ically detect (and redistribute) underutilized processors or
network interfaces, it is a lot more expensive to do the same
with idle memory. This limits elasticity, as many VM work-
loads exhibit highly fluctuating memory demands over the
different phases of their execution [24]. Fuerst et al. have
shown [19] that the memory resources of VMs running on
Azure and Alibaba could be deflated by 30–50 percent most
of their time for a performance impact of less than 1 percent.
Memory overcommitment [53] would increase utiliza-

tion; however, cloud providers often refrain from doing
this aggressively due to the difficulties of still providing
their customers a defined QoS [6]. Instead, they strive to-
wards more elasticity by finer-grained cost models for phys-
ical memory usage. An example is Amazon, which charges
customers by GiB·s (GiB times seconds) on their Lambda
function-as-a-service (FaaS) infrastructure. However, com-
pared to the on-demand microservices in FaaS settings, VM

https://orcid.org/0009-0006-9583-6207
https://orcid.org/0009-0009-6830-3212
https://orcid.org/0009-0000-9187-4130
https://orcid.org/0000-0001-9258-0513
https://orcid.org/0000-0001-8224-4161
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3689031.3717484
https://doi.org/10.1145/3689031.3717484

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Wrenger et al.

instances running in the cloud have much longer lifespans
and much higher preemption costs, which imposes chal-
lenges for transferring such pricing model to infrastructure-
as-a-service (IaaS) settings.
Cooperative VM Memory De/Inflation Nevertheless,
many clients would prefer to pay only for the memory they
actually need at a given time [5, 11]. Some authors have even
suggested real-time auctioning of physical memory among
VMs [6]. However, being accustomed to virtual memory,
clients usually do not know how much physical memory
they need. But their OS does! With an extra component run-
ning as a proxy inside the guest VM’s OS, the hypervisor can
approach the guest’s physical memory-management subsys-
tem to find idling (unutilized) page frames in low-demand
phases, which it then safely can reclaim. Examples of such
cooperative reclaiming techniques include memory balloon-
ing [24], memory hotplugging [23], and memory probing
[55]. While these techniques have proven useful in practice,
we argue that they are still not flexible or fast enough to cope
with frequently changing guest demands because of their
high overheads for probing, communication, and guest-side
defragmentation. Additionally, some of them are not DMA-
safe, preventing the pass though of devices like GPUs into
VMs [55].
Our Contributions We present HyperAlloc,1 a new ap-
proach for virtual machine de/inflation. HyperAlloc inte-
grates the concept of cooperative memory management di-
rectly into the guest’s page-frame allocator, which it accesses
via a lock-free memory-mapped interface, greatly reducing
the communication overhead. In our evaluation with Lin-
ux/QEMU, HyperAlloc shrinks VMs up to 362 times faster
than virtio-balloon and 10 times faster than virtio-mem.
By its direct integration into the guest’s page-frame al-

locator, HyperAlloc additionally provides DMA safety by
design, including also reclamation in VMs that require de-
vice passthrough. Its automatic reclamation mode reduces
the memory footprint (in GiB·s) of a clang compilation by
17 percent compared to virtio-balloon’s free-page reporting
without any significant impact on the guest’s performance.

2 Problem Analysis
We first discuss the fundamental challenges for the
hypervisor-guest memory interface on the example of the
existing approaches, laying the ground for our HyperAlloc
design, as well as providing an overview of the directly re-
lated work. Fundamentally, in all cases, the hypervisor relies
on a cooperating guest that points it to reclaimable memory,
which ideally does not contain data that has to be migrated,
saved, or restored.

In the case of memory ballooning [45, 53], the hypervisor
interacts with a guest-level kernel module (called the balloon
driver) that allocates guest-physical frames from the guest’s
1Available at github.com/luhsra/hyperalloc-bench

page-frame allocator and reports them back to the hypervisor.
The hypervisor then can remove the respective frames from
the VM and its extended page tables (EPTs), shrinking the
amount of host-physical memory available for the guest. To
give back memory, the hypervisor instructs the guest-level
kernel module to free the previously allocated frames, which
on the next access are faulted (back) into the EPT.

Elasticity The virtio-balloon implementation [43] for Lin-
ux/QEMU provides an additional automatic mode (free page
reporting), where the balloon driver periodically reports free
frames to the hypervisor to be reclaimed, facilitating dy-
namic memory elasticity. Automatically reclaimed frames
are not allocated from the guest’s allocater, but remain logi-
cally free for the guest so that they can still be allocated. If
this happens, they are as above faulted (back) into the EPT
on the next access.
As virtio-balloon reclaims individual 4 KiB pages, it has

to issue a lot of hypercalls and subsequent unmap syscalls
on the host and may induce many EPT faults. This can lead
to a substantial performance overhead. Hu et al. [24] have
shown that the overhead could be significantly improved by
increasing the granularity to 2MiB huge pages.

DMA Safety The substantial limitation of virtio-balloon
is that it cannot be used in conjunction with device
passthrough. As described above, a reclaimed guest-physical
frame is logically still available to the guest’s allocator, which
itself is not aware of reclamation and, hence, might select
it upon some allocation. If this frame is then accessed by a
CPU, an EPT fault occurs, in which the hypervisor actually
installs a host-physical frame for it. However, if the guest
has instead given the frame to a peripheral device for DMA,
the DMA transfer will fail, as most DMA-capable devices
are unable to trigger IO page faults [8, 51]. Additionally, the
DMA memory has to be pinned on the hypervisor side to
prevent swapping ormigration (e.g., by Linux’smemory com-
paction or same-page merging). So due to its reliance on page
faults, virtio-balloon is inherently incompatible with device
passthrough, which limits its applicability for IO-intensive
applications.

Hildenbrand and Schulz [23] suggest to use memory hot-
plugging [45] as a DMA-safe alternative to ballooning. In
virtio-mem, the hypervisor interacts with a guest-level hot-
plug driver to extend/shrink the guest-physical memory by
adding/removing virtual DIMMs at 2MiB granularity. DMA
safety is achieved by prepopulating all guest-physical frames
for blocks when they are “plugged-in”; hence, no EPT and IO
page faults will occur later on. However, this pre-population
leads to overprovisioning. Furthermore, virtio-mem does not
support elasticity by automatic reclamation.
To overcome this, Wang et al. [55] propose VProbe, an

automatic deflation mechanism that also provides for DMA
safety. Here, the hypervisor gets memory-mapped access to
the Linux guest’s physical-frame metadata (struct page),

https://github.com/luhsra/hyperalloc-bench

HyperAlloc: Efficient VM Memory De/Inflation via Shared Page-Frame Allocators EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

which also contains the frame’s reference counter. Thereby,
VProbe can automatically detect and reclaim unused mem-
ory (refcount=0) without the need for explicit host–guest
communication. For DMA safety, VProbe needs to detect
when a reclaimed frame is allocated by the guest’s alloca-
tor. For this, it write-protects the underlying struct page

in the EPT. As a side effect of allocation, the Linux buddy
allocator increases the refcount in struct page, so an EPT
fault occurs, in which the hypervisor can repopulate the
guest-physical page. However, as the guest’s allocator still
remains agnostic to reclaimed memory, contradicting allo-
cation patterns may lead to a high number of faults and
un/map operations – when the guest frequently allocates re-
claimed frames even though others are available. The Linux
buddy allocator, for instance, maintains per-core caches of
free frames to reduce contention; the respective frames have
a much higher probability of being allocated next [56].

3 HyperAlloc: Bilateral Memory Allocation
Instead of such indirect interaction with the guest’s page-
frame allocator via guest-level proxies or side effects of al-
location, HyperAlloc overcomes all these limitations by the
direct integration with the guest’s allocator. In particular,
we give the hypervisor write access to the allocator state so
that it can detect and directly mark guest-physical pages as
allocated or reclaimed; the allocator is used bilaterally by
both guest and hypervisor. For our implementation, we build
upon LLFree, a scalable page-frame allocator suggested by
Wrenger et al. [56], which replaces the Linux buddy alloca-
tor. LLFree is particularly suitable for our approach due to
its lock-free and pointer-free design, which constructively
avoids control-flow dependencies between hypervisor and
guest, as all operations are implemented by atomic memory
transactions.

3.1 HyperAlloc in a Nutshell
Fig. 1 gives an overview of the HyperAlloc approach and
illustrates the process of reclaiming unused memory from
a VM without transitioning to the guest: In a QEMU/KVM
setup, the virtual-machine monitor is split into an in-kernel
part (KVM) that abstracts hardware-virtualization primitives
(i.e., EPTs, virtual CPUs) for a user-space monitor process
(QEMU) that emulates devices and decides on high-level
resources (e.g., memory size).
With HyperAlloc, the QEMU monitor has shared access

to the guest-physical allocator’s state to identify unused
memory and to mark memory as reclaimed/allocated for
the guest. For example, if we want to shrink the maximally
available guest memory, we can remove the host-physical
frame 47 (HP47), which is available as guest-physical frame
1 (GP1) and currently marked as free, as follows:

➊ HyperAlloc marks GP1 as evicted and allocated in the
guest-physical allocator’s state, which tells the guest
not to allocate or access this huge page.

➋ It unmaps the host-physical frame HP47 from the EPT
and the IOMMU page tables via standard KVM inter-
faces, giving it back to the host allocator.

➌ The QEMU monitor updates HyperAlloc’s authorita-
tive reclamation state for GP1 to hard reclaimed (H),
which marks, in contrast to soft reclaimed (S), that the
frame should not be repopulated on demand.

3.2 Reclamation States
In the following, we look at the abstract state of a single
memory page frame and its state transitions during recla-
mation. While we usually reclaim memory on huge-page
granularity, our HyperAlloc concept is not restricted to this
granularity. In Sec. 4.1, we will discuss the mapping of these
states to the LLFree allocator.
Page States For HyperAlloc, the state of a page (Fig. 2) is
a tuple with four elements that consists of a host (𝑀 , 𝑅) and
a guest part (𝐸, 𝐴). Only the guest part is accessible by both
parties to ensure safety and security. On the host side, we
have:

𝑀 ↦→ {0, 1}: Mapped indicateswhether the page is backed
with host-physical memory in all relevant hypervisor-
level page tables (i.e., EPT, IOMMU).

𝑅 ↦→ {𝐼 , 𝑆 ,𝐻 }: In the reclamation state, HyperAlloc
keeps track whether a page is currently Installed, Soft
reclaimed, or Hard reclaimed. For a reclaimed page
𝑀 = 0 holds.

On the guest side, we additionally maintain:
𝐸 ↦→ {0, 1}: The evicted hint informs the guest that the

pagewas reclaimed and is not backed by physical mem-
ory. 𝐸 is a one-way synchronized copy of ¬𝑀 .

𝐴 ↦→ {0, 1}: Allocated indicates whether the huge page,
or parts of it, is allocated within the guest.

Guest-Level Allocation The guest’s physical-memory al-
locator can free and allocate non-evicted frames by toggling
the allocated flag (blue arrows in Fig. 2) without hypervisor
interaction. Only for allocations of evicted pages (𝐸 = 1), the
guest has to trigger the hypervisor (via virtio-queue) once
to install a host-physical page and also remove the evicted
hint (𝐸 ← 0).
Reclamation HyperAlloc can reclaim memory that is not
allocated (𝐴 = 0) by the guest in two modes: hard and soft
reclamation. For hard reclamation (𝑅 ← H), where the goal
is to remove the memory permanently (i.e., reducing the
maximal guest memory), the host marks the frame for the
guest as allocated and evicted (𝐴← 1,𝐸 ← 1). This ensures
that the frame is not available for the guest allocator. For
soft reclamation, the QEMU monitor only sets the evicted
hint (𝐴 = 0,𝐸 ← 1), keeping the frame as usable for guest

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Wrenger et al.

