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ABSTRACT

The shortcomings of existing Control-Flow Integrity techniques, in particular their significant
performance overhead, have motivated the development of hardware-based solutions. One such
protection technique is the pointer authentication code (PAC) mechanism introduced in the
ARMv8.3-A architecture. Facilitated by hardware support, this feature provides efficient means
for protection of code and data pointers with negligible performance and memory overhead. In
line with the expectation that this technique will find wide adoption in the industry, mainstream
operating systems and major compilers already support PAC. However, commercial off-the-shelf
SoCs with hardware including this protection mechanism are currently sparse.

This work presents software-emulated pointer authentication mechanism implemented as
a Linux kernel extension. To avoid the performance overhead of context switching, the com-
munication between userspace applications and the OS extension does not involve system calls.
Instead, the communication takes place exclusively via a shared memory area. The user fully
commits one or more CPU cores to continuously poll the shared memory and process incoming
pointer authentication requests. The kernel extension and the accompanying GCC plugin con-
stitute a complete CFI solution for return address protection. To further mitigate the run-time
overhead, the GCC plugin features several heuristics to omit the authentication for functions
where a stack-buffer overflow is unlikely. The evaluation using the multithreaded memory-
caching system memcached shows a moderate increase in average response latency of 2.7%
on x86-64 and 30.3% on AArch64. This thesis builds upon and seeks to benefit related works
related to the emulation of ARMv8.3-A pointer authentication by presenting solutions for support
of multithreaded applications and improved code instrumentation plugin for return address
protection.
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KURZFASSUNG

Die Nachteile existierender Control-Flow-Integrity-Verfahren und insbesondere die erheblichen
Leistungseinbußen, die von ihnen verursacht werden, haben die Entwicklung von hardware-
basierten Lösungen angestoßen. Der PAC-Mechanismus (Pointer Authentication Code) ist eine
solche Schutztechnik, die als Teil der ARMv8.3-A Architektur eingeführt wurde. Durch Hardware-
unterstützung bietet dieser Mechanismus ein effizientes Mittel, um Code- und Datenzeiger mit
vernachlässigbaren Leistungs- und Speicher-Overhead zu sichern. Entsprechend der Erwartung,
dass sich diese Technik in der Industrie durchsetzen wird, bieten etablierte Betriebssysteme
und Compiler bereits Unterstützung für PAC. Allerdings sind kommerzielle und serienmäßig
produzierte Ein-Chip-Systeme, die diesen Mechanismus implementieren, derzeit rar.

Im Rahmen dieser Arbeit wird eine durch Software emulierte Implementierung des PAC-
Mechanismus als eine Erweiterung des Linux-Kerns präsentiert. Um den durch Kontextwechsel
verursachten Leistungs-Overhead zu vermeiden, wird auf die Verwendung von Systemaufrufen
bei der Kommunikation zwischen Userspace-Anwendung und Betriebssystem verzichtet. Statt-
dessen findet die Kommunikation ausschließlich über einen geteilten Speicherbereich statt. Der
Benutzer widmet einen oder mehrere CPU-Kerne dem Zweck der kontinuierlichen Abfrage des
geteilten Speicherbereichs und der folgenden Bearbeitung der Authentifizierungs-Anfragen. Die
Kern-Erweiterung und das dazugehörige GCC-Plugin stellen eine vollständige Lösung für die
Sicherung der Rücksprungadressen dar. Das GCC-Plugin bietet mehrere Heuristiken, um Funktio-
nen, in denen ein Stapelüberlauf unwahrscheinlich ist, von der Authentifizierung auszunehmen
und so den Laufzeit-Overhead weiter zu mindern. Die Auswertung wurde mittels des mehr-
fädigen Speicher-Caching-Systems memcached durchgeführt und zeigt eine mäßige Erhöhung
der durchschnittlichen Latenz von 2.7% bei x86-64- und 30.3% bei AArch64-Systemen. Diese
Arbeit baut auf vorherigen Arbeiten zur Emulation von PAC auf und versucht diese zu ergänzen,
indem sie Lösungen für Unterstützung von mehrfädigen Anwendungen und ein verbessertes
GCC-Plugin zum Schutz von Rücksprungadressen durch Code-Instrumentierung präsentiert.
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1I NTRODUCT ION

In pursuit of automation and following the rapid development of portable and affordable elec-
tronics, computers have found their way into many aspects of our lives. Nowadays, computerized
systems perform tasks ranging from providing convenience services to management of safety-
critical systems. While the latter applications require high reliability due to the involved risks,
the former potentially handle confidential data. Therefore, computer software is expected to be
resistant to attempts by malicious actors to alter the program’s behavior or to bypass certain
access restrictions. Real-world experience shows that computer programs are often suscepti-
ble to such attacks [1]. These attacks exploit security vulnerabilities — design flaws that the
programmer left inadvertently during the development of the program. Programs written in
low-level programming languages like C or C++ are especially prone to security vulnerabilities
that can be used by the attacker to redirect the program’s execution flow and gain unauthorized
access to data or services running on the system.

The ever-growing complexity of computer software makes it increasingly hard to detect these
vulnerabilities at the development stage [2]. The impracticality of this approach gave rise to
protection techniques that aim to prevent exploitation of security vulnerabilities at runtime.
These techniques, summarized under the term Control-Flow Integrity (CFI), are traditionally
implemented in software and use code instrumentation to embed additional protections into the
program. Unfortunately, the CFI techniques that provide strong security guarantees often come
with a substantial performance overhead hindering their practical application [3].

High performance overhead associated with the present CFI approaches inspired the develop-
ment of hardware-based techniques. A promising technique that was introduced in 2017 as part
of the ARMv8.3-A architecture, is the pointer authentication code (PAC) mechanism [4]. As a
result of its hardware-based implementation, this mechanism provides efficient means to protect
control-flow elements by complementing them with a cryptographic signature. Although the
mainstream compilers already provide support for PAC-based return address protection, it has
not found wide use yet due to the limited availability of commercially produced ARM systems
that implement the PAC mechanism.

This issue is addressed in the related PAC-PL project, where Serra et al. [5] emulated the PAC
mechanism in hardware using a field-programmable gate array (FPGA) chip on heterogeneous
platforms that do not support the original ARMv8.3-A pointer authentication natively. PAC-PL
comes with a GNU Compiler Collection (GCC) plugin that applies this mechanism to protect
return addresses on the stack. This thesis is motivated by concerns regarding the economic
viability of the FPGA approach and explores the idea of implementing a similar mechanism purely
in software and in tight integration with the OS. The central concept is to dedicate one or multiple
CPU cores solely to the pointer authentication service and facilitate its communication with the
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1 Introduction

userspace applications using a shared memory area. Apart from implementing this concept in a
Linux kernel extension, this work seeks to benefit the original PAC-PL project by addressing its
missing support for multithreading and improving the original code instrumentation plugin for
return address protection.

This thesis consists of five chapters. Following this introduction (Chapter 1), Chapter 2
introduces the concepts required to understand the architecture of the solution. These include
fundamentals of virtual memory paging, memory access ordering, as well as foundations of
low-level software security. Chapter 3 provides an in-depth information on the architecture
of the pointer authentication extension for the Linux kernel and the design of the GCC plugin
for return address protection. In Chapter 4, the solution is evaluated in terms of protection
effectiveness and performance overhead. Finally, Chapter 5 concludes this work and discusses
how it can be extended in the future.
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2FUNDAMENTAL S

This chapter introduces the theoretical background required to understand this thesis. It starts
by explaining the relevant concepts commonly present in modern multiprocessor computer
architectures. These concepts include fundamentals of memory paging in Section 2.1 as well as
memory access ordering and atomicity in Section 2.2. Subsequently, it provides an overview of
typical software vulnerabilities and defense techniques in Section 2.3. Section 2.4 sheds some
light onto the code generation process in the GNU Compiler Collection. Finally, Section 2.5
closes the chapter with an overview of other works related to emulation of pointer authentication
and its applications.

2.1 Virtual Memory Management

Operating systems employ virtual memory to enforce separation between memory belonging to
different processes. Virtual memory abstracts the layout of the physical memory by providing each
process with its own, very large virtual address space. Virtual memory is a crucial security and
safety concept, since memory isolation prevents misbehaving processes from accessing the data
of other processes. Apart from that, virtual memory also allows the operating system to establish
and enforce access permissions on memory regions. For instance, specific memory regions can
be marked as read-only or non-executable, causing such accesses to raise an exception.