KVM Hypervisor

exclusively attached

QEMU Monitor KVM Virtual MachinecontrolsPeripheral Devices

Guest Physical MemoryI/O Virtual Address Space

HP34 HP47HP34 HP47

GP0GP0 GP1GP1 GP2GP2 GP3GP3
Mem Objs.

(un-)map
Host Physical

VFIO Objs

(un-)m
ap

Host Physic
al

LL
Fr

ee

LLFree Allocator
alloc’d
(4K)

free
(4K)

free
(2M)

evicted
+free

evicted
+alloc’d

Guest Virtual Memory
(de-)allocate

guest physical memory
(4K, 8K,...,2M,4M)

Shared
Mapping

I I S H
Reclaim State

Network Card

DMA
Access inaccessible

for devices

Reclamation

Extended Page TablesIOMMU Page Tables

➊ Evict (+ allocate) 2 MiB

➋ Unmap host phys. mem
➌ Update reclaim state

The controlling QEMU monitor has shared-memory access to the VM’s allocator state and marks those huge pages as
evicted/allocated that it removes from the EPT and the IOMMU page table. The virtual machine requests (not shown) evicted

huge pages on allocation from the monitor, thus ensuring DMA safety.

Figure 1. Overview of HyperAlloc Concept.

Host State

R: I
M: 1

R: S
M: 0

R: H
M: 0

hardreclaim

in
st

al
l soft

reclaim

return

hard

reclaim
1⃝

tri
gg

er

Guest State

A: 0
E: 0

A: 0
E: 1

A: 1
E: 1

A: 1
E: 0

alloc

free

1⃝ alloc

hardreclaim

hard

reclaim

return

soft
reclaim

Guest Operation

Host Operation

Host Op. (in auto mode)

controls

(triggers)

R: S
M: 0

A: 0
E: 1EPT Mapped

Reclaim State Alloc’d Flag

Evicted Hint
Combined State for one

2 MiB Page Frame

Figure 2. State Transition Diagram for one Memory Frame

allocations but at a higher cost. After updating the guest
state, we remove (𝑀 ← 0) the frame from all guest-accessible
mappings (i.e., EPT and IOMMU), perform TLB invalidations,
return the memory to the host allocator, and update 𝑅.
In both reclamation modes, the guest is informed about

the reclaimed state of the frame, which he can use to steer
its allocation policy. In our prototype, we extended LLFree
to prefer non-evicted over evicted frames for allocations.

Return and Install The hypervisor can explicitly be in-
structed (e.g., via the management console) to return hard-
reclaimed memory to the guest by setting the state of the
respective frames to soft-reclaimed on both sides (𝐴 ← 0,
𝐸 = 1) and (𝑅 ← S). This allows us to implement a flexible
soft limit while having an adaptable hard limit.

To actually install soft-reclaimed frames, we let the guest
allocator issue a hypercall on allocation, which triggers the

hypervisor to provide host memory, map it in all guest-
accessible page tables, and update its reclamation state. The
allocation waits for this hypercall to terminate before return-
ing the allocated frame. This is necessary because the con-
ventional method of installing memory on access (i.e., wait-
ing for the EPT fault) is not sufficient for DMA-safety, as
the OS is then still free to reclaim or remap the accessed
pages at any time (see Sec. 2). Instead, we explicitly pin the
VM’s memory pages with the hypercall when they are al-
located by the guest before they can be accessed. Still, this
install-on-allocate should perform equally good, as: (a) An
explicit hypercall is, performance-wise, not inherently more
expensive than an implicit EPT fault. (b) Unlike with virtual
memory, page frames requested from the guest’s physical
memory allocator are likely to be accessed shortly there-
after, so we cannot expect significant benefits from delayed
provisioning.

Invalid Guest States Like with any approach for coop-
erative host–guest memory management (e.g., ballooning
[24, 45, 53], hotplugging [23, 45]), both sides have to adhere
to an interaction protocol. For our reclamation protocol, both
guest and host inspect and update the shared per-frame guest
state. Therefore, we need to discuss the potential safety/se-
curity implications of non-conforming or malicious guests:

HyperAlloc never makes decisions upon 𝐸 but has its own
frame-state tracking (𝑅), making the 𝐸 flag a mere read-only
copy of 𝐸 ← (𝑅 ≠ I). Thus, a maliciously manipulated 𝐸 has
no impact on the hypervisor. Similarly, HyperAlloc updates
𝐴 on the hard reclamation and return transition, where we
set 𝐴 ← (𝑅 = 𝐻). Only for the reclamation decision, the
hypervisor inspects 𝐴 to find reclaimable pages. While this

HyperAlloc: Efficient VM Memory De/Inflation via Shared Page-Frame Allocators EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

allows a non-conforming guest to resist memory reclama-
tion (i.e., to not cooperate), it bears no safety or security
implications. Given a fine-grained memory pricing model,
the guest would just have to pay for the extra memory.

If the guest never triggers the install of a reclaimed frame,
we do not guarantee that accesses to it are successful. For
example, DMA transfers to such frames might fail, leading to
guest-side errors or even termination. However, this affects
only the non-conforming guest itself and cannot compromise
the hypervisor’s or other VMs’ security.
Regarding safety, we must also consider concurrent

host/guest operations: As we access the shared state exclu-
sively through atomic operations, the shared state itself does
not pose a problem. However, on the host side, concurrent
reclaim, return, and install operations may impose race con-
ditions inside the monitor. In our current implementation,
the hypervisor synchronizes these operations with a per-VM
lock. We also considered per-frame locking via a “lock” recla-
mation state but left this for future work, as we could barely
notice any contention, even for highly parallel workloads.

3.3 Management Policies
HyperAlloc uses the provided reclamationmechanisms (hard
and soft) to implement two management policies:
Adaptable Memory Hard Limit QEMU already supports
an adjustable upper memory limit, whose reduction below
the initial allocation is usually implemented via memory
ballooning or hotplugging. With HyperAlloc, we use hard
reclamation to decrease the maximal memory size of a guest
if triggered from the QEMU console or QEMU’s QOM API.
In contrast to others [23, 24, 45, 53], HyperAlloc usually does
not have to transition to the guest or stop it. Only if there is
not enough free memory in the guest’s allocator, we instruct
the guest to free the remaining memory from its caches and
retry our hard reclamation afterward. This cache purge com-
bined with the reservation of all free pages induces the same
memory pressure as virtio-balloon, potentially triggering
further memory reclamation mechanisms within the guest.
To increase the upper limit, we use the return operation

to add more soft-reclaimed guest-physical memory, delaying
the actual memory allocation until the guest triggers install.
While our current implementation does not allow growing a
VM beyond its initial memory allocation, it would be possible
to combine HyperAlloc with memory hotplugging (Sec. 6).
Soft Limit by Automatic Reclamation With automatic
reclamation enabled, HyperAlloc periodically removes un-
used frames from the running guest, shrinking the currently
attached host-physically memory. Every 5 seconds, we scan
the reclamation-state array for installed (𝑅 = 𝐼) pages and
inspect the guest’s allocator state if the page is free (𝐴 = 0).
Both data structures are densely packed, so this linear search
bears only a tiny cache load and, thus, minimal performance
impact. In our current implementation (2 bits for 𝑅, 16 bits

0

0
0

Used for
HyperAlloc

3

0
0

0

1
1

4

0
1

0

1
0

0

0
0

4

0
1

4

0
0

7

1
m

4

1
h

9

1
f

0

0
h

3

0
m

Bit Field

2 MiB Areas

Trees

512

8

Free counter

Allocated

Unmovable

Movable

Huge

- Reserved
- Kind

- Evicted Hint
- Allocated as HP

Guest: Reserved Trees Hypervisor

Interlayer connections (arrows) are not implemented with
pointers but via offset arithmetic.

Figure 3. LLFree Allocator State [56].

for 𝐴), we access 2·512
8·64 +

16·512
8·64 = 18 consecutive cache lines

to scan 1GiB of guest-physical memory for free huge pages.

4 HyperAlloc in Linux
To integrate HyperAlloc with Linux, we use and extend LL-
Free [56], a lock- and log-free allocator that replaces the
Linux buddy allocator and primarily focuses on multicore
scalability and fragmentation avoidance. For us, its lock-free
design enables the efficient access to the guest allocator from
different privilege levels, while its fragmentation-awareness
improves the availability of free huge frames to reclaim.

4.1 LLFree Overview
From a high-level perspective (Fig. 3), LLFree is a bitmap
allocator that uses two levels of free-counter indexes (trees
consist of areas) to speed up and steer the search for free
memory: For each base frame, a bit in the bit field indicates
whether it is free. An area covers 512 such bits, which corre-
sponds exactly to one huge frame and is associated with a
16-bit index entry. This entry includes a 9-bit counter indicat-
ing how many base frames are free and an allocated flag that
allows for the atomic allocation of the entire huge frame. If
the area counter is 512 and the flag indicates free, the covered
huge frame is entirely free and can be allocated as a huge
frame with a single compare-and-swap (CAS) operation.
A fixed number of consecutive areas (e.g., 8) form a tree,

whose index entry also contains a free-frame counter. Trees
are also essential for LLFree’s anti-fragmentation policy,
which tries to avoid allocating frames from “almost full”
trees (where most frames are free). For this, CPUs dynam-
ically reserve trees, preferring “half depleted” and “almost
depleted” over “almost full” trees, from which they allocate
memory until allocations fail. Due to this reservation pol-
icy, “almost full” trees (and areas) defragment without active
memory compaction.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Wrenger et al.

For HyperAlloc, two properties of the LLFree data struc-
tures are most important: (1) Bit fields and counter indices
are stored as densely packed arrays, where frame states can
be located through simple offset arithmetic without relying
on guest-side pointers. (2) All operations on the state are
performed lock-free using atomic CPU instructions only –
there are no locks involved.

4.2 Integration with LLFree and KVM
For our integration, we chose to reclaim unused memory on
the granularity of huge frames, which reduces the reclama-
tion overhead but also ties the reclamation effectiveness to
the huge-page fragmentation behavior of the guest.

State Mapping We integrate the guest part (𝐴, 𝐸) of Hy-
perAlloc’s per-frame state (see Fig. 2) into the area-index
entry and use the existing huge-frame–allocated flag for 𝐴.
As the area counter and flag require 11 bits, we can choose
one bit for the evicted hint (𝐸) from the 5 remaining bits. By
co-locating counter, allocated flag, and evicted hint in the
same 16-bit word, it is also ensured that the host can induce
guest transitions atomically with a CAS operation.

Reservation Policy Besides using the eviction hint for
the allocation policy, we also modified the tree-reservation
policy to further improve its fragmentation avoidance: The
original LLFree uses per-core tree reservations to avoid false
sharing. In our experiments, we saw that a few long-living al-
locations (e.g., in the page cache) provoke higher huge-frame
fragmentation. Therefore, we removed the per-core reserva-
tions in favor of per-type reservations: Linux distinguishes
between three allocation types, which usually have different
lifetimes: unmovable kernel allocations, movable user allo-
cations, and huge allocations. We separate these types into
different trees by having one global reservation per type and
by introducing a 2-bit type field in the tree-index entry. Our
application-level experiments showed no negative perfor-
mance impact of removing the per-core trees.We assume that
other bottlenecks within the memory-management of Linux,
as measured by Wrenger et al., dominate the results [56].
The per-type reservations lead to less fragmentation in

the long run. They also increase the effectiveness of Linux’s
active defragmentation (memory compaction). While Linux
developers have undertaken attempts to separate allocations,
our experiments showed that our LLFree-based type separa-
tion performs better, and increases the availability of huge
frames (see Sec. 5.5). Additionally, we reduced the tree size
from 32 areas (64MiB) to 8 areas (16MiB) to make the reser-
vation policy and its fragmentation avoidance more accurate.

Linux additionally divides the physical memory into zones
based on their physical address and NUMA locality. On x86,
there are the global DMA (16-bit addressable) and DMA32

(32-bit addressable) zones, plus for each NUMA node a Nor-
mal zone.2 Every populated zone has its individual LLFree
instance. When reclaiming memory, the host starts with the
LLFree instances of the Normal zones before continuing with
the DMA32 zone. The tiny DMA zone (16 KiB) is ignored.

Locating the Allocator State To interact with the guest
allocator, HyperAlloc has to locate the allocator state in mem-
ory. During boot, the guest uses virtio queues to commu-
nicate the guest-physical address of the LLFree metadata
to the QEMU monitor. LLFree’s compact state, consisting
mainly of the three state arrays, is well suited for sharing
with the hypervisor as it is only accessed by LLFree and does
not contain any unrelated metadata (unlike the struct page

used by VProbe [55]). The monitor maps the state into its
own virtual address space and creates a cloned LLFree object
that works on the shared state. From then on, both sides can
inspect and modify the same LLFree instance directly over
shared memory without a host-guest transition. This is done
for every memory zone of the guest and, respectively, every
LLFree instance.

KVM/QEMU Integration For our prototype, we decided
to integrate HyperAlloc into QEMU, the user-space moni-
tor for kernel-managed KVM guests (see Sec. 3.1). Thereby,
HyperAlloc requires no modifications to the host’s kernel.
The downside is that HyperAlloc, as a user-level component,
has no direct access to the related page tables but instead
has to use system calls to manipulate guest mappings. For
example, we have to use madvise(DONT_NEED) to remove
EPT mappings and VFIO for IOMMU mappings. Installing a
frame requires two mode switches (guest – QEMU – kernel),
whereas only one would be necessary if HyperAlloc were
part of KVM. To ease this issue, we aggregate huge frames
during reclamation and unmap them with a single syscall,
which has proven effective due to LLFree’s compact alloca-
tion behavior (linear scan) and anti-fragmentation policy.
Another disadvantage, which we share with all other

monitor-level deflation techniques [23, 24], is that KVM han-
dles EPT faults directly within the kernel without informing
the monitor process. This is a known limitation of KVM, by
which a non-conforming guest may allocate host-physical
memory for evicted frames without giving HyperAlloc the
possibility to update its reclamation state. The effects of such
behavior would be similar to those discussed in Sec. 3.2: The
extra memory does not imply security/safety issues, and the
host can detect it by comparing the reclamation state with
the resident-set size (RSS) of the QEMU process. Thus, in the
case of fine-grained memory accounting, the guest does not
benefit from this extra memory.

2The per-node Movable zone is usually empty on x86, as active defragmen-
tation is done in smaller granularities on this architecture.

HyperAlloc: Efficient VM Memory De/Inflation via Shared Page-Frame Allocators EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 1. Evaluation candidates and their properties.
Name Granu- Manual Auto DMA Implementation

larity Limit Mode Safety taken from

virtio-balloon 4 KiB � � × Debian 12
. . . -huge [24] 2MiB � � × Own reimpl.1

virtio-mem [23] 2MiB � × � Debian 12
VProbe [55] 4 KiB × � � unavailable
HyperAlloc 2MiB � � � Own1

1All artefacts are available at github.com/luhsra/hyperalloc-bench

5 Evaluation
Memory reclamation techniques compete in two dimensions:
The overhead of reclamation and the elasticity, that is, how
tight we can shrink a guest to its actual memory demand.

5.1 Benchmark Competitors
We compare HyperAlloc to the state-of-the-art memory de-
flation techniques (see Tab. 1). For ballooning, we chose
virtio-balloon, which is supported by both QEMU and Linux
out of the box. As its performance is limited by its 4 KiB
page granularity, we recreated huge-page ballooning from
Hu et al. [24] (virtio-balloon-huge). Both variants support
manual and automatic memory reclamation via free-page
reporting but, as they rely on page faults, are not DMA-safe
on their own [8, 51].

For memory hotplugging, we pick virtio-mem [23], which
is also part of QEMU but is mainly designed for growing
VMs efficiently. While shrinking the VM is possible, it can
only reliably reclaim memory from the Movable zone and
does not support automatic reclamation. However, it pro-
vides DMA safety, as all plug/unplug operations are explicit.
To quantify the performance impact of DMA safety, we mea-
sure HyperAlloc and virtio-mem with and without device
passthrough of a VFIO-managed network card. Although
our benchmarks do not use the card, its IO page tables must
be kept synchronized, resulting in additional runtime costs.
We also would have liked to compare against VProbe,

which provides for both auto deflation and DMA safety [55].
Unfortunately, the authors could not provide us with its
source code, as it relies on additional proprietary modifica-
tions that are only available within Alibaba’s environment.
We discuss their concept further in Sec. 6.

5.2 Environment
All experiments were conducted on a machine with two Intel
Xeon Gold 6252 CPUs (2x24 cores @ 2.1GHz) and 384GB
of DDR4 memory, split evenly across two NUMA nodes. To
increase reproducibility, we disabled Intel Hyper-Threading
and Turbo Boost, locked the cores to their maximum clock
speed, and pinned the VMs to the first node.
Both hypervisor and guest used Debian 12 (bookworm)

with a Linux 6.1 kernel and QEMU/KVM 8.2.50. While we
employed the provided Debian configuration for the host,
the guests used the default x86 kernel configuration with

10−1 100 101 102 103 104 105

Speed [GiB/s] - logarithmic

virtio-balloon
virtio-balloon-huge

virtio-mem
virtio-mem+VFIO

HyperAlloc
HyperAlloc+VFIO

Reclaim

10−1 100 101 102 103 104 105

Speed [GiB/s] - logarithmic

virtio-balloon
virtio-balloon-huge

virtio-mem
virtio-mem+VFIO

HyperAlloc
HyperAlloc+VFIO

Reclaim
 Untouched

10−1 100 101 102 103 104 105

Speed [GiB/s] - logarithmic

virtio-balloon
virtio-balloon-huge

virtio-mem
virtio-mem+VFIO

HyperAlloc
HyperAlloc+VFIO

Return

0 1 2 3 4 5 6
Speed [GiB/s] - linear

virtio-balloon
virtio-balloon-huge

virtio-mem
virtio-mem+VFIO

HyperAlloc
HyperAlloc+VFIO

Return + Install

Figure 4. Speed of reclaiming/returning memory (logarithmic
scale). For HyperAlloc this measures the hard reclamation.

enabled virtio, VFIO, and transparent huge pages. For the
HyperAlloc scenarios, we additionally replaced the buddy
allocator with LLFree [56] in the guest’s kernel and used
HyperAlloc instead of virtio-balloon/virtio-mem. For virtio-
balloon-huge, we used our reimplemented version from [24].
All kernel- and QEMU-variants were built with the LLVM
14.0.6 toolchain and the default compiler flags.

Unless specified otherwise, we used a VM with 12 vCPUs
and 20GiB of memory. For virtio-mem, we split that into
2GiB of regular and 18GiB hotpluggable system memory by
allowing virtio-mem to plug it into the movable zone, so it
can be unplugged later.

5.3 Reclamation Speed
First, we determine each candidate’s raw performance for
resizing a VM with four micro benchmarks:
Reclaim This is the speed for reclaiming and unmapping
memory from the VM, shrinking its memory footprint. We
ensure that the memory is present by writing into 19GiB
of guest pages3 before the benchmark.
Reclaim Untouched This measures the speed for reclaim-
ing memory that was unmapped before but has not been

3Requesting all 20 GiB would trigger an OOM error.

https://github.com/luhsra/hyperalloc-bench

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Wrenger et al.

accessed and installed since. For this, we reclaim the VM in
advance and grow it again before starting this benchmark.
Return This measures how fast we can return pages to
a VM, increasing the memory limit without allocating or
touching the returned memory.
Return+Install This measures how fast we can increase
the VM’s memory limit and access the returned pages. For
this, we use a guest-kernel module to allocate 19GiB of
memory3 and write into each 4KiB frame.

For the reclamation, we shrunk the VM’s hard limit to 2 GiB
(from 20GiB) and vice versa for returning. We repeated this
procedure 10 times for each candidate. The guest-kernel
module in return+install was executed single-threaded. Fig. 4
shows the achieved grow/shrink rate, while the error bars
denote the 95 percent confidence interval. Please note the
logarithmic x-axis for the first three graphs.
Reclaim The reclamation of touched memory is primarily
affected by the used granularity. Virtio-balloon, due to its
4 KiB page granularity, performs poorly with a speed of only
0.95GiB/s. Here, each 4KiB page is allocated, sent to the
hypervisor4 and discarded with an madvise syscall, which
results in significant transition overheads. These also occur if
the guest did not touch thememory. The speedup results only
from the reduced EPT-manipulation costs. Virtio-balloon-
huge with its 2MiB granularity mitigates this bottleneck,
increasing performance 143 times.
Similarly, virtio-mem also works with 2MiB huge pages.

Its performance falls in between the two previous candidates,
reaching speeds of 34GiB/s. Reclaiming untouched memory
is faster, as it is not faulted in and does not have to be un-
mapped by the hypervisor. Themain bottleneck in both cases
appears to be the hot(un)plugging infrastructure. With an
attached device, virtio-mem also has to manage the IOMMU
memory mappings with VFIO, which results in a 52 percent
slowdown. Since virtio-mem does neither interact with the
guest’s allocator nor uses a virtual IOMMU [8, 51], it only
achieves DMA safety by immediately pinning and mapping
all memory when the memory limit grows. When virtio-
mem+VFIO shrinks the VM, these operations are not only
reversed, but they also have to flush the IOTLB, even if the
memory was never touched. Because of this pre-population,
virtio-mem+VFIO shows no real difference between remov-
ing touched and untouched memory.

With a shrink rate of 344.8 GiB/s, HyperAlloc outperforms
all competitors, being 10 and 3 times faster than virtio-mem
and virtio-balloon-huge. Removing untouched memory is
even faster (4.92 TiB/s), since we only modify allocator and
reservation state, and can skip the expensive unmap oper-
ations. With an attached device, the IOMMU-management
overheads make shrinking 6.3 times slower; still HyperAl-
loc is the best DMA-safe technique. Removing untouched

4 Even though the hypercalls are aggregated (up to 256 pages per hypercall),
the other syscalls and page operations are not.

memory remains unaffected, as we only have to update the
IOMMU for memory that the guest previously allocated.

Return Growing the VM’s memory limit is faster for most
candidates, as the returned pages are populated lazily (on
EPT faults / install hypercalls). Again, virtio-balloon is the
slowest competitor and can only grow the VM with 2.3 GiB/s
as deflating the balloon requires that the previously allocated
4 KiB frames are returned one-by-one4 to the guest allocator.
Virtio-balloon-huge provides a sizable performance increase
(139×), with growing being about twice as fast as shrinking.

Virtio-mem can grow the memory limit by 102GiB/s, once
again falling short of virtio-balloon-huge. The reason for
this difference is that virtio-mem makes hypercalls for ev-
ery plugged 2MiB block, while the virtio-balloon(-huge)
guest driver returns pages without extra hypercalls (both
ultimately populate on EPT-fault). Virtio-mem with VFIO is
21× slower thanwithout VFIO because it has to pre-populate
the memory for DMA-safety.

HyperAlloc outperforms all candidates by a considerable
margin, working at 84 and 26 times the speed of virtio-mem
and virtio-balloon-huge. As with removing untouched mem-
ory, returning it just modifies the respective bits in the alloca-
tor state, taking 229 ns per huge page (compared to 388 ns for
reclaiming an untouched huge page). As expected, adding a
device to the VM does not affect the performance. Memory
is only mapped to the IOMMU once the guest allocates it.