PGD index PUD index PMD index PTE index Page offset

48 39 30 21 12 0

Virtual address

PGD
PUD

PMD
PTE

Page

CR3

Figure 2.1 – Virtual address and the corresponding 4-level page table walk. The naming of
the page table levels follows the Linux kernel convention.

3



2.1 Virtual Memory Management

Current implementations of virtual memory, including the 64-bit architectures relevant to
this work, are based on memory paging. This technique introduces granularity into the memory
management, by dividing physical memory into chunks of constant size, called pages. The pages
are typically 4 KiB and are henceforth assumed to be of this size. Virtual address spaces of
processes are established by constructing page tables, which store the mapping between the
virtual and physical memory pages as well as the access permissions. To optimize the memory
footprint, the page tables are split into multiple levels, forming a sparsely-populated tree. The
different levels are indexed using parts of the virtual address and the respective entries refer to
the location of the next-level page table. The last-level page table points to the 4KiB physical
page and the 12 least significant bits of the virtual address specify the offset into this page.
Figure 2.1 demonstrates the composition of a virtual address and the corresponding layout of a
4-level page table.

On memory accesses, the memory management unit (MMU) translates the virtual address to
the physical address and verifies that the access is allowed according to the page permissions.
To avoid the expensive page walk for each memory access and speed up the translation, the
MMU caches the recent translations in the translation lookaside buffer (TLB). In case of an illegal
memory access or a missing translation, an exception is generated. To handle this exception, the
operating system provides a page-fault handler. The fault handling gives the operating system
the ability to load-in pages lazily, perform memory-mapped file I/O, or to create Copy-on-Write
(COW) mappings. If the operating system is unable to handle the exception, it terminates the
application. This reason for this condition is mostly a bug in the application that triggers an
invalid memory access. However, it may also result from failed attempt to exploit a security
vulnerability, as explained further in Section 2.3.

2.2 Shared-Memory Multiprocessing

Symmetric multiprocessing (SMP) systems feature several CPU cores connected to a shared main
memory. This arrangement enables parallelization of multithreaded applications, which use
the shared memory as the communication medium. Due to the nature of modern superscalar
processing units that perform out-of-order execution, several aspects have to be considered when
it comes to memory accesses.

Memory accesses are perhaps one of the slowest CPU operations. This comes from the fact
that memory storage devices have been developed at a different pace than other components of
the system for cost reasons [6]. The instructions operating on CPU registers are up to two orders
of magnitude faster than uncached memory accesses [7]. To minimize the effect of slow memory
accesses, CPUs include multiple levels of faster, albeit smaller memory. These CPU caches are
typically implemented as an SRAM (in contrast to the DRAM main memory) and are used to
cache memory accesses and transparently speed up the execution. The caches form a hierarchical
structure based on their access time and size, with slower (but bigger) caches backing faster (but
smaller) caches located closer to the core. While the small caches are implemented for each core
separately, the high-level caches may be shared by multiple cores. To fully utilize the bandwidth
of the CPU caches and the main memory, CPUs can reorder memory accesses, which do not have
data or control dependencies between them. In doing so, they maintain the apparent program
behavior as long as the program is single-threaded. However, the reordered memory accesses
become apparent when observed from other cores of the CPU. This has to be taken into account
when designing low-level multithreaded programs or lock-less data structures.

4



2.2 Shared-Memory Multiprocessing

2.2.1 Memory ordering

The C++11 standard formalized the concept of load-acquire and store-release semantics [8].
According to this model, a load that is said to have acquire semantics cannot be reordered with
loads and stores appearing after it in the program code. The store that is said to have release
semantics cannot be reordered with loads and stores before it. This concept has been since picked
up by other modern programming languages and processor architectures. The Linux kernel
provides primitives for both load-acquire and store-release operations.

Table 2.1 illustrates the possible kinds of memory reordering on AArch64 and x86-64.
AArch64 is an example of an architecture with the relaxed memory ordering, which provides
limited guarantees about the order of memory accesses. The only memory accesses that are
guaranteed to retain their order are those that have a dependency on each other [9]. However,
the architecture provides plenty of means for the programmer to enforce the proper order in
multithreaded environments. The load-acquire LDAR and store-release STLR instructions constitute
ordered counterparts of the regular load LDR and store STR instructions. Apart from that, the
architecture features a DSB (Data Synchronization Barrier) instruction, which waits for completion
of memory accesses. The DMB (Data Memory Barrier) instruction is a weaker, but more efficient
version of the DSB instruction. It enforces the relative ordering of memory accesses without
waiting for their completion. Both of these instructions expect the type (loads, stores, both) and
the shareability domain of the accesses in question specified as the operand.

Contrary to AArch64, the x86-64 memory model provides strong guarantees regarding mem-
ory ordering. With regard to regular memory accesses, the architecture only allows reordering
of reads with older writes to different locations [10]. This rule violates neither load-acquire nor
store-release semantics. Thus, any regular load has acquire semantics and any regular store has
release semantics. Similarly to AArch64, the x86-64 architecture also provides memory barrier
instructions to enforce the proper order of memory accesses. Just like DMB, the MFENCE instruction
ensures relative ordering of memory accesses preceding it against memory accesses following it.
Because of the already present guarantees, the two other x86-64 memory barrier instructions
SFENCE and LFENCE are mainly limited to edge cases, which are out of scope of this section.

2.2.2 Atomicity

Implementation of concurrent algorithms often requires modifying a value in memory, such that
the update would be perceived as a single atomic step by other observers. A simple example
would be a shared counter that is being incremented by multiple threads. The incrementation
of the counter in memory consists of three steps, namely: (1) loading its value from memory,
(2) adding one to it, and (3) storing the new value in memory. When executed simultaneously
by multiple execution threads, these steps become interleaved, resulting in a corruption of the

Type AArch64 x86-64

Loads reordered with older loads
Loads reordered with older stores
Stores reordered with older loads
Stores reordered with older stores

Table 2.1 – Allowed memory access reordering on AArch64 and x86-64.
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2.2 Shared-Memory Multiprocessing

1 1: ldaxr w1, [x0] /* Load -Acquire Exclusive */

2 add w1, w1, #1 /* Incrementation */

3 stxr w2, w1, [x0] /* Store -Exclusive */

4 cbnz w2, 1 /* Retry if store failed */

(a) On AArch64, using a load-exclusive and store-exclusive instruction pair.

1 lock /* Lock prefix */

2 incl (%eax) /* Incrementation */

(b) On x86-64, using the lock instruction prefix.

Figure 2.2 – Implementation of an atomic counter incrementation on different architectures.

value. The two processor architectures concerning this thesis provide instructions for performing
such read–modify–write operations atomically, but have different approaches to the solution.

Figure 2.2 demonstrates the assembly code performing an atomic counter update on different
architectures. On AArch64, the atomic operations are achieved by using a load-exclusive and
store-exclusive instruction pair. The LDXR instruction retrieves a word from memory and marks
the address in the exclusive access monitor. The STXR instruction performs a store to the memory,
but only if the address in the exclusive access monitor matches the target address. The result of
the instruction, i.e., whether the store took place or not, is stored in a register. Any store to this
memory address performed by other CPU cores discards the address stored in the exclusive access
monitor, causing the future store-exclusive instructions to fail. Putting an arbitrary modification
of the value between the load-exclusive and store-exclusive instructions and looping until the
store is successful achieves an atomic update of the memory. On x86-64, arithmetic and logic
operations acting on memory can be turned into atomic by marking them with the LOCK prefix.
This prefix ensures that the CPU has exclusive ownership of the cache line for the duration of the
operation. While the ARMv8.1-A Large System Extension (LSE) introduced single-instruction
atomic operations akin to x86-64, these instructions cannot be utilized in code that needs to be
compatible with older CPUs.

2.3 Software Vulnerabilities

Necessity to manage memory manually in addition to lacking memory and type safety in low-level
programming languages like C and C++ can lead to programming errors. Some of these errors
give the user a possibility to modify a memory location in a way not intended by the programmer
and are referred to as memory corruption bugs. Such bugs constitute a security vulnerability,
since they can be used by an attacker to influence the program’s behavior and gain unauthorized
access to data or services running on the system.