Return+Install As ballooning, virtio-mem without VFIO,
and HyperAlloc all populate the returned memory lazily,
we also measured the speed of returning and accessing the
memory (Return+Install). Again, virtio-balloon’s 4 KiB gran-
ularity makes it the slowest candidate. Virtio-balloon-huge
reaches the highest data rate of 4.2 GiB/s, shortly followed
by both virtio-mem and HyperAlloc with 4GiB/s. To put this
into perspective: our benchmark accesses mapped pages at
17GiB/s. Even though HyperAlloc’s install hypercalls are
about 6 percent slower than virtio-mem’s EPT faults (due to
having an additional context switch to QEMU which then
uses madvise to manipulate the VM), the faster initial re-
turn time compensates for this difference. Therefore, the
combined return+install times are almost equal. The same is
true for device passthrough (VFIO), where virtio-mem pre-
populates the IOMMU, thus having more upfront costs than
HyperAlloc, which pays the mapping costs on demand.

Overall, we see that HyperAlloc is significantly faster than
the competition for reclaiming and returning memory while
being DMA-safe. Only installing returned memory is slightly
slower than virtio-balloon-huge due to the additional context
switch to the QEMU monitor. However, this overhead would
probably disappear if we integrated HyperAlloc into KVM
itself, removing the extra context switch.

HyperAlloc: Efficient VM Memory De/Inflation via Shared Page-Frame Allocators EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 2. 1st percentile for STREAM and FTQ benchmarks.
STREAM [GB/s] FTQ [𝑒6]

Threads Threads

Candidate 1 4 12 1 4 12

Baseline 10.3 26.0 69.0 9.4 10.2 30.6
virtio-balloon 6.2 10.9 30.9 5.9 7.5 24.9

virtio-balloon-huge 10.1 25.5 67.8 9.5 10.1 30.1
virtio-mem 10.2 13.1 31.9 9.5 8.6 28.7

virtio-mem+VFIO 10.3 12.6 18.4 9.4 8.4 28.3
HyperAlloc 10.3 26.3 70.1 9.5 10.2 30.7

HyperAlloc +VFIO 10.3 26.1 70.3 9.5 10.2 30.7
The green backgrounds highlight the highest 1st percentiles, where the

performance degrades the least during resizing.

5.4 Guest Performance Impact
In addition to raw speed, we also analyzed the impact of
reclamation on the guest performance. To do so, we change
the VM’s memory limit while running memory- and CPU-
intensive workloads. For comparability to previous work, we
based our procedure on Hildenbrand and Schulz [23].
Experiment Procedure The VM is prepared by simulat-
ing a realistic workload: We execute 9 memory-intensive
SPECrate2017 benchmarks [49], recreating the preparation
step from [23]. For each benchmark, we start as many in-
stances as needed to consume close to 19GiB of memory and
run it for 180 seconds. This preparation grows the VM to
its maximum size and randomizes the guest’s allocator state.
After a 20 s cool-down period, we start the actual benchmark
and decrease the VM’s hard limit to 2GiB. At 90 s, we in-
crease it back to its original 20 GiB. While we largely follow
the procedure of Hildenbrand and Schulz [23], we extended
it in two ways: (1) Instead of running the benchmarks only
single threaded, we also explore multi-threaded workloads (4
and 12 threads) to better understand different system loads.
(2) While the original benchmark only shrank the VM, we
also include a subsequent growing phase.
As baseline, we use the virtio-balloon configuration, but

do not resize it (Tab. 2). However, we exclude it from the
plots to improve readability. Since there were no significant
differences between HyperAlloc with and without device
passthrough, the plots only include the former.
Memory Bandwidth To simulate a memory-intensive
task, we use a customized version of the STREAM [37] bench-
mark, which repeatedly measures the bandwidth of mem-
copy operations (≈1GiB per operation). We modified the
benchmark to only run one of its four measurements (Copy)
and to export per-sample memcopy bandwidth rates. As
STREAM’s iteration time varies between thread counts, we
chose the number of iterations for each thread configuration
so that the slowest candidate took 140 s.
The scatter plots in Fig. 5 show the bandwidth of each

iteration over time. To judge the impact of high-frequency

0 50 100
Runtime [s]

0.0

2.5

5.0

7.5

10.0

Ba
nd

wi
th

 [G
B/

s]

Shrink Grow

1 thread(s)

0 50 100
Runtime [s]

0

10

20

Shrink Grow

4 thread(s)

0 50 100
Runtime [s]

0

20

40

60

Shrink Grow

12 thread(s)

virtio-balloon
virtio-balloon-huge

virtio-mem
virtio-mem+VFIO

HyperAlloc+VFIO

Figure 5.Memory bandwidth over time as reported by STREAM
running on different numbers of threads.

resizing on latency-sensitive tasks, Tab. 2 contains 1st per-
centile bandwidths. Running the experiment inside a vir-
tualized environment introduces some noise, particularly
for larger thread counts. However, analysis of our baseline
indicates that the influence on the 1st percentile is negligible
compared to the actual observed performance degradation.
While there are slight differences in memory bandwidth be-
tween candidates while idling (before 20 s and once resizing
is complete), they are within run-to-run variance.

With STREAM running on a single thread, only shrinking
via virtio-balloon significantly impacts the guest’s perfor-
mance due to its 4 KiB page granularity and subsequent com-
munication overhead. Our virtio-balloon-huge implemen-
tation eliminates this overhead almost completely. While
virtio-mem shows a negligible spike at 20 s, HyperAlloc does
not show anymeasurable impact on performance. As a result,
with HyperAlloc STREAM finishes ≈8.9 s faster compared to
virtio-balloon. Apart from virtio-balloon, the 1st percentiles
show no significant performance degradation.
On multiple threads, resizing the VM becomes increas-

ingly noticeable. In addition to shrinking, virtio-balloon
starts to cause slowdowns while growing the VM as well.
Virtio-mem has a noticeable impact while shrinking, per-
forming even worse than virtio-balloon for ≈10 s with lows
reaching 31.9 GB/s. When unplugging memory, virtio-mem
removes blocks in decreasing address order, requiring the
guest OS to migrate used subblocks to other memory lo-
cations. Still, growing has no immediate effect on memory
bandwidth. New memory blocks are plugged in, but no mem-
ory is preallocated on the host. However, when passing a
device to the VM, the memory needs to be populated and
pinned, resulting in an even larger performance degradation
than virtio-balloon (1.7×). Virtio-balloon-huge outperforms
virtio-mem but still shows a small impact while shrinking.
Even under full system load, HyperAlloc does not have a sig-
nificant impact onmemory bandwidth, with its 1st percentile
bandwidth being 2.3 and 2.2 times higher than virtio-balloon
and virtio-mem. In contrast to the other evaluated solutions,
reclaiming and returning memory from/to the guest does
not involve fine granular guest-hypervisor communication
or expensive memory migration.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Wrenger et al.

0 1 2
Cycles 1e11

0
2
4
6
8

W
or

k
[e

6]

Shrink Grow

1 thread(s)

0 1 2
Cycles 1e11

0.0

2.5

5.0

7.5

10.0

Shrink Grow

4 thread(s)

0 1 2
Cycles 1e11

0

10

20

30

Shrink Grow

12 thread(s)

virtio-balloon
virtio-balloon-huge

virtio-mem
virtio-mem+VFIO

HyperAlloc+VFIO

Figure 6. Aggregated work as measured by FTQ for different num-
bers of threads.

CPU Utilization To assess the impact on CPU-intensive
workloads, we employed the Fixed-Time-Quantum (FTQ) [29]
benchmark. It samples the amount of work performed by
a CPU thread within a fixed time interval by repeatedly
incrementing a counter. Usually, each thread is measured
independently, but to present the data more clearly, we aggre-
gate the work of all threads. This approach could introduce
inaccuracies due to desynchronization. In practice, however,
the sampling interval was sufficiently large to ensure that
the overall noise was negligible for all our experiments. We
sampled 1096 times at 228-cycle intervals (≈140 s total).
The scatter plots in Fig. 6 show the amount of work per-

formed per time interval. For easy comparison, we have
chosen the number of samples so that the runtime is equal
to the STREAM runs. The impact on CPU performance ap-
pears closely related to memory bandwidth, though far less
noticeable, as evidenced by the 1st percentiles (Tab. 2). Virtio-
balloon causes the most significant performance degrada-
tion, with shrinking being more expensive than growing.
Both virtio-mem and virtio-balloon with huge pages have a
negligible impact at higher thread counts, even though the
duration is much shorter than in the previous experiment.
Notably, virtio-mem with device passthrough generates no
extra CPU overhead, regardless of memory pinning. Hyper-
Alloc has no significant effect. Even under full system load,
its 1 percent lows are above the baseline. As a result, its min-
imum CPU performance is 23 and 6.8 percent higher than
virtio-balloon and virtio-mem.

5.5 Automatic Soft Reclamation
Continuous Integration (CI) jobs often require large and vary-
ing amounts of memory for short bursts of time. Build-farm
VMs, which provide strict isolation, must accommodate peak
memory demands regardless of job frequency. If we can de-
flate these VMs dynamically and efficiently, more VMs could
run on the same physical host. We evaluate HyperAlloc’s
suitability for this scenario by compiling Clang 16.0.0. To
increase memory pressure, we reduce the VM’s memory to

16GiB for our measurements, which is the observed maxi-
mum of the workload. As the automatic reclamation mech-
anisms were designed to have no significant performance
impact, we focus on the memory footprint (in GiB·min),
which is calculated from the resident set size (RSS) of the
QEMU process, representing its actually consumed memory
(sampled at 1Hz). Similar metrics are also used by cloud
providers (e.g., AWS Lambda) to price memory usage.

HyperAlloc and virtio-balloon (with free-page-reporting)
can automatically reclaim memory. As virtio-mem lacks an
automatic reclaim mechanism, we simulated one: We track
the number of free huge pages in the guest and (un-)plug
memory with a granularity of 1GiB with a frequency of
1 s. Frequency and granularity were hand tuned for this
benchmark to minimize the overhead while still avoiding
out-of-memory errors. If directly integrated into virtio-mem,
automatic reclamation would most likely be more efficient,
but our simulation already shows that it is also limited by
huge-page availability, like virtio-balloon.

Fig. 7 compares the Buddy and LLFree allocator baselines
against virtio-balloon’s free-page-reporting, virtio-mem and
HyperAlloc. The baselines, which statically use 16GiB for the
entire runtime, have the highest memory footprint. LLFree’s
footprint is slightly smaller because of its shorter runtime.
The different auto-reclamation techniques can reduce the
memory footprint from 24 to 45 percent, usually without no-
ticeable runtime overheads (which is by design). HyperAlloc
has the lowest memory footprint, followed by the differ-
ent configurations of virtio-balloon and lastly the simulated
virtio-mem mechanism.

The rightmost columns contain the total CPU times of all
12 threads of the QEMU processes, separated into user and
system (page faults, KVM exits, and other syscalls). We see
that system and user time of LLFree-based benchmarks is
shorter than Buddy-based ones. An in-depth investigation
revealed that those runs incur about half as much EPT faults
and TLB misses. LLFree’s contiguous allocation pattern ap-
pears to be more suitable for VMs that are often backed by
huge pages. As the user time also includes the VM work-
load, we can infer the reclamation overheads by comparing
it to their respective baselines. The overhead of HyperAl-
loc (0.51 ± 0.18%) is a minimally higher than virtio-balloon
(default: 0.15 ± 0.42%). This is because HyperAlloc reclaims
more memory, leading to more work in the QEMU process
and more madvise syscalls.

The default configuration for virtio-balloon (Fig. 7 in bold)
reduces the memory footprint by 34 percent. We tuned the
configuration parameters of virtio-balloon to see if we can in-
crease its efficiency. These parameters include the REPORT-
ING_ORDER (o), denoting the size of reclaimed memory
blocks (we used 4 KiB and 2MiB), the REPORTING_DELAY
(d), specifying the delay between the freeing of chunk of the
specified order and the subsequent reclamation (from 2 s to
100ms), and the REPORTING_CAPACITY (c), denoting the

HyperAlloc: Efficient VM Memory De/Inflation via Shared Page-Frame Allocators EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Buddy
LLFreebaseline

o=9 d=2000 c=32
o=9 d=2000 c=512

o=9 d=100 c=32
o=9 d=100 c=512
o=0 d=2000 c=32

o=0 d=2000 c=512
o=0 d=100 c=32

o=0 d=100 c=512

vi
rti

o-
ba

llo
on

0 200 400 600 800
Footprint [GiB·min]

virtio-mem
virtio-mem+VFIO

HyperAlloc
HyperAlloc+VFIO

0 20 40 60 80
Runtime [min]

0 200 400 600
CPU User [min]

0 50 100 150
CPU System [min]

The average of 6 runs per candidate is displayed.
For virtio-balloon, we compare different parameters with the default configuration in bold.