2.3.1 Stack-based buffer overflow
One of the most representative security vulnerabilities emerges when the attacker is able to
control data on the program’s call stack (commonly called the stack). The call stack is used by the
executing subroutines to store their private data. Each executing subroutine maintains its own

6



2.3 Software Vulnerabilities

foo

Return address

Saved frame pointer

E

Local buffer

User input

SP+24

SP+16

SP

(a) Stack frame layout

1 void foo(void)

2 {

3 char buf [16];

4 gets(buf);

5

6 work(buf);

7 }

(b) Source code

Figure 2.3 – Example of a subroutine containing a stack-based buffer overflow vulnerability.

stack frame accommodating the local variables, temporary buffers, and the return state. The
return state includes the address of the instruction following the subroutine’s call site, called the
return address, and (optionally) the frame pointer of the caller. To finish execution, after restoring
the call-preserved registers to their initial values, the subroutine issues a return instruction. This
transfers the program control back to the caller by resuming execution at the return address.

Suppose the attacker is able to perform an unbounded write on the stack. In that case, the
attacker can overwrite the return address of the subroutine and redirect the execution to an
arbitrary location. This situation arises, for instance, when the program receives input from the
user and stores it in a buffer located on the stack without validating the input size. Figure 2.3
demonstrates a vulnerable subroutine and its typical stack frame layout on x86-64 and AArch64
systems. The subroutine foo() allocates a 16-byte-long buffer on the stack to store the user input.
After that, the buffer address is passed to the infamous gets() [11] function of the C standard
library, which reads a line from the standard input into the buffer. Since gets() does not perform
any bounds checking, a malicious user can overwrite adjacent data on the stack by providing an
input that is longer than 15 characters. In this example, an input string containing 16 characters
would cause the null-terminator character to overwrite a part of the saved frame pointer. Hence,
a 32-character-long input string gives the attacker complete control over the return address and
the program’s execution flow.

It is worth noting that the example provided in Figure 2.3 is intentionally oversimplified for
brevity purposes. The memory corruption bug in foo() could be easily detected by static analysis
and fixed by replacing gets() with a function that performs bounds checking. In reality, such
vulnerabilities are typically hidden behind manual pointer manipulation or explicit loops and
span over abstraction layers [2]. This issue raises the need for systematic approaches to prevent
the exploitation of software vulnerabilities.
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2.3 Software Vulnerabilities

2.3.2 Conventional mitigations

Due to the increasing complexity of present software, manual attempts to remove software
vulnerabilities at the development stage rarely lead to anticipated results. To make matters
worse, these attempts might give a false sense of security or even introduce new bugs [2].
Unfortunately, state-of-the-art static analysis tools are likewise unable to detect complex security
vulnerabilities [12]. That leads to the use of various defense techniques, which aim to protect
programs by preventing the exploitation of vulnerabilities at runtime.

In the earlier days of computing, commodity systems lacked certain memory protection
features. The attackers would exploit stack-based buffer overflows by placing the malicious
payload (also called shellcode) directly on the stack and redirecting the control flow to it [13].
Modern hardware has since rendered this exploitation technique useless by allowing more
extensive control over the virtual memory access rights. In particular, implementing the Write
xor eXecute (W⊕X) memory protection policy in operating systems has become the industry
standard [14, 15]. W⊕X dictates that any region inmemorymust be either writable or executable,
but never both. This limitation considerably complicates the exploitation of stack-based buffer
overflow vulnerabilities. An attacker who managed to place the shellcode in a writable memory
region (such as the stack) will not be able to execute it. Analogously, it is impossible to introduce
new code into the executable regions. Unfortunately, applications relying on self-modifying code
or Just-In-Time (JIT) compilation cannot enforce W⊕X fully. This is a concern for present-day
mainstream web browsers, all of which include a JIT compiler to speed up JavaScript execution.

The inability to smuggle malicious code into the program memory has led to the discovery
of several new exploitation paradigms. Instead of injecting any code, the code-reuse attacks
(CRAs) construct the payload from already existing executable code in the program. The first
code-reuse attack return-into-libc, presented by Peslyak [16], circumvented W⊕X by making

Stack

Return address

Saved frame pointer

Stack canary

E

Locals

Figure 2.4 – Stack frame protected with a stack canary.
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2.3 Software Vulnerabilities

the vulnerable subroutine return into a C standard library (libc) function, allowing him to
execute the system shell. Peslyak also showed that it is possible to chain functions in some cases,
allowing the attacker to elevate permissions before executing the shell. Shacham [17] took this
concept even further and introduced return-oriented programming (ROP). ROP attacks combine
short instruction sequences ending with a return instruction into basic building blocks called
gadgets. Given enough executable code in the program memory, the attacker can construct a
Turing-complete gadget catalog including gadgets for arithmetic, logic, function calls, loops, and
conditional branches. The attacker is then able to perform arbitrary computations by chaining
these gadgets. Roemer et al. [18] formalized this concept and developed an exploit language
and a compiler, simplifying creation of return-oriented programs even more.

Modern operating systems generally employ, among other things, address-space layout ran-
domization (ASLR) [19] to combat CRAs. ASLR is a simple and effective technique that prevents
the attacker from reliably exploiting code in memory by arranging code areas randomly on each
run. This significantly complicates the return-into-library attacks or construction of ROP chains,
requiring the attacker to guess the location of the exploitable code. However, ASLR is susceptible
to memory corruption bugs that disclose information which is not intended to be readable by
the user [20]. Malicious actors can use these information leaks to revert the randomization
and reconstruct the layout of the program code. Szekeres et al. [3] show that most memory
corruption bugs can be exploited in a way that causes information leakage.

2.3.3 Control-Flow Integrity techniques
In contrast to W⊕X and ASLR, which are enforced by the operating system, the Control-Flow
Integrity (CFI) techniques involve embedding the protection into the program’s machine code.
Some of these techniques have found their way into modern compilers and seen wide adoption in
security-critical applications. One of the most prominent techniques is stack-smashing protection
(SSP), implemented by GCC’s -fstack-protector flag [21]. It protects the return address of
the subroutine by placing a secret value called stack canary on the stack frame. The program
initialization code generates a random reference value for stack canaries and stores it in a global
variable. This value is then placed during stack frame allocation in such a way that a buffer
overflow targeting the return address would overwrite it. The compiler augments the code of the
subroutine to compare the value of the stack canary with the reference value before returning.
If the value has been tampered with, the program terminates execution. Figure 2.4 illustrates
an example of a stack frame protected with a stack canary. Since standard library functions
operating on null-terminated strings stop at the zero byte, the protection can also be hardened
by including a zero byte in the canary value [22].

Tomitigate the additional overhead introduced by the comparison, GCC uses heuristics to omit
functions that are unlikely to contain security vulnerabilities from protection. The default policy
enforced by -fstack-protector is to protect only the functions that call alloca() compiler builtin
or that contain a character buffer of size ssp-buffer-size or larger. The value of ssp-buffer-size
parameter can be tweaked using compiler flags and defaults to 8 in most distributions. The flag
-fstack-protector-all protects all functions in the program. The Chrome OS team was using
this option due to security concerns but was not satisfied with the performance penalty [23]. For
that reason, another policy, enforced by -fstack-protector-strong was introduced. It protects
functions that contain arrays of arbitrary type and length, calls to alloca, and variables that had
their address taken.

Stack canaries offer protection primarily against contiguous stack buffer overflows. Some
memory corruption bugs give the attacker the ability to write an arbitrary value to an arbitrary
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location. These memory bugs, also known as write-what-where conditions, empower the attacker
with the ability to overwrite the return address without touching the stack canary. Alternatively,
having determined the location of the reference value, the attacker can either set it to a custom
value or leak it. The attacker can then perform a contiguous buffer overflow, while preserving
the correct canary value. In any of these cases, the canary comparison would neither detect the
value mismatch nor terminate the program, resulting in a successful control-flow redirection.

Some protection techniques offer a fine-grained highly effective CFI, but suffer from significant
performance overhead [3]. AddressSanitizer [24] uses a region in memory, called shadow memory,
to mark valid memory access targets at run time. This technique is implemented in major
compilers and detects a wide range of memory corruption bugs at the cost of up to 2x memory
and performance overhead. Label-based CFI techniques instrument indirect jumps to only allow
valid targets identified as such by static analysis [25]. On indirect jump, the target of the indirect
jump is compared with the control-flow graph. However, due to limitations of static analysis, the
label-based CFI techniques fall back to overly permissive choices or simplify runtime checks to
remain practical [26].

2.3.4 ARMv8.3-A pointer authentication

In 2017, the ARMv8.3-A architecture introduced a pointer authentication mechanism imple-
mented in hardware [4]. This mechanism implements efficient protection of code and data
pointers with negligible performance overhead and memory footprint. The length of the virtual
addresses on AArch64 is subject to system configuration and ranges between 32 and 52 bits,
with another bit being used to toggle between low and high halves of the address space [9].
Typical virtual memory configurations using 4KiB pages feature 48-bit virtual addresses. Despite
this, the pointers are generally treated as 64-bit values due to the architecture’s word size and
the unused upper bits contain the sign extension of the virtual address. Depending on the size of
the address space and whether the address tagging feature is enabled, the amount of unused bits
ranges from 3 to 31 bits. These unused bits of the pointer can be used to store the cryptographic
signature of the pointer.

The pointer authentication mechanism offers a set of instructions for creation and validation of
such signatures. The instructions under the mnemonic PAC<key> <pointer>, <context> augment
the pointer stored in the first operand register with a cryptographic signature called pointer
authentication code (PAC). Figure 2.5 illustrates the operation of the PAC instructions. The
computed PAC includes the value stored in the <context> register as the hashing salt and the
<key> placeholder in the instruction mnemonic indicates the used key. The mechanism features
five different 128-bit keys: two instruction keys IA and IB, two data keys DA and DB, and a general-

Context

Pointer
0x0000AABBCCDDEEFF

Key

PAC
instructions

PAC Pointer
0x1234AABBCCDDEEFF

Figure 2.5 – Functional principle of the PAC instructions.
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Context

PAC Pointer
0x1236AABBCCDDEEFF

0x1234AABBCCDDEEFF

Key

AUT
instructions

Pointer

1 Pointer
0x8000AABBCCDDEEFF

0x0000AABBCCDDEEFF

Mismatch

Success

Figure 2.6 – Functional principle of the AUT instructions.

purpose key GA. The keys are stored in the system control registers and are not accessible from
the userspace. Instead, the code running at higher privilege levels, such as the operating system
or the system hypervisor, is responsible for their management. The QARMA block cipher [27]
was developed specifically to be used for PAC computations. This cipher is resistant to truncation
and is meant to be deployed in fully unrolled or pipelined hardware implementations.

A set of symmetric instructions following the AUT<key> <pointer>, <context> mnemonic per-
forms the reverse operation. These instructions compute the PAC and compare it with the value
already stored in the <pointer> register. If the register contains the result of the respective PAC
instruction performed with the same context value, the values will match. In this case, the
instruction restores the original pointer value by removing the signature from the upper bits. If
the authenticated pointer has been tampered with (e.g., as a result of an attack), the comparison
detects a mismatch and the instruction corrupts the upper bits of the pointer. In practice, this
often means setting the most significant bit of the pointer to one. Dereferencing such a pointer
would generate a translation fault, causing the operating system to terminate the application. Fig-
ure 2.6 illustrates the operation of the AUT instructions. The pointer authentication mechanism
also provides XPAC instructions for stripping the PAC without validation.

The subroutine calls on AArch64 are done by issuing the BL instruction. This instruction puts
the address of the following instruction (PC+4) into the link register (LR) and branches to the
target address in the operand. Respectively, the return instruction RET transfers the control flow
back to the caller by branching to the address in the LR. Since nested calls would overwrite the LR,
non-leaf functions save the LR on the stack in the function prologue and restore it in the function
epilogue. This yields the stack arrangement introduced in Section 2.3.1, which is vulnerable to

1 paciasp /* Insert signature into LR */

2 stp fp, lr, [sp, #-FRAME_SIZE ]! /* Save LR , FP on the stack */

3 mov fp, sp /* Set the new frame pointer */

4

5 /* Function body */

6

7 ldp fp, lr, [sp], #FRAME_SIZE /* Restore LR and FP */

8 autiasp /* Verify integrity of LR */

9 ret

Figure 2.7 – Return address protection using the ARM pointer authentication.
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stack-based buffer overflows. The pointer authentication mechanism provides effective means
for protection of the return address stored on the stack. The specialized instructions PACIASP

and AUTIASP perform authentication of the link register (LR) using the instruction key A and the
stack pointer (SP) as the context value. As demonstrated in Figure 2.7, protection of the return
address is the matter of issuing PACIASP before pushing the return address onto the stack and
AUTIASP immediately after popping it of the stack. These specialized instructions are located in
the NOP-space to ensure binary compatibility with older versions of the architecture.

Applications of the ARMv8.3-A pointer authentication mechanism are not limited to protection
of return addresses. Another obvious use case is the protection of writable function pointers
and pointers to the C++ virtual method tables (vtables). The naming scheme of the keys also
suggests using it for protection of sensitive data pointers. Furthermore, the general-purpose
PACGA instruction computes a 32-bit PAC from two 64-bit operands. This instruction can be used
to create authenticated buffer canaries or it can be chained to protect arbitrary-sized data [28].
Note that there is no AUTGA counterpart to the PACGA instruction. The validation is performed by
issuing another PACGA instruction and comparing the result manually. Section 2.5.3 provides an
extended overview of CFI techniques based on the pointer authentication mechanism.

The main attack vector associated with this mechanism is that it might be possible to brute-
force particularly short PACs [4]. This issue is worsened by the nature of the fork() system call
on Unix systems. Given that the new process is a complete duplicate of the parent process, it
also retains the original key. While constructing such an attack is not trivial, an attacker who is
able to issue the fork() system call can test forged pointers without crashing the original process.
In June 2022, Ravichandran et al. [29] presented a side-channel attack targeting the pointer
authentication on Apple’s M1 CPUs. The attack works by examining the microarchitectural side
effects of a speculatively executed gadget, which consists of authentication and dereference of a
signed pointer, on the CPU caches. They were able to observe that only a correct PAC causes
the CPU to evict TLB entries. Since the architectural effects of speculative execution are not
committed, the attacker is able to brute-force the PAC without crashing the process or being
detected.

2.4 Code Generation in GCC

Many protection techniques embed additional code into the program and add checks, which
ensure the integrity of the execution flow. This work is not an exception and relies on a plugin
for the GNU Compiler Collection (GCC), which performs code instrumentation to protect return
addresses on the stack.

The GCC is an optimizing compiler developed as a part of the GNU Project. While the
compiler was originally developed for C, it has gained support for several programming lan-
guages, namely C++, Objective-C, Objective-C++, Fortran, Ada, D, and Go, as well as dozens
of hardware architectures [21]. To achieve this, GCC splits the translation process into multi-
ple passes, performed by the front-end, middle-and, and back-end of the compiler [30]. The
front-end deals with language-specific aspects of the compilation and generates an intermediate
representation, called GIMPLE, which is then fed into the middle-end. The middle-end is both
language- and architecture-agnostic and applies high-level abstract optimizations, including dead
code elimination and function inlining. The back-end works on the register transfer language
(RTL) representation of the program and consists of multiple passes. The RTL is inspired by
Lisp lists and describes instructions along with their side effects. The back-end starts with a
hardware-independent RTL with unlimited register set, which is then iteratively optimized and
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adapted to the target architecture using pattern matching. For example, the ira (Integrated
Register Allocator) pass replaces the virtual registers by allocating platform registers of the
target CPU. The end product of the back-end is the RTL representation of the assembly instruc-
tions in the compiled program, which can easily be translated into the machine code. In this
way, the programming language front-ends benefit from the wide variety of architectures and
optimizations supported by the GCC middle-end and the architecture back-ends.

The version 4.5.0 of the GCC added support for plugins [31]. The plugins are loaded as shared
libraries and allow extending the compiler without modifying its source code and requiring a
complete rebuild. The GCC provides an API for the plugin developers to add additional passes
or provide callbacks for certain events. This can be used to introduce new optimizations and
perform code transformation or analysis based on information available only during build-time.

2.5 Related Work

Pointer authentication is not the only hardware-based mechanism that enforces integrity of return
addresses. Various hardware-assisted techniques by security researchers and CPU manufacturers
present diverse approaches to return address protection or emulation of the original ARMv8.3-A
mechanism. Furthermore, prior to the introduction of the ARMv8.3-A pointer authentication
mechanism, multiple works proposed software-based techniques that protect code and data
pointers from control-flow redirection attacks in a similar fashion.