Figure 7.Memory footprint, total runtime, and user/system CPU times of the QEMU process for a clang compilation.

size of the reclaim buffer that is sent to the host (from 32
to 512). If the mechanism uses huge pages (o=9) we see no
significant difference between the delay (d) and capacity (c)
values. Only for 4 KiB pages (o=0), they have a noticeable
effect. Two configurations can even further reduce the mem-
ory footprint (by 42% for d=2 s and c=512). However, they
also increase the runtime by 19 percent. Similarly, the user
and system CPU times are significantly higher.

In-depth Analysis To better understand the mechanisms,
we expand on the Clang benchmark: On the time axis, we
wait for 200 s after the build finished and run make clean

to remove any build artifacts; after another 200 s, we drop
the guest’s page cache to see how much memory can be
reclaimed at best. We sample four memory-usage metrics
(see Fig. 8) with a frequency of 1Hz: (1) The memory con-
sumed by (partially) used huge pages in the guest allocator.
(2) The memory consumed by actually allocated small pages
(4 KiB) in the guest. The difference between small and huge
is an indicator of the degree of fragmentation within the
page allocator. (3) The size of the guest’s page cache. (4) The
amount of assigned VM memory (RSS) which reclamation
reduces. As small and cached are defined by the workload,
they are expected to remain the same across all candidates.
In the best-case scenario, the assigned VM memory, the used
huge pages, and the allocated small pages would all be equal,
showing perfect memory efficiency.
Fig. 8 shows the results of a single run for virtio-balloon

(o=9, d=2000, c=32) and HyperAlloc. As expected, the size
of the page cache and the guest’s memory utilization are
consistent. However, one minor difference in the page cache
size can be observed at around 29min: The VM with virtio-
balloon reaches its hard memory limit, resulting in page
cache eviction. As HyperAlloc has less fragmentation, it
does not suffer from this. Over the entire runtime, HyperAl-
loc’s VM memory follows the guest’s memory consumption

0 20 40
Time [min]

0
2
4
6
8

10
12
14
16

M
em

or
y

co
ns

um
pt

io
n

[G
iB

] virtio-balloon

0 20 40
Time [min]

HyperAlloc

VM memory small huge cached

Figure 8. Clang compilation with virtio-balloon’s free-page-
reporting (default) and HyperAlloc’s automatic soft-reclamation.

0 20 40
Time [min]

0
2
4
6
8

10
12
14
16

M
em

or
y

co
ns

um
pt

io
n

[G
iB

] virtio-mem+VFIO

0 20 40
Time [min]

HyperAlloc+VFIO

VM memory small huge cached

Figure 9. Clang compilation with HyperAlloc and virtio-mem with
VFIO-based DMA safety.

(small) much more closely due to LLFree’s efficient fragmen-
tation avoidance. This decreases the memory footprint by
17 percent compared to virtio-balloon, without noticeable
runtime costs.

By the end of compilation, the page cache occupies a sub-
stantial part of the guest’s total memory. This prevents many
poorly utilized huge pages from being freed and reclaimed.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Wrenger et al.

0 20 40
Time [min]

0
2
4
6
8

10
12
14
16

M
em

or
y

co
ns

um
pt

io
n

[G
iB

] virtio-balloon

0 20 40
Time [min]

HyperAlloc

VM memory small huge cached

Figure 10. Repeated SPEC2017 blender runs with auto deflation.

Running make clean, thereby removing all build artifacts,
reduces the cache size significantly. As a result, HyperAlloc
can shrink the VM by 3.8 GiB. In contrast, virtio-balloon only
reduces the size by 0.7 GiB, due to internal fragmentation of
the buddy allocator. Even when dropping the entire cache,
virtio-balloon only decreases the VM size to 8GiB compared
to HyperAlloc’s 1.9 GiB. Generally, in these file-intensive
workloads, we see that the page cache has a major impact on
the memory footprint. We discuss its role further in Sec. 6.

Regarding DMA-safety, we compared virtio-mem and Hy-
perAlloc in Fig. 9, both using VFIO for device passthrough.
Even though both mechanisms have no significant runtime
costs, virtio-mem has a 39.8 percent higher memory foot-
print than HyperAlloc. For virtio-mem, we track the number
of free huge pages and resize accordingly. We also tried to
follow the free base pages, which leads to more aggressive
reclamation. However, in this case, virto-mem has to com-
pact and migrate memory, which turned out to be too slow,
and virtio-mem was unable to resize the VM fast enough to
prevent OOMs. Therefore, our virtio-mem-based reclama-
tion is still limited by the availability of huge pages, which
is a significant advantage of basing HyperAlloc on the LL-
Free allocator. Virtio-mem without VFIO is 3.7 percent more
efficient because it does not pre-populate memory. For Hy-
perAlloc, the additional overhead to maintain the IO page
tables is negligible.

RepeatedWorkloads Another common use case for VMs
is (micro-) services that are executed on demand or period-
ically. Here, the VMs might idle for significant amounts of
time between runs. Even though the host can easily detect
idle vCPUs and schedule accordingly, detecting idle memory
is not so simple and an ideal use-case for memory recla-
mation. We simulated such a repeated workload with idle
periods using the Blender benchmark from SPEC2017. We
executed three consecutive runs with 4min idle time in be-
tween. The page cache was dropped once at the end, again
to see its impact on the VM’s memory consumption.

0 100 200 300
Time [min]

0

10

20

30

40

M
em

or
y

co
ns

um
pt

io
n

[G
iB

]

12875 GiB·min
max: 40.8 GiB

Baseline

0 100 200 300
Time [min]

11710 GiB·min
max: 40.9 GiB

virtio-balloon

0 100 200 300
Time [min]

7726 GiB·min
max: 39.8 GiB

HyperAlloc
VM 0
VM 1
VM 2

(a) Concurrent clang compilations.

0 200 400
Time [min]

0

10

20

30

40

M
em

or
y

co
ns

um
pt

io
n

[G
iB

]

14591 GiB·min
max: 40.7 GiB

Baseline

0 200 400
Time [min]

12287 GiB·min
max: 36.0 GiB

virtio-balloon

0 200 400
Time [min]

8428 GiB·min
max: 28.1 GiB

HyperAlloc
VM 0
VM 1
VM 2

(b) Offsetted clang compilations.

Figure 11. Memory footprint of multiple VMs (colors).

The two candidates in Fig. 10 perform roughly the same
while Blender is running due to its static allocation behav-
ior. However, a huge difference can be observed in between
runs. After the first iteration, HyperAlloc reduces memory
consumption by 49 percent compared to virtio-balloon. This
difference increases to 60 percent after the third iteration.
Overall, this leads to an overall reduction in memory foot-
print from 300GiB·min to 234GiB·min. This difference be-
comes even more pronounced if the idle times increase.

After dropping the page cache, the memory consumption
drops to 1.17GiB for HyperAlloc and 4.08GiB for virtio-
balloon. This large difference can be attributed to LLFree’s
better fragmentation characteristics and shows that Hyper-
Alloc allows for greater elasticity of VMs.

5.6 Multiple VMs
Memory reclamation becomes more relevant if multiple
VMs compete for memory resources. The reclaimed memory
could be used to run additional VMs, increasing the overall
utilization of the host. Hence, we also compare the memory
efficiency of virtio-balloon and HyperAlloc in a multi-VM
setup. The workload is, again, the compilation of clang 16.0.0,
executed in parallel on three VMs. Each compiles clang three
times with a 2h delay in between. Each VM is configured
with 16GiB of host memory, resulting in a total provisioning
of 48GiB of host memory. Fig. 11 shows the accumulated
memory footprint of all three VMs over time.
For Fig. 11a (top), we started the workloads simultane-

ously, so that the peak memory consumptions is reached
at the same time in all three VMs. Without ballooning, this
sums up to a peak of 40.8 GiB. This mimics a worst-case

HyperAlloc: Efficient VM Memory De/Inflation via Shared Page-Frame Allocators EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

scenario with respect to memory reclamation: While bal-
looning can reduce the peak memory times, it cannot reduce
the peak memory demand, even though the overall memory
footprint (GiB·min) is reduced by 9.1 / 40 percent with virtio-
balloon / HyperAlloc, respectively. The important point here
is that even in such a worst-case scenario, HyperAlloc does
not increase the run time and peak memory demand.
Fig. 11b (bottom) shows the same setup, but peak mem-

ory consumptions of the three VMs is now offsetted by
40min. This is the best case for memory reclamation.5 Here
the overall peak memory demand drops from 40.74GiB to
35.98 GiB for virtio-balloon and to 28.11 GiB for HyperAlloc.
In this case, virtio-balloon’s free-page-reporting would re-
claim enough memory to run one additional VM within the
48GiB of available memory, while HyperAlloc would even
make it possible to run two additional VMs.

6 Discussion
VProbe Due to the discussed availability issues (see
Sec. 5.1), we could not compare HyperAlloc quantitatively to
the seemingly similar VProbe [55] approach. VProbe avoids
explicit communication, achieves DMA-safe auto deflation,
and gives the hypervisor access to the guest state. However,
VProbe aims to be transparent for the guest and tracks the
guest-side page-frame allocations only indirectly by write-
protecting the guest’s page-frame metadata (struct page).
Thereby, VProbe tracks the same guest events as HyperAlloc
but relies on the side effects of these events, which has two
disadvantages: (1) VProbe’s coupling to the guest allocator
is fragile when (newer) guest kernels perform different steps
on allocation, resulting in unreliable allocation detection. (2)
The hypervisor has to back the page-frame metadata with
host-physical base frames instead of huge frames, inducing
higher TLB pressure. In contrast, HyperAlloc’s explicit install
hypercall evolves with the guest kernel code and requires
no fine-grained backing of struct page.
Adoption in Production HyperAlloc requires the user
to replace the guest’s page allocator, so our co-design ap-
proach can be considered as more intrusive as having only
an extra balloon or hotplug driver within the guest. There-
fore, the question arises whether HyperAlloc is a viable solu-
tion for production environments – and whether customers
should switch to HyperAlloc. We expect that economic rea-
soning will become a good argument: In the longer term,
IaaS will follow the trend of FaaS [46] and start billing mem-
ory by the second, giving customers a monetary incentive
to give back unused memory immediately. Until now, mem-
ory often becomes a stranded asset [32] for cloud providers
when they are confronted with a CPU-intense workload mix,
as they cannot shift memory between VM hosts. However,
5The hypervisor could enforce this by preempting VMs when memory runs
out. VM preemption and swapping is beyond the scope of this paper, but
we discuss possible combinations in Sec. 6.

the emerging CXL [16] technology allows building disag-
gregated memory pools [32], making physical memory not
only an expensive [35] but also more valuable commodity,
as unused memory could be redistributed among the com-
plete rack. Compared to existing techniques, HyperAlloc
achieves higher reclamation rates at basically no interference
(Sec. 5.5), making it an ideal feature for the disaggregated
cloud.