2.5.1 Software-based protection of code pointers
The idea of adding a cryptographic signature to the pointers is not new. In 2015, Mashtizadeh
et al. [26] proposed adding message authentication codes (MACs) to control-flow elements, such
as return addresses, function pointers, and vtable pointers in a technique called CCFI. To avoid
information leaks disclosing the secret key, CCFI reserves 11 XMM registers to store the key.
Since this constitutes a change to the application binary interface (ABI), all the dependencies
of the program require recompilation. The Code-Pointer Integrity (CPI) approach [32] aims to
protect pointers by storing them in an isolated memory location along with some metadata. On
AArch64 and x86-64 this isolation relies on the fact that no addresses pointing into the isolated
region are ever stored in the regular memory. On x86-64 this is achieved by storing the address
of the isolated region in one of the unused segment registers. Evans et al. [33] presented an
attack that is able to bypass CPI on these architectures and argued that security mechanisms
relying on information hiding are ineffective.

2.5.2 Hardware-based techniques
This thesis builds upon the work of Serra et al. [5] introducing PAC-PL. It presents a hardware-
assisted emulation of the ARMv8.3-A pointer authentication mechanism on systems that include
a field-programmable gate array (FPGA). PAC-PL comes with OS and compiler support and
also explores advanced key management and attack detection strategies. The evaluation shows
moderate performance overhead, mitigated by protecting only functions that allocate arrays
on the stack. Another work exploring hardware-assisted pointer authentication is RetTag [34],
which expands the RISC-V architecture with a mechanism imitating the ARMv8.3-A pointer
authentication. The prototype of RetTag is implemented and integrated into a FPGA-synthetized
RISC-V core.
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Pointer authentication is not the only hardware-assisted method to protect backward branches.
A 2017 survey of hardware-based CFI techniques [35] provides an extensive overview of works
proposing protection techniques implemented in hardware. It concludes that most presented
techniques protect the return addresses of subroutines by using a shadow call stack, an additional
hardware stack used to store an extra copy of the return address. This also applies to the
Control-Flow Enforcement Technology [36], a hardware-based CFI technique developed by Intel
and already present on some recent CPUs. Apart from providing protection of backward branches,
the Control-Flow Enforcement Technology protects forward branches using a technique called
Branch Limitation, which allows indirect branching only to valid entry points marked with
ENDBRANCH instruction. The ARMv8.5-A architecture introduced a similar mechanism called
Branch Target Identification (BTI) [9]. Christou et al. [37] implemented the shadow call stack
mechanism for SPARC V8 architecture by extending the instruction set of a processor core
synthetized on an FPGA.

2.5.3 Applications of pointer authentication
Return address protection is by far not the only application of the pointer authentication mecha-
nism. In the recent years, many research projects have proposed different CFI techniques that
are based on PAC codes. Considering the sparsity of ARMv8.3-A systems with support of the PAC
mechanism, many of these works can benefit from software-emulated pointer authentication
mechanism presented in this thesis.

Liljestrand et al. presented several works utilizing the pointer authentication for novel CFI
techniques. PARTS [28] is a compiler instrumentation framework, which protects a wide range
of pointers with PAC codes. This includes return addresses, local, global and static pointers,
and pointers in C structures. To facilitate run-time type safety for data and code pointers, the
context value for the PAC generation includes the information about the type of the pointee. The
performance evaluation shows 19.5% average overhead for data-pointer signing. PCan [38] is
an improved mechanism for SSP stack canaries, which does not involve storing the reference
value in memory. Instead, the context-based canary value is dynamically generated for each
function call using the PAC instructions. PACStack [39] builds the context value for return address
signature by cryptographically binding it to all previous return addresses in the call stack. This
technique makes signed pointers unique to a particular control-flow path and thus prevents
pointer-reuse attacks with minimal performance overhead (ca. 3%).

Farkhani, Ahmadi, and Lu designed PTAuth [40], a scheme to detect temporal memory
corruptions (i.e., use-after-free, double-free, invalid-free errors) at runtime. As a proof of concept,
the evaluation used a simple software-emulated pointer authentication with PAC computed by
XORing the context value and the pointer. Backed by such emulation, PTAuth shows a moderate
performance slowdown of 26%. Denis-Courmont et al. [41] demonstrated how the Linux kernel
security can benefit from the pointer authentication mechanism by proposing a range of use-cases
and key management mechanisms. However, since the software-emulated pointer authentication
mechanism presented by this thesis relies on OS support to provide the pointer authentication,
it cannot be used to protect the OS kernel itself.

2.6 Summary

The complexity of present computer software raises the need for protecting it from malicious
actors. A prominent protection technique is the pointer authentication mechanism introduced by
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the ARMv8.3-A architecture. The mechanism allows enforcing the integrity of the execution flow
with very low performance overhead thanks to its hardware-based implementation. The research
in the software security field has already presented many techniques that put this mechanism to
use. Due to limited availability of systems which include this mechanism, a software-emulated
solution is developed and presented within the scope of this thesis. This solution, explained
in-depth in the following chapter, is integrated into the operating system and makes use of the
virtual memory mechanism of x86-64 and AArch64 processor architectures. Since it involves
communication between several CPU cores, the critical code sections have to be designed with
the aspects of memory ordering and atomicity in mind.
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3ARCH IT ECTURE

This work presents a complete Control-Flow Integrity (CFI) solution for return address protection
and consists of two separate components. The first component is the kpac Linux kernel extension,
which provides a pointer authentication service for applications running in userspace. The second
component is the accompanying GCC plugin called PAC-SW, which augments the code of the
userspace applications with a return address protection technique facilitated by the kpac pointer
authentication service. This chapter starts with a high-level overview of the communication
protocol between the operating system and the userspace applications in Section 3.1. After
that, it introduces the design and the internals of the PAC-SW plugin in Section 3.2. In the end,
Section 3.3 provides an insight into the inner workings of the kpac kernel extension as well as
its configuration options.

3.1 Communication Protocol

The main idea of the technique presented in this thesis is to provide an OS-based pointer
authentication mechanism that does not involve system calls or page faults. This goal is motivated
by the significant performance cost induced by switching into the privileged execution mode
of the OS kernel. As demonstrated by Serra et al. [5], performing a system call or handling
a page fault in each function prologue and epilogue would multiply this cost and render the
technique unusable. As an alternative, this work proposes to use a shared memory page as the
communication medium between the kernel extension and the userspace applications running
on different CPU cores. To ensure fast response of the pointer authentication service, the OS
dedicates one or several CPU cores to await and process such pointer authentication requests.
The kernel extension sets up the shared memory page (hereinafter kpac page) at a fixed address in
the virtual address space of every userspace application. To accomplish synchronization between
the pointer authentication service and the userspace applications, both perform polling (repeated
sampling) of the kpac page. For the pointer authentication service, this means repeatedly
querying the kpac page for pending pointer authentication requests. The userspace applications,
in turn, submit these requests and wait for their completion by repeatedly querying their status
from the kpac page.

The kpac page contains four 64-bit words, which are used as registers in the communication
process, in the following order: STATUS, PLAIN, TWEAK, and CIPHER. The requests follow the same
procedure on both architectures supported by the kpac pointer authentication mechanism. To
perform an equivalent of the ARMv8.3-A PAC or AUT instructions, the application writes the
context value and the pointer into the respective registers of the kpac page. This means writing
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Register Offset [B] Usage during PAC requests Usage during AUT requests

STATUS 0 Constant value: 0x1 Constant value: 0x2
PLAIN 8 Input: Unsigned pointer Output: Unsigned/corrupted pointer
TWEAK 16 Input: Context value Input: Context value
CIPHER 24 Output: Signed pointer Input: Signed pointer

Table 3.1 – Registers in the kpac page and their usage during kpac requests.

the unsigned pointer into the PLAIN register for a PAC request and writing the signed pointer
into the CIPHER register for an AUT request. Regardless of the request, the context value is
written into the TWEAK register. Then, the request is submitted by writing either 0x1 for PAC or
0x2 for AUT into the STATUS register. This causes the pointer authentication service to fetch the
inputs from the kpac page, perform the requested operation, store the output into the respective
register, and set the STATUS register to zero. The output register is CIPHER in case of a PAC request
and PLAIN in case of an AUT request. After submitting the request, the application repeatedly
polls the value of the STATUS register. Once the value is zero, the application is free to fetch the
result and continue the further execution. Thus, each register fulfills a specific purpose in the
communication protocol and their usage is summarized in Table 3.1.