Concept Generalization Since HyperAlloc requires
offset-addressable access to per-frame data, integration with
other guest allocators is challenging, as they usually rely on
lock-based synchronization and pointer-linked data. Letting
the hypervisor directly participate in those guest protocols
poses a safety and security risk. Nevertheless, if host and
guest agree on an auxiliary memory-mapped interface to
exchange 𝐴 and 𝐸, HyperAlloc is applicable.
More generally, we believe that lock-free write access to

the guest state is a promising direction to improve resource
management in IaaS settings without introducing (much) in-
terference and latency variations. For example, a logical next
step could be to also expose the page cache to HyperAlloc,
which could then shrink the VM from the outside. Although
this requires rethinking even more kernel components, the
resulting lock-free kernel structures often prove to be more
scalable than the existing mechanisms [56].

Beyond Memory Reclamation Our prototype can scale
a VM between its initial size and the currently allocated
memory.While we share the later boundary with many recla-
mation techniques [23, 53, 55], virtio-mem [55] can grow the
VM beyond the initial size. HyperAlloc could also support
this, either by hotplugging integration or by starting with a
large guest-physical memory but low hard limit.

Similarly, HyperAlloc does not address the case where the
accumulated memory consumption of guests temporarily
exceeds the available host memory (e.g., during short peaks).
Here, hypervisors usually fallback to swapping. Still, Hyper-
Alloc, because of its better memory efficiency, is expected
to cause fewer and shorter out-of-memory situations (see
Sec. 5.6). Furthermore, HyperAlloc could also enable better
swapping strategies for VMs [10, 47], as the tree index en-
tries contain the allocation type (see Sec. 4.2). Additionally,
with the six remaining area-entry bits, the guest could ex-
pose even more useful information about data-filled frames
(e.g., hotness).

If fine-grained memory pricing models are just over the
horizon, we have to develop efficient guest methods that
actively react to memory-price pressure (i.e., executed via
auctioning [6]). For example, with a price tag at each frame,
we have an objective measure to decide if starting memory
compaction is actually worth it. Suddenly, actively shrinking
the page cache instead of caching as much as possible could
make economic sense.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Wrenger et al.

7 Related Work
Dynamic paging has been a challenging topic for OS devel-
opers for a long time, especially regarding memory recla-
mation [17, 25, 27], TLB invalidation [7, 9, 30], and the frag-
mentation of huge pages [21, 40, 41, 50, 56]. These chal-
lenges become even more relevant in combination with vir-
tual machines, where we have an additional interaction and
EPT/NPF walks are more expensive [4, 12, 28, 38, 54].
Memory Reclamation The problem of detecting idle
memory and estimating working sets is more difficult for
the OS [17, 18, 57] than detecting idle CPUs. This, again,
is even more complicated for a hypervisor with even less
information about the running workloads [26, 38, 53]. Con-
sequently, transparent VM deflation techniques, like swap-
ping [10, 22, 42, 53] or content-based sharing [15, 53], face
challenges to determine what to reclaim. Cooperative de-
flation techniques, like ballooning [24, 45, 53], hotplug-
ging [23, 44, 45], or transient memory [20, 33], try to solve
the reclamation-information deficit by indirectly interacting
with the guest’s OS frame allocator. However, the interaction
via in-guest proxy drivers is costly [24, 55]. By integrating
reclamation directly into the guest’s frame allocator, Hyper-
Alloc drastically reduces this overhead and enables the guest
to improve its allocation policy based on the reclamation
state.
DMA safety With the emergence of the IOMMU [1–3],
the OS got another virtual memory component to keep in
sync [13]. Moreover, most devices cannot [31, 55] trigger IO
page faults, which are, however, necessary for most deflation
techniques [24, 38, 45, 53]. Only a few techniques [23, 55]
have been designed for DMA safety, while the others require
further IOMMU virtualization [8, 51], which comes with
its own costs for tracking DMA buffers and invalidating
IOTLBs. Still, HyperAlloc could be combined with IOMMU
virtualization to reduce the VFIO overhead further.
Resource Orchestration Deciding how to manage these
different deflation techniques at a large scale is a topic on
its own. Several policies and heuristics have been proposed
for VM monitoring [26, 53], resource distribution [19, 34,
39, 48, 52], and market-like pricing models [6, 36]. They
usually combine transparent and cooperative deflation and
sometimes even interface with applications [14, 48]. With
HyperAlloc, these orchestration mechanisms could moni-
tor memory utilization more precisely and reclaim memory
faster with less latency.

8 Conclusion
For the hypervisor, memory is, until now, a “viscous” re-
source that is hard to add to the guest and even harder
to reclaim. But with the emergence of CXL and disaggre-
gated memory pools, both cloud provider and customer get
a monetary incentive to de/inflate VMs faster and more fre-
quently. However, existing techniques often fall short with

device passthrough or induce disruptive overheads and la-
tency spikes. For example, virtio-mem results in a throughput
disruption of up to −73 percent for the STREAM benchmark.

With HyperAlloc, we propose a novel VM memory recla-
mation technique based on sharing the guest’s page-frame
allocator with the hypervisor. Without a mode switch, we
can, thereby, mark frames as allocated or reclaimed within
the guest, allowing its allocator to prefer regions already
backed by host-physical memory. Still, our bilateral state
management is safe and secure as we build upon LLFree, an
existing lock-free page-frame allocator with good scalabil-
ity and huge-frame fragmentation properties. HyperAlloc
shrinks, without measurable disruption, the hard limit of a
virtual machine faster (362× virtio-balloon, 10× virtio-mem).
With its automatic reclamation, we reclaim 17 percent more
memory than virtio-balloon’s free-page reporting for a real-
istic workload, resulting in a tighter resource assignment.

Acknowledgments
We thank our anonymous reviewers and our shepherd Reto
Achermann for their helpful and constructive comments.
This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – 501887536.

References
[1] 2022. Intel® 64 and IA-32 Architectures Software Developer’s Manual,

Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. https:
//cdrdv2.intel.com/v1/dl/getContent/671200

[2] 2024. AMD64 Architecture Programmer’s Manual Volume 2: System Pro-
gramming. https://www.amd.com/content/dam/amd/en/documents/
processor-tech-docs/programmer-references/24593.pdf

[3] 2024. Arm System Memory Management Unit Architecture Specification
- Version 3. https://developer.arm.com/documentation/ihi0070/latest

[4] Keith Adams and Ole Agesen. 2006. A comparison of software and
hardware techniques for x86 virtualization. In Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems (San Jose, California, USA) (ASPLOS
XII). Association for Computing Machinery, New York, NY, USA, 2–13.
https://doi.org/10.1145/1168857.1168860

[5] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan
Tsafrir. 2014. The rise of RaaS: the resource-as-a-service cloud. Com-
mun. ACM 57, 7 (jul 2014), 76–84. https://doi.org/10.1145/2627422

[6] Orna Agmon Ben-Yehuda, Eyal Posener, Muli Ben-Yehuda, Assaf Schus-
ter, and Ahuva Mu’alem. 2014. Ginseng: market-driven memory allo-
cation. In Proceedings of the 10th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (Salt Lake City, Utah,
USA) (VEE ’14). Association for Computing Machinery, New York, NY,
USA, 41–52. https://doi.org/10.1145/2576195.2576197

[7] Nadav Amit. 2017. Optimizing the TLB Shootdown Algorithm with
Page Access Tracking. In 2017 USENIX Annual Technical Conference
(USENIX ATC ’17). 27–39.

[8] Nadav Amit, Muli Ben-Yehuda, IBM Research, Dan Tsafrir, and As-
saf Schuster. 2011. vIOMMU: Efficient IOMMU Emulation. In 2011
USENIX Annual Technical Conference (USENIX ATC 11). USENIXAssoci-
ation, Portland, OR. https://www.usenix.org/conference/usenixatc11/
viommu-efficient-iommu-emulation

[9] Nadav Amit, Amy Tai, and Michael Wei. 2020. Don’t shoot down TLB
shootdowns!. In Proceedings of the Fifteenth European Conference on
Computer Systems (EuroSys’20). 1–14. https://doi.org/10.1145/3342195.

https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://developer.arm.com/documentation/ihi0070/latest
https://doi.org/10.1145/1168857.1168860
https://doi.org/10.1145/2627422
https://doi.org/10.1145/2576195.2576197
https://www.usenix.org/conference/usenixatc11/viommu-efficient-iommu-emulation
https://www.usenix.org/conference/usenixatc11/viommu-efficient-iommu-emulation
https://doi.org/10.1145/3342195.3387518
https://doi.org/10.1145/3342195.3387518

HyperAlloc: Efficient VM Memory De/Inflation via Shared Page-Frame Allocators EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

3387518
[10] Nadav Amit, Dan Tsafrir, and Assaf Schuster. 2014. VSwapper: a mem-

ory swapper for virtualized environments. In Proceedings of the 19th
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Salt Lake City, Utah, USA) (ASPLOS ’14).
Association for Computing Machinery, New York, NY, USA, 349–366.
https://doi.org/10.1145/2541940.2541969

[11] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. 2010. A view of cloud comput-
ing. Commun. ACM 53, 4 (apr 2010), 50–58. https://doi.org/10.1145/
1721654.1721672

[12] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Har-
ris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003.
Xen and the Art of Virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03) (ACM SIGOPS
Operating Systems Review, Vol. 37, 5). ACM Press, New York, NY, USA,
164–177. https://doi.org/10.1145/945445.945462

[13] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski, Karl Rister, Alexis
Bruemmer, and Leendert Van Doorn. 2007. The price of safety: Eval-
uating IOMMU performance. In Proceedings of the Linux Symposium.
9–20.

[14] Callum Cameron, Jeremy Singer, and David Vengerov. 2015. The
judgment of forseti: economic utility for dynamic heap sizing of
multiple runtimes. In Proceedings of the 2015 International Sympo-
sium on Memory Management (Portland, OR, USA) (ISMM ’15). As-
sociation for Computing Machinery, New York, NY, USA, 143–156.
https://doi.org/10.1145/2754169.2754180

[15] Chao-Rui Chang, Jan-Jan Wu, and Pangfeng Liu. 2011. An Empirical
Study on Memory Sharing of Virtual Machines for Server Consoli-
dation. In 2011 IEEE Ninth International Symposium on Parallel and
Distributed Processing with Applications. USENIX Association, USA,
244–249. https://doi.org/10.1109/ISPA.2011.31

[16] Compute Express Link Consortium, Inc. 2020. CXL Specification, Revi-
sion 2.0.

[17] P.J. Denning. 1980. Working Sets Past and Present. IEEE Transactions
on Software Engineering SE-6, 1 (1980), 64–84. https://doi.org/10.1109/
TSE.1980.230464

[18] Peter J. Denning. 1967. Theworking set model for program behavior. In
Proceedings of the First ACM Symposium on Operating System Principles
(SOSP ’67). Association for Computing Machinery, New York, NY, USA,
15.1–15.12. https://doi.org/10.1145/800001.811670

[19] Alexander Fuerst, Ahmed Ali-Eldin, Prashant Shenoy, and Prateek
Sharma. 2020. Cloud-scale VM-deflation for Running Interactive Ap-
plications On Transient Servers. In Proceedings of the 29th International
Symposium on High-Performance Parallel and Distributed Computing
(Stockholm, Sweden) (HPDC ’20). Association for Computing Machin-
ery, New York, NY, USA, 53–64. https://doi.org/10.1145/3369583.
3392675

[20] Luis A. Garrido, Rajiv Nishtala, and Paul Carpenter. 2019. SmarTmem:
Intelligent Management of Transcendent Memory in a Virtualized
Server. In 2019 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 911–920. https://doi.org/10.1109/
IPDPSW.2019.00151

[21] Mel Gorman and Patrick Healy. 2008. Supporting superpage alloca-
tion without additional hardware support. In Proceedings of the 7th
international symposium on Memory management - ISMM ’08. ACM
Press, Tucson, AZ, USA, 41. https://doi.org/10.1145/1375634.1375641

[22] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosen-
blum. 1999. Cellular Disco: resource management using virtual clusters
on shared-memory multiprocessors. In Proceedings of the Seventeenth
ACM Symposium on Operating Systems Principles (Charleston, South
Carolina, USA) (SOSP ’99). Association for Computing Machinery, New
York, NY, USA, 154–169. https://doi.org/10.1145/319151.319162

[23] David Hildenbrand and Martin Schulz. 2021. virtio-mem: paravir-
tualized memory hot(un)plug. In Proceedings of the 17th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (Virtual, USA) (VEE 2021). Association for Computing Ma-
chinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3453933.
3454010

[24] Jingyuan Hu, Xiaokuang Bai, Sai Sha, Yingwei Luo, Xiaolin Wang,
and Zhenlin Wang. 2018. HUB: hugepage ballooning in kernel-
based virtual machines. In Proceedings of the International Sympo-
sium on Memory Systems (Alexandria, Virginia, USA) (MEMSYS ’18).
Association for Computing Machinery, New York, NY, USA, 31–37.
https://doi.org/10.1145/3240302.3240420

[25] Song Jiang and Xiaodong Zhang. 2001. Adaptive Page Re-
placement to Protect Thrashing in Linux. In 5th Annual Linux
Showcase & Conference (ALS 01). USENIX Association, Oakland,
CA. https://www.usenix.org/conference/als-01/adaptive-page-
replacement-protect-thrashing-linux

[26] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2006. Geiger: monitoring the buffer cache in a virtual ma-
chine environment. In Proceedings of the 12th International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems (San Jose, California, USA) (ASPLOS XII). Associa-
tion for Computing Machinery, New York, NY, USA, 14–24. https:
//doi.org/10.1145/1168857.1168861

[27] T. Kilburn, D.B.G. Edwards, M.J. Lanigan, and F.H. Sumner. 1962. One-
Level Storage System. IRE Transactions on Electronic Computers EC-11,
2 (April 1962), 223–235. https://doi.org/10.1109/TEC.1962.5219356

[28] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
2007. kvm: the Linux virtual machine monitor. In Proceedings of the
Linux symposium, Vol. 1. Dttawa, Dntorio, Canada, 225–230.

[29] Lawrence Livermore National Laboratory. 2014. CORAL Benchmark
Codes. https://asc.llnl.gov/coral-benchmarks, visited 2024-05-04.

[30] Viktor Leis, Adnan Alhomssi, Tobias Ziegler, Yannick Loeck, and Chris-
tian Dietrich. 2023. Virtual-Memory Assisted Buffer Management. In
Proceedings of the ACM SIGMOD/PODS International Conference on
Management of Data (Seattle, WA, USA). ACM, New York, NY, USA.
https://doi.org/10.1145/3588687

[31] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grim-
berg, Liran Liss, Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. 2017.
Page Fault Support for Network Controllers. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2017, Xi’an,
China, April 8-12, 2017. 449–466. https://doi.org/10.1145/3037697.
3037710

[32] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bian-
chini. 2023. Pond: CXL-Based Memory Pooling Systems for Cloud
Platforms. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS ’23), Volume 2 (Vancouver, BC, Canada). As-
sociation for Computing Machinery, New York, NY, USA, 574–587.
https://doi.org/10.1145/3575693.3578835

[33] Dan Magenheimer, Chris Mason, Dave McCracken, and Kurt Hackel.
2009. Transcendent memory and linux. In Proceedings of the Linux
Symposium. Citeseer, 191–200.

[34] Sunilkumar S. Manvi and Gopal Krishna Shyam. 2014. Resource man-
agement for Infrastructure as a Service (IaaS) in cloud computing:
A survey. Journal of Network and Computer Applications 41 (2014),
424–440. https://doi.org/10.1016/j.jnca.2013.10.004

[35] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent
Page Placement for CXL-Enabled Tiered-Memory. In Proceedings of

https://doi.org/10.1145/3342195.3387518
https://doi.org/10.1145/2541940.2541969
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/2754169.2754180
https://doi.org/10.1109/ISPA.2011.31
https://doi.org/10.1109/TSE.1980.230464
https://doi.org/10.1109/TSE.1980.230464
https://doi.org/10.1145/800001.811670
https://doi.org/10.1145/3369583.3392675
https://doi.org/10.1145/3369583.3392675
https://doi.org/10.1109/IPDPSW.2019.00151
https://doi.org/10.1109/IPDPSW.2019.00151
https://doi.org/10.1145/1375634.1375641
https://doi.org/10.1145/319151.319162
https://doi.org/10.1145/3453933.3454010
https://doi.org/10.1145/3453933.3454010
https://doi.org/10.1145/3240302.3240420
https://www.usenix.org/conference/als-01/adaptive-page-replacement-protect-thrashing-linux
https://www.usenix.org/conference/als-01/adaptive-page-replacement-protect-thrashing-linux
https://doi.org/10.1145/1168857.1168861
https://doi.org/10.1145/1168857.1168861
https://doi.org/10.1109/TEC.1962.5219356
https://asc.llnl.gov/coral-benchmarks
https://doi.org/10.1145/3588687
https://doi.org/10.1145/3037697.3037710
https://doi.org/10.1145/3037697.3037710
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1016/j.jnca.2013.10.004

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Wrenger et al.

the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’23), Volume 3
(Vancouver, BC, Canada). Association for Computing Machinery, New
York, NY, USA, 742–755. https://doi.org/10.1145/3582016.3582063

[36] Hasan Al Maruf, Yuhong Zhong, Hongyi Wang, Mosharaf Chowdhury,
Asaf Cidon, and Carl Waldspurger. 2023. Memtrade: Marketplace for
Disaggregated Memory Clouds. Proc. ACM Meas. Anal. Comput. Syst.
7, 2, Article 41 (may 2023), 27 pages. https://doi.org/10.1145/3589985

[37] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance
in Current High Performance Computers. IEEE Computer Society
Technical Committee on Computer Architecture (TCCA) Newsletter 2
(Dec. 1995), 19–25.

[38] Debadatta Mishra and Purushottam Kulkarni. 2018. A survey of mem-
ory management techniques in virtualized systems. Computer Science
Review 29 (2018), 56–73. https://doi.org/10.1016/j.cosrev.2018.06.002

[39] Germán Moltó, Miguel Caballer, and Carlos de Alfonso. 2016. Au-
tomatic memory-based vertical elasticity and oversubscription on
cloud platforms. Future Generation Computer Systems 56 (2016), 1–10.
https://doi.org/10.1016/j.future.2015.10.002

[40] Ashish Panwar, Naman Patel, and K. Gopinath. 2016. A Case for
Protecting Huge Pages from the Kernel. In Proceedings of the 7th ACM
SIGOPS Asia-Pacific Workshop on Systems (Hong Kong, Hong Kong)
(APSys ’16). Association for Computing Machinery, New York, NY,
USA, Article 15, 8 pages. https://doi.org/10.1145/2967360.2967371

[41] Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge
Pages Actually Useful. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (Williamsburg, VA, USA) (ASPLOS ’18). Association
for Computing Machinery, New York, NY, USA, 679–692. https://doi.
org/10.1145/3173162.3173203

[42] Jan S. Rellermeyer, Maher Amer, Richard Smutzer, and Karthick Raja-
mani. 2018. Container Density Improvements with Dynamic Memory
Extension using NAND Flash. In Proceedings of the 9th Asia-Pacific
Workshop on Systems (Jeju Island, Republic of Korea) (APSys ’18). As-
sociation for Computing Machinery, New York, NY, USA, Article 10,
7 pages. https://doi.org/10.1145/3265723.3265740

[43] Rusty Russell. 2008. virtio: towards a de-facto standard for virtual
I/O devices. SIGOPS Oper. Syst. Rev. 42, 5 (jul 2008), 95–103. https:
//doi.org/10.1145/1400097.1400108

[44] Joel Schopp, Dave Hansen, Mike Kravetz, Hirokazu Takahashi, Toshi-
hiro Iwamoto, Yasunori Goto, Hiroyuki Kamezawa, Matt Tolentino,
and Bob Picco. 2005. Hotplug memory redux. In Proceedings of the
Linux Symposium. 151.

[45] Joel H Schopp, Keir Fraser, and Martine J Silbermann. 2006. Resiz-
ing memory with balloons and hotplug. In Proceedings of the Linux
Symposium, Vol. 2. 313–319.

[46] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019.
Architectural Implications of Function-as-a-Service Computing. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association
for Computing Machinery, New York, NY, USA, 1063–1075. https:
//doi.org/10.1145/3352460.3358296

[47] Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy. 2019. Re-
source Deflation: A New Approach For Transient Resource Reclama-
tion. In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden,
Germany) (EuroSys ’19). Association for Computing Machinery, New
York, NY, USA, Article 33, 17 pages. https://doi.org/10.1145/3302424.
3303945

[48] Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy. 2019. Re-
source Deflation: A New Approach For Transient Resource Reclama-
tion. In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden,
Germany) (EuroSys ’19). Association for Computing Machinery, New
York, NY, USA, Article 33, 17 pages. https://doi.org/10.1145/3302424.
3303945

[49] SPEC. 2022. SPEC CPU® 2017. https://www.spec.org/cpu2017/, visited
2024-05-03.

[50] Matthias Springer and Hidehiko Masuhara. 2019. Massively parallel
GPU memory compaction. In Proceedings of the 2019 ACM SIGPLAN
International Symposium on Memory Management. 14–26.

[51] Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, and Yaozu Dong. 2020.
coIOMMU: A Virtual IOMMU with Cooperative DMA Buffer Track-
ing for Efficient Memory Management in Direct I/O. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20). USENIX Association,
479–492. https://www.usenix.org/conference/atc20/presentation/tian

[52] Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg. 2018.
Tableau: a high-throughput and predictable VM scheduler for high-
density workloads. In Proceedings of the Thirteenth EuroSys Conference
(Porto, Portugal) (EuroSys ’18). Association for Computing Machinery,
New York, NY, USA, Article 28, 16 pages. https://doi.org/10.1145/
3190508.3190557

[53] Carl A. Waldspurger. 2003. Memory resource management in VMware
ESX server. SIGOPS Oper. Syst. Rev. 36, SI (dec 2003), 181–194. https:
//doi.org/10.1145/844128.844146

[54] Xiaolin Wang, Jiarui Zang, Zhenlin Wang, Yingwei Luo, and Xiaom-
ing Li. 2011. Selective hardware/software memory virtualization. In
Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (Newport Beach, California, USA)
(VEE ’11). Association for Computing Machinery, New York, NY, USA,
217–226. https://doi.org/10.1145/1952682.1952710

[55] Yaohui Wang, Ben Luo, and Yibin Shen. 2023. Efficient Memory Over-
commitment for I/O Passthrough Enabled VMs via Fine-grained Page
Meta-data Management. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23). USENIX Association, Boston, MA, 769–783. https:
//www.usenix.org/conference/atc23/presentation/wang-yaohui

[56] Lars Wrenger, Florian Rommel, Alexander Halbuer, Christian Dietrich,
and Daniel Lohmann. 2023. LLFree: Scalable and Optionally-Persistent
Page-Frame Allocation. In 2023 USENIX Annual Technical Conference
(USENIX ’23). USENIX Association, Boston, MA, 897–914. https://
www.usenix.org/conference/atc23/presentation/wrenger

[57] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,
Yuanyuan Zhou, and Sanjeev Kumar. 2004. Dynamic tracking of page
miss ratio curve for memory management. In Proceedings of the 11th
International Conference on Architectural Support for Programming
Languages and Operating Systems (Boston, MA, USA) (ASPLOS XI).
Association for Computing Machinery, New York, NY, USA, 177–188.
https://doi.org/10.1145/1024393.1024415

https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1145/3589985
https://doi.org/10.1016/j.cosrev.2018.06.002
https://doi.org/10.1016/j.future.2015.10.002
https://doi.org/10.1145/2967360.2967371
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3265723.3265740
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/3352460.3358296
https://doi.org/10.1145/3352460.3358296
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1145/3302424.3303945
https://www.spec.org/cpu2017/
https://www.usenix.org/conference/atc20/presentation/tian
https://doi.org/10.1145/3190508.3190557
https://doi.org/10.1145/3190508.3190557
https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/1952682.1952710
https://www.usenix.org/conference/atc23/presentation/wang-yaohui
https://www.usenix.org/conference/atc23/presentation/wang-yaohui
https://www.usenix.org/conference/atc23/presentation/wrenger
https://www.usenix.org/conference/atc23/presentation/wrenger
https://doi.org/10.1145/1024393.1024415

HyperAlloc: Efficient VM Memory De/Inflation via Shared Page-Frame Allocators EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

A Artifact Appendix
A.1 Abstract
Our artifact is packaged as a docker container and contains
the necessary tools and resources required to evaluate our
HyperAlloc VM reclamation. All of our benchmarks, results,
and meta information about hardware and software con-
figuration are open source. This also includes the figures
from the paper. The only benchmark we could not release
is SPEC CPU 2017, but we included a step-by-step guide on
how to install and use it. Our 6 benchmarks evaluate the
latency, performance impact (memory bandwidth, CPU per-
formance), and memory efficiency of HyperAlloc compared
to virtio-balloon and virtio-mem.