The cost of the memory accesses introduced in Section 2.2 raises the question whether this
approach is optimal, since it involves three stores per authentication request. An early prototype
of the mechanism without the STATUS register that involved only two stores showed no significant
improvement in performance over the four-register version. This finding can be attributed to the
fact that all the registers fit into a single cache line, which becomes exclusive to the CPU that has
performed the most recent store to it. The following stores operate on the said cache line and
introduce very limited overhead. Furthermore, the three-register prototype assumed that the
pointers cannot be null and initiated the operation as soon as a non-null pointer was stored in
the pointer register. However, there is nothing preventing the applications from authenticating
null pointers in the ARMv8.3-A pointer authentication mechanism. Therefore, a communication
protocol with four registers was chosen in the name of simplicity and to remain true to the
original design. The presence of the STATUS register also allows extending the mechanism in the
future with additional operations, e.g., to allow multiple keys.

3.2 GCC Plugin

Similar to the ARMv8.3-A pointer authenticationmechanism demonstrated in Figure 2.7, enabling
return address authentication in userspace applications requires additional code to be generated
in the prologue and epilogue of each subroutine. The code that is inserted before the original
prologue performs an equivalent of the paciasp instruction, that is, adding the cryptographic
signature to the return address. The code that is inserted after the original epilogue performs an
equivalent of the autiasp instruction, which means verifying the integrity of the return address
by authenticating the signature stored within the unused bits of the pointer. Thus, a plugin for
GCC 10.2 was developed to automate instrumentation of the subroutines during the compilation
process.
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3.2.1 Return address protection on AArch64

Figure 3.1 demonstrates the code that is generated in subroutines to enable return address
protection on AArch64. It is noteworthy that both the epilogue and the prologue follow a similar
scheme with minor differences. This is consistent with the similarities of PAC and AUT requests
introduced in Section 3.1. The following paragraphs explain the process of adding a signature
to the return address as part of the subroutine’s prologue on AArch64 (Figure 3.1a).

Performing a request to the pointer authentication service requires two temporary registers:
one that holds the address of the kpac page, and a scratch register for the values that are
loaded and stored. On AArch64, this purpose is fulfilled by the registers x9 and x10, respectively.
According to the AArch64 application binary interface (ABI) [42], these registers are caller-
saved and are not utilized otherwise in the calling convention. Thus, assuming no compiler
optimizations invalidating the calling convention, their value is undefined and they can be freely
used in both the prologue and the epilogue. The preparation of the request starts by storing
the address of the kpac page, which is defined as the PAC_BASE macro, in the x9 register (line 1).
Since the stack pointer (SP) cannot be used directly in the store instructions, it is first transferred
to the scratch register x10 (line 2). The following instruction stp (Store Pair) stores values of
two 64-bit registers sequentially in the memory, which are, in this case, LR and x10 (line 3). The
instruction is issued with the target address of x9 plus an offset of eight bytes, resulting in a
store to the PLAIN and TWEAK registers. The following two instructions initiate the PAC request
by transferring 0x1 to the scratch register (line 4) and storing it with release semantics into the
STATUS register of the kpac page (line 5). Next, the STATUS register is polled repeatedly until its
value changes to zero.

To achieve limited power consumption and bus contention during polling, the loop uses the
Wait for Event mechanism of AArch64. The wfe instruction (line 8) indicates that the CPU core
can suspend execution and enter a low-power state until it is woken up by another CPU core.
The wakeup event occurs when another CPU core issues a sev (Send Event) instruction or when
a store from another CPU core clears the local exclusive access monitor. The wfe instruction
is preceded by a sevl (Send Event Local) instruction (line 7). This instruction is issued to
prepopulate the event queue, so that the wfe instruction acts as a NOP on the first iteration of the
loop. Within the loop, the ldxr (Load Exclusive Register) instruction loads the value from the
STATUS register (line 9). If its value is not zero, the cbnz (Compare and Branch If Not Zero) jumps

1 mov x9, #PAC_BASE

2 mov x10 , sp

3 stp lr, x10 , [x9, #8]

4 mov x10 , #1

5 stlr x10 , [x9]

6

7 sevl

8 1: wfe

9 ldxr x10 , [x9]

10 cbnz x10 , 1

11 ldr lr, [x9, #24]

(a) Before the function prologue.

1 mov x9, #PAC_BASE

2 mov x10 , sp

3 stp x10 , lr, [x9, #16]

4 mov x10 , #2

5 stlr x10 , [x9]

6

7 sevl

8 1: wfe

9 ldxr x10 , [x9]

10 cbnz x10 , 1

11 ldr lr, [x9, #8]

(b) After the function epilogue.

Figure 3.1 – Additional code generated in functions for return address protection on AArch64.
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back to wfe (line 10). Note the missing stxr counterpart to the ldxr instruction. In this case, the
load-exclusive mechanism is used not to achieve atomic memory update, but to receive a wakeup
event once another CPU core performs a store to the STATUS register. Once the STATUS register
changes its value to zero, the loop is exited. The following ldr (Load Register) instruction loads
the signed pointer from the CIPHER register of the kpac page into the LR register of the CPU (line
11).

3.2.2 Return address protection on x86-64

Figure 3.2 demonstrates the code that is generated in subroutines to enable return address
protection on x86-64. The rest of this section describes the process of authenticating the signature
of the return address in the subroutine’s epilogue (Figure 3.2b).

Also in this case two temporary registers are required to hold the address of the kpac page
and the manipulated values. The x86-64 calling convention on Linux specifies registers r10 and
r11 as the only caller-saved general-purpose registers [43]. In fact, the register r10 does have
a purpose of passing the function’s static chain pointer, but this feature is not used by most
programming languages, including C. The preparation of the request begins by storing the
address of the kpac page in r10 (line 1) and copying the signed return address from the top
of the stack into the r11 register (line 2). Then, both the return address in r11 and the stack
pointer in rsp are stored into their respective kpac registers CIPHER and TWEAK (lines 3–4). Finally,
the AUT operation is initiated by storing 0x2 into the STATUS register (line 5).

Unfortunately, the x86-64 architecture does not offer a way to perform efficient polling
in userspace akin to the WFE mechanism of AArch64. The value of the STATUS register is
continuously read from memory and compared to zero using a single cmpq instruction (line 7). If
the comparison is successful, the loop is exited (line 8). Otherwise, a pause instruction followed
by an unconditional jump back to the comparison are issued (lines 9–10). The pause instruction,
also known as a nop with a rep prefix, improves performance of such spin-wait loops [10]. It
prevents the CPU from speculatively executing the comparison or predicting its result, which
would introduce a performance penalty once the value of the STATUS register changes. After the
loop is exited, the unsigned pointer in the PLAIN kpac register is transferred to r11 (line 11),
which is then written to the top of the stack (line 12), overwriting the signed pointer.

1 movq $PAC_BASE , %r10

2 movq (%rsp), %r11

3 movq %r11 , 8(%r10)

4 movq %rsp , 16(% r10)

5 movq $1, (%r10)

6

7 1: cmpq $0, (%r10)

8 je 2

9 pause

10 jmp 1

11 2: movq 24(% r10), %r11

12 movq %r11 , (%rsp)

(a) Before the function prologue.

1 movq $PAC_BASE , %r10

2 movq (%rsp), %r11

3 movq %r11 , 24(% r10)

4 movq %rsp , 16(% r10)

5 movq $2, (%r10)

6

7 1: cmpq $0, (%r10)

8 je 2

9 pause

10 jmp 1

11 2: movq 8(%r10), %r11

12 movq %r11 , (%rsp)

(b) After the function epilogue.

Figure 3.2 – Additional code generated in functions for return address protection on x86-64.
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3.2.3 Configuration options

Before diving into the implementation details of the PAC-SW plugin, it is reasonable to in-
spect it from the user’s perspective first. Despite avoiding overhead of context switching, the
software-emulated pointer authentication mechanism still introduces significant overhead into
protected programs when applied carelessly. This is due to relying on shared memory to facilitate
communication between different CPU cores. The CPU caches are able to conceal the cost of
memory accesses for locations accessed primarily by a single CPU core. However, if the location
is accessed concurrently by multiple cores, the CPU is required to maintain cache coherency, or
consistency of the data in caches across different cores. This comes with a performance cost.