A.2 Description & Requirements
A.2.1 How to access. The artifact is packaged in a Docker
image, which is hosted on the GitHub package registry
ghcr.io/luhsra/hyperalloc_ae and 10.5281/zenodo.14917769.
All benchmarks are open source at the following repositories.

• hyperalloc-bench: Benchmarking scripts and results.
This repository also includes the documentation for
the artifact evaluation and the Dockerfile.
• hyperalloc-linux: Modified Linux kernel
• hyperalloc-qemu: Modified QEMU monitor
• linux-alloc-bench: Kernel module for benchmarking
the page allocator
• hyperalloc-stream: Memory bandwidth benchmark
• hyperalloc-ftq: FTQ CPU work benchmark
• llfree-c: C-based implementation of the LLFree page
allocator
• llfree-rs: Rust-based implementation of the LLFree
page allocator, including some micro benchmarks, like
bench/src/bin/write.rs.

A.2.2 Hardware dependencies. The benchmarks require
an x86 based system. Most benchmarks need 12 cores and
32GiB RAM, only the multivm benchmark requires 24 cores
and 48GiB RAM. We recommend disabling SMT (Hyper-
Threading), setting a fixed CPU frequency, and disabling
powersaving modes for more stable results. We also have a
few benchmarks that require VFIO device passthrough. Thus,
the system has to have an IOMMU and device group that
can be passed into the VMs, as described below.

A.2.3 Software dependencies. The benchmarks require
a Linux-based system with KVM (tested on Debian 12 and
Fedora 41).

A.2.4 Benchmarks. The container ismostly self-contained.
One benchmark requires the SPEC CPU 2017 1.1.9 bench-
mark suite, which is not public.

A.3 Set-up
The general process is to download the container, connect
to it with ssh, and run the benchmarks.
docker pull ghcr.io/luhsra/hyperalloc_ae:latest
Give yourself access to /dev/kvm
sudo chown $USER /dev/kvm
Start the container
docker run --network=host --device=/dev/kvm \
-e AUTHORIZED_KEYS="$(cat ~/.ssh/id_rsa.pub)" \
--rm ghcr.io/luhsra/hyperalloc_ae

Connect to the container
ssh -i ~/.ssh/id_rsa -p2222 user@localhost

After connecting to the container, you can execute the
inflate benchmark (which takes about 20min) to test if
everything works.
(inside the container)
you might again have to give yourself access to kvm
sudo chown $USER /dev/kvm
cd hyperalloc-bench
source venv/bin/activate
./run.py bench-plot -b inflate --fast

The hyperalloc-bench repo contains additional scripts in
the artifact-eval directory.

A.3.1 VFIO Device Passthrough. There are a few bench-
marks that use device passthrough. However, if you do
not have a system supporting device passthrough, you can
skip this step and the benchmarks by omitting the -vfio

<device> argument for the run.py runner.
The scripts/bind_vfio.py script can be used to bind

IOMMU groups to VFIO. Executing it (outside the docker
container), shows you all IOMMU groups and their corre-
sponding devices. You can then enter a group number to
bind it to VFIO. Note that if you bind an IOMMU group, all
devices of this group cannot be used by the host anymore.
Also, you will need a device ID from the group (like 08:00.0)
later for the benchmark runner. If the script shows you no
devices, you might have to enable the IOMMU on the host
(e.g., with intel_iommu=on).

The next step is to pass VFIO into the container and allow
the container to lock memory:
Stop any running containers before this
docker run --network=host --device=/dev/kvm \
--device /dev/vfio \
--ulimit memlock=53687091200:53687091200 \
-e AUTHORIZED_KEYS="$(cat ~/.ssh/id_rsa.pub)" \
--rm ghcr.io/luhsra/hyperalloc_ae

A.4 Evaluation workflow
A.4.1 Major Claims. In the paper, we use the following
benchmarks:
• inflate (section 5.3): Inflation/deflation latency
• stream (section 5.4): STREAM – memory bandwidth
• ftq (section 5.4): FTQ – CPU work
• compiling (section 5.5): Clang compilation with auto
VM inflation
• multivm (section 5.6): Compiling clang on multiple
concurrent VMs

https://ghcr.io/luhsra/hyperalloc_ae
https://doi.org/10.5281/zenodo.14917769
https://github.com/luhsra/hyperalloc-bench/tree/artifact-eval
https://github.com/luhsra/hyperalloc-linux/tree/artifact-eval
https://github.com/luhsra/hyperalloc-qemu/tree/artifact-eval
https://github.com/luhsra/linux-alloc-bench/tree/artifact-eval
https://github.com/luhsra/hyperalloc-stream/tree/artifact-eval
https://github.com/luhsra/hyperalloc-ftq/tree/artifact-eval
https://github.com/luhsra/llfree-c/tree/artifact-eval
https://github.com/luhsra/llfree-rs
https://www.spec.org/cpu2017
https://github.com/luhsra/hyperalloc-bench/tree/artifact-eval
https://github.com/luhsra/hyperalloc-bench/blob/artifact-eval/scripts/bind_vfio.py

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Wrenger et al.

• blender (section 5.5): SPEC CPU 2017 blender bench-
mark

The inflate benchmark measures the latency for shrink-
ing and growing VMs. In the paper we claim that HyperAlloc
is significantly faster that all other techniques for reclaiming
memory (touched and untouched) and returning memory.
When returning and installing (accessing) memory to the
VM, HyperAlloc is as fast as virtio-mem and slightly slower
than virtio-balloon-huge.
The stream and ftq benchmarks measure the impact of

VM resizing on the memory bandwidth and CPU perfor-
mance of the guest. We claim that HyperAlloc has no mea-
surable impact, other than virtio-mem and especially virtio-
balloon.

The compiling benchmark evaluates the efficiency of au-
tomatic memory reclamation for a clang compilation, a work-
load with a highly fluctuating memory consumption. We
claim that HyperAlloc has a smaller memory footprint than
virtio-balloon and virtio-mem, without runtime overheads.

The multivm benchmark has been added in the shepherd-
ing phase and compares the memory footprint and peak
memory consumption of virtio-balloon and HyperAlloc on
multiple VMs. We claim that when the peak memory con-
sumptions of the VMs do not coincide, virtio-balloon’s free-
page-reporting reclaims enough memory to run a single
additional VM within the 48 GiB of available memory, and
HyperAlloc even two additional VMs.

The blender benchmark shows a workload that temporar-
ily consumes a lot of memory, which is executed three times.
We claim that HyperAlloc can reclaim more memory be-
tween the workload runs than virtio-balloon. This bench-
mark requires access to SPEC CPU 2017. The hyperalloc-bench
repository contains information on how to install it.

A.4.2 Experiments. Generally, our benchmark setup has
been automated as much as possible, so you only have to
start the process and take a look at the resulting figures.
Optional Building the Artifacts [5min human, 1h

compute]: The container contains pre-built artifacts, so
this can be skipped. Still, you can build our modified Linux
kernels and QEMU binaries yourself with:
(inside the container)
cd hyperalloc-bench
source venv/bin/activate
./run.py build
(this takes about 1h)

Benchmarks [10min human, compute depends on
benchmark]: The benchmarks can be executed with the
runner as shown below. The results are inside the container
in hyperalloc-bench/artifact-eval/<benchmark>.
(inside the container)
cd hyperalloc-bench
source venv/bin/activate
./run.py bench-plot -b <benchmark> --vfio <device-id>

Arguments of the benchmark runner:

• bench-plot can be replaced with bench or plot to
only run the benchmarks or redraw the figures.
• If you want to run the additional compile benchmarks
that evaluate the virtio-balloon parameters (Fig. 7),
add the -extra argument. This extends the runtime
by about 8h.
• The VFIO <device-id> has to be a device ID (like
08:00.0) from the VFIO group passed to the container.
You can omit this if you want to skip the VFIO bench-
marks.

Benchmark compute time:
• inflate about 20min
• stream about 15min
• ftq about 15min
• compiling about 6h and +8h with -extra

• multivm about 42h
• blender about 40min

A.5 Exploring the Artifact
This section might be helpful if you want to explore the
contents of the docker container more easily. The container
has a running ssh server that allows you to create an sshfs

mount. This requires sshfs to be installed on your system.
(outside the container)
mkdir -p hyperalloc_ae
sshfs -p 2222 user@localhost:/home/user \
-o IdentityFile=~/.ssh/id_rsa hyperalloc_ae

Now, you can explore the hyperalloc_ae directory with
your filemanager. The home directory contains the following
subdirectories:
• hyperalloc-bench: Benchmarking scripts and results.
• hyperalloc-linux: Modified Linux kernel
• hyperalloc-qemu: Modified QEMU monitor
• hyperalloc-stream: Memory bandwidth benchmark
• hyperalloc-ftq: FTQ CPU work benchmark
• linux-alloc-bench: Kernel module for benchmarking
the page allocator

A.6 Notes on Reusability
The parameters for the STREAM and FTQ benchmarks were
chosen based on the memory bandwidth and CPU frequency
of our test system. The results on your hardware might be
skewed a bit. However, the overall trends should be similar.
If the stream benchmark terminates before growing the

VM, you might have to increase the -stream-iters parame-
ter (see ./run.py -h).
The FTQ benchmark highly depends on the CPU fre-

quency. Thus, the “shrink” and “grow” markers might not
be aligned correctly in the plots. This is especially the case if
the CPU frequency varies (frequency scaling, TurboBoost).
However, the general trends (noticeable reductions in work
for virtio-balloon and virtio-mem+VFIO) should be similar
to the paper. Also, you can increase the runtime with the
-ftq-iters parameter.

https://github.com/luhsra/hyperalloc-bench/tree/artifact-eval/artifact-eval#spec-cpu-2017
https://github.com/luhsra/hyperalloc-bench/tree/artifact-eval
https://github.com/luhsra/hyperalloc-linux/tree/artifact-eval
https://github.com/luhsra/hyperalloc-qemu/tree/artifact-eval
https://github.com/luhsra/hyperalloc-stream/tree/artifact-eval
https://github.com/luhsra/hyperalloc-ftq/tree/artifact-eval
https://github.com/luhsra/linux-alloc-bench/tree/artifact-eval

	Abstract
	1 Introduction
	2 Problem Analysis
	3 HyperAlloc: Bilateral Memory Allocation
	3.1 HyperAlloc in a Nutshell
	3.2 Reclamation States
	3.3 Management Policies

	4 HyperAlloc in Linux
	4.1 LLFree Overview
	4.2 Integration with LLFree and KVM

	5 Evaluation
	5.1 Benchmark Competitors
	5.2 Environment
	5.3 Reclamation Speed
	5.4 Guest Performance Impact
	5.5 Automatic Soft Reclamation
	5.6 Multiple VMs

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 Exploring the Artifact
	A.6 Notes on Reusability