To mitigate the overhead introduced by the pointer authentication, the GNU Compiler
Collection (GCC) plugin offers several heuristics to omit functions that are unlikely to contain
stack-based buffer-overflow vulnerability from protection. These heuristics are called protection
scopes (strategies) and can be specified using the command-line argument scope. Table 3.2 lists
the protection heuristics that are implemented in the PAC-SW plugin. The nil and all protection
scopes can be used to disable or enable protection in all functions. This is useful in combination
with the pac_scope function attribute, which forces specific strategy during the compilation of
the annotated function, as shown in Figure 3.3.

Another mitigation of the performance overhead is possible on AArch64. Since the return
address is initially stored in the link register (LR) and leaf functions do not call other functions,
they need not save their return address on the stack. Therefore, a stack-based buffer overflow
is not possible and, by default, no return address protection is added. This behavior can be
overridden by providing a leaf command-line argument (possible values: y, n).

Other accepted command-line arguments are dump and init. The dump=<filename> argument
causes the plugin to output the list of functions that were complemented with return address
protection into a file and was used during evaluation of the technique. The init=<function>

argument allows specifying a function that is called during program initialization to set up the
return address protection. While such function was required for early prototypes of the technique,
operating system support eliminated this need and rendered this argument redundant.

3.2.4 Compatibility with compiler optimizations

This thesis aims to improve the software infrastructure developed for PAC-PL [5]. One drawback
of the original GCC plugin is the missing support for compiler optimizations, which constitutes a
hurdle to its application. Therefore, a goal was set during the development of PAC-SW to add
such support. In practice, this involved identifying and automatically disabling incompatible

Functions containing. . . nil char array strong all

calls to alloca() compiler builtin
char arrays of size ≥ ssp-buffer-size

arrays of arbitrary size and type
variables on the stack that had their address taken

All functions

Table 3.2 – Protection scopes implemented by the PAC-SW plugin.
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1 __attribute__ (( pac_scope("nil"))) int foo(void) { /* ... */ }

2 __attribute__ (( pac_scope("all"))) int bar(void) { /* ... */ }

Figure 3.3 – Exemplary usage of the pac_scope attribute.

optimizations, while remaining compatible with as many optimizations as possible. Thus,
following optimizations are automatically disabled by the plugin:

-fipa-ra: This optimization enables the compiler to omit saving caller-saved register before
calls if it is able to determine that the called function does not clobber them [21]. Such
optimization is incompatible with the return address protection, because the authentication
code clobbers the caller-saved registers, namely r10, r11 on x86-64 and x9, x10 on AArch64.

-fshrink-wrap: This optimization enables the compiler to delay function prologue in case it is
not needed for some code paths [21]. An example of such case would be a subroutine
that immediately returns if one of its arguments is null. The main issue caused by this
optimization is that the code before the frame setup and pointer authentication can store
some values into the caller-saved registers. In case these registers are accessed again after
the function prologue, their values are clobbered by the pointer authentication code.

-freorder-blocks, -freorder-blocks-and-partition: These optimizations cause the compiler to
reorder basic blocks within the functions in order to reduce the number of taken branches
and improve code locality [21]. In practice, this causes the compiler to generate multiple
epilogues in the functions. While the plugin is compatible with multiple epilogues and
exit points, the value introduced by these optimizations after the code instrumentation is
questionable. This is due to the size of the authentication code presented in Sections 3.2.1
and 3.2.2. Multiplied by the amount of epilogues, the additional code causes the binary
size to inflate significantly.

It is worth noting that there are other compiler optimizations that generate multiple exit
paths with separate epilogues, like -foptimize-sibling-calls. However, these optimizations
generate a low amount of additional epilogues compared to block reordering and thus have
limited impact on the binary size.

3.2.5 Code instrumentation
In order to insert the code introduced in the previous section into the function prologues and
epilogues, the GCC plugin operates on the register transfer language (RTL) representation of
the program. This is done by registering an additional compilation pass (named inst_pac). The
new pass is inserted after the free_cfg compilation pass, which is the last one to change the
control-flow graph (CFG) of the program. At this stage, the stack frame layout is final and all
the function prologues and epilogues are already generated.

The pointer authentication pass inst_pac inserts the return address protection code into the
RTL by creating an inline assembly block. This inline assembly block is equivalent to the code
that GCC generates for an asm volatile statement and is demonstrated in Figure 3.4. The insn

expression represents a single instruction that does not jump or call a function. It possesses a
unique ID (first argument) and is doubly-linked with the previous (second argument) and the
next (third argument) expressions in the RTL representation of the execution flow. The effect of
the insn expression is represented in the fourth argument, which in this case is parallel. The
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1 (insn 44 39 40 (parallel [

2 (asm_input/v ("assembly code") example.c:16)

3 (clobber (mem:BLK (scratch) [0 A8]))

4 (clobber (reg:CC 17 flags))

5 ]) "example.c":16:1 -1

6 (nil))

Figure 3.4 – The RTL representation of an inline assembly block.

parallel expressions represents several simultaneous side effects specified in its single vector
argument. The side effects of the inline assembly block are as follows:

• The asm_input side effect with volatile flag /v specifying the inline assembly code.
• The clobber side effect with (mem:BLK (scratch)) argument representing that all memory

locations must be presumed clobbered. This prevents the compiler from caching variables
in registers.

• The clobber side effect with (reg:CC 17) argument representing that the x86-64 flags

status register must be presumed clobbered. This side effect is not present on AArch64.

Apart from these side effects, the RTL representation in Figure 3.4 also contains debugging
information, such as the corresponding location in the source file, and the intermediate data for
further code generation passes.

Before instrumenting the function, the inst_pac pass determines whether the function is
contained in the current protection scope. This is done by recursively traversing the abstract
syntax tree of the function and noting the presence of arrays, addressable variables, and calls to
alloca(). The algorithm also detects arrays that are nested arbitrarily deep in struct and union

types.
The inst_pac pass inserts the inline assembly block with the code in Figures 3.1a and 3.2a as

the first instruction into each protected subroutine. While such a simple solution is possible for
the function prologue due to disabled -fshrink-wrap optimization, not all function epilogues are
at the end of the subroutine and therefore require special attention. A challenge faced during
development of the GCC plugin was identifying all the function epilogues generated by the
compiler and placing the authentication code precisely after each one. Rather conveniently, the
RTL representation at this stage of code generation provides:

1. (note ... NOTE_INSN_EPILOGUE_BEG) expressions marking beginning of each epilogue;
2. (barrier ...) expressions placed in the instruction stream where the control flow cannot

advance further (e.g., after an unconditional jump or a return instruction);
3. (insn/f ...) with an /f flag indicating that the instruction is related to frame allocation

code.

Therefore, each epilogue can be located by searching the RTL representation of the subroutine
for notes marking their beginning (1). After that, its end is identified by iterating through the
RTL expressions until a barrier (2) is encountered while keeping track of the most recently seen
frame-related (3) instruction. If no frame-related instructions were encountered, the function
does not allocate a stack frame and the epilogue was optimized out by the compiler. In this case,
a stack buffer overflow is unlikely and no return address authentication code is inserted.
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3.3 Linux Kernel Extension

There are multiple reasons for the pointer authentication service to be implemented as a compo-
nent of the operating system. Firstly, this design choice improves the security of the technique by
making the secret key inaccessible from the userspace. This is an advantage over other software-
based pointer authentication techniques relying on information hiding using randomization,
such as CCFI [26] and CPI [32]. Secondly, per-task management of the keys, installation of
shared pages and support of multithreaded applications requires extending the OS scheduler
and the virtual memory management subsystem.

Unfortunately, the changes introduced into the kernel subsystems are too intrusive for the
extension to be implemented as a loadable kernel module. Instead, the extension constitutes a
patch that is applied directly onto the source tree of the Linux kernel version 5.17. It introduces
a net addition of 1307 lines of code across 27 files. The majority of source code changes affect
the virtual memory subsystems of AArch64 and x86-64 and the core scheduler code.

3.3.1 Configuration options

Before the Linux kernel can be compiled, it is necessary to configure its source code tree. This is
done using graphical or text-based programs shipped together with the kernel source code, such as
nconfig, menuconfig, xconfig, and others. These programs manipulate the configuration database,
which is organized into a tree structure and is described using the Kconfig language [44]. Due
to the enormous size of its code base, the version 5.17 of the Linux kernel includes nearly 18
thousand of such configuration options. The kpac extension introduces several options into the
Kconfig configuration system to customize static aspects of the pointer authentication service.
These options are listed in Figure 3.5 and boil down to two aspects: the userspace mapping
address, which defaults to 0x9AC00000000, and the selection of the hashing algorithm. The pointer
authentication mechanism can use different cryptographic algorithms to generate the pointer
authentication codes. Within the scope of this work, support for two algorithms was developed
and evaluated. These algorithms include xxHash [45] digest algorithm, which is designed to be
fast but not cryptographically strong, and the original QARMA algorithm used by the ARMv8.3-A
architecture with better security properties. Apart from that, the hashing backend can be disabled
completely. This option causes the pointer authentication service to return the pointer without
modifications and was used to evaluate the efficiency of the communication mechanism.

Before the kpac pointer authentication service can be used, it needs to be configured according
to the use-case and the topology of the system it runs on. Following the commonly exercised
practice of the Unix-based operating systems “everything is a file”, these runtime settings are

1 +- Security options

2 +- Enable software -emulated pointer authentication [bool]

3 +- Userspace mapping address [hex]

4 +- Pointer authentication backend [choice]

5 +- None (DEBUG)

6 +- xxHash hashing algorithm

7 +- ARMv8.3 QARMA block cipher

Figure 3.5 – Build-time configuration options of the kpac extension.
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kpac
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cpumask

1

cpumask
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⋯
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AUT requests
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Figure 3.6 – Layout of the kpac tree in the debugfs filesystem.

exported in the debugfs filesystem of the Linux kernel. The debugfs filesystem is a pseudo file
system that provides means for kernel developers to easily export internal data structures of the
kernel subsystems into the userspace [46]. It is usually mounted under the /sys/kernel/debug

directory. The kpac extension creates a directory named kpac in the debugfs file system and
populates it with contents summarized in Figure 3.6. The contents include read-only information
about the build configuration (virtual address, hashing algorithm) as well as information about
the amount of processed requests. Apart from that, the kpac directory includes a subdirectory
with a single cpumask file for each live CPU core of the system. These subdirectories represent the
mapping of the CPU cores providing and receiving the pointer authentication service 𝑈 →𝒫(𝑈),
where 𝑈 is the set of online CPU cores. Writing a set of the CPU cores𝑀 ∈𝒫(𝑈) into the cpumask

file of the CPU core 𝑁 ∈𝑈 causes the kernel to start the pointer authentication service on the
CPU core 𝑁, such that it would serve the CPU cores in 𝑀. The set cannot include the CPU core
that is serving it or intersect with the sets served by other CPU cores. If such violation is detected,
the kpac extension rejects the input and prints an error message into the kernel log. The sets are
represented using comma-separated ranges of CPU cores, such as “0,2,4-6”. This syntax is used
repeatedly in the Linux kernel interfaces and is described extensively in the documentation [47].
Writing an empty set represented by an empty string into the cpumask file shuts down the service
on the respective CPU core.

3.3.2 Multiprocessing support
One of the goals of this work was finding a solution for support of multithreaded applications.
This also benefits the original PAC-PL [5] mechanism, which does not have such support. Nev-
ertheless, it has a similar architecture, since the userspace applications communicate with the
field-programmable gate array (FPGA) using memory-mapped I/O. Therefore, the principles
introduced here may also be used to enable multithreading for PAC-PL.

Effectively, to support multiprocessing in general, it is sufficient to provide the pointer
authentication service to multiple CPU cores concurrently. In case of multiple concurrently
executing singlethreaded applications, such arrangement is trivial and could be implemented
by installing the respective kpac page into a process whenever it is assigned or migrated to a
particular CPU core. Unfortunately, this idea cannot be applied to multithreaded processes, since
all the threads share a single virtual address space. In other words, installing the kpac page for
one thread means it is immediately visible in all other threads. Scheduling these threads on

25



3.3 Linux Kernel Extension

different CPU cores would lead to data races due to unsynchronized accesses to the kpac page.
A naive solution would be to serialize these accesses by using synchronization primitives in the
pointer authentication code. However, such solution introduces another level of synchronization
in addition to communication with the pointer authentication service and would lead to a huge
performance bottleneck.

There are multiple ways to decouple concurrent threads from each other when it comes to
accesses to the kpac page. A solution that was considered in the early stages of the development
involved using the thread-local storage (TLS) [48] mechanism. The TLS provides each thread
with its own instances of thread-local variables defined in the global scope, despite the fact that
the threads share a virtual address space. It is set up and managed by the system implementation
of the standard C library and can use different mechanisms depending on the system or even
the way the application was compiled and linked. This mechanism is implemented fully in
the userspace and, hence, the OS kernel is not aware of its existence. Therefore, this idea was
abandoned, since adding such functionality to the Linux kernel would be out of scope of this
work.

The address space generations introduced by Rommel et al. [49] and implemented as a Linux
kernel extension provide means to create multiple address spaces within a single process. These
address spaces can be selected on per-thread basis and used to provide threads with different
versions of some memory regions, while keeping the rest of the address space in sync. The
address space generations could be extended to provide each thread with its own view of the
kpac page. However, such solution was considered too heavy, since it involves duplicating the
internal Linux structures representing the address spaces along with their respective page tables.
This requires additional page-fault handling and leads to inconsiderate usage of the translation
lookaside buffer (TLB), and thus potentially introduces a significant performance slowdown.

Therefore, the technique of per-CPU PGDs that has minimal performance impact and provides
each CPU core with its own kpac page was developed. In this context, PGD (Page Global
Directory) is a name that has established itself in the Linux kernel source code and refers to
the top-level page table. Per-CPU in this context carries the meaning “per CPU core”, since the
Linux kernel source code typically refers to CPU cores as simply CPUs. This technique is based
on maintaining a separate version of each address space for each CPU core. Doing so does
not involve duplicating the whole page table tree, but rather only its top level (PGD). In these

Shared PUDs

KPAC

CPU 0

mm.pgd[0] kpac_pud[0] kpac_pmd[0] kpac_pte[0]

CIPHER
TWEAK
PLAIN
STATUS

kpac_page[0]

KPAC

CPU 1

mm.pgd[1] kpac_pud[1] kpac_pmd[1] kpac_pte[1]

CIPHER
TWEAK
PLAIN
STATUS

kpac_page[1]

Figure 3.7 – Page-table arrangement introduced by per-CPU PGDs.
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duplicated top-level page tables, all but one entry refer to the same underlying page tables
(PUDs). Therefore, any modifications of these underlying page tables or in pages referenced by
them are instantly seen by other CPU cores in their versions of the address space. Furthermore,
any modifications done to entries in the top-level page tables are manually mirrored in the
top-level page tables of other CPU cores.

The single entry that is not shared among its sibling versions of the top-level page table refers
to the kpac page table of the respective CPU core. During the system initialization, the kpac
extension allocates these kpac page tables along with the kpac page for each CPU core separately
and chains them into a page-table subtree. When a new address space is created by means of
fork() or exec() system calls, the extension inserts these page-table subtrees into the PGDs of
the corresponding CPU cores. The Linux scheduler was modified to select the appropriate PGD
according to the CPU core it runs on during a context switch. This arrangement, illustrated in
Figure 3.7, ensures that each core of the system executing a userspace task sees its own kpac
page. When applied to multithreaded applications, each concurrently running thread sees a
different kpac page according to the CPU core it runs on, while the rest of the address space
stays shared.

Assuming a system with 4KiB pages and 4-level page tables, reserving a single entry of
the top-level page table for kpac page means that 1

512 or 512GiB of the virtual address space
cannot be used by the applications anymore. However, this is barely a concern considering the
enormous size of the virtual address space (256TiB). That being said, the technique was tested
with 5-level paging [10] introduced in recent x86-64 processors by Intel. It is also compatible
with the page-table isolation, or KAISER [50], a protection technique used by the Linux kernel
to mitigate the notorious Meltdown [51] attack.

3.3.3 Kernel threads for pointer authentication

The pointer authentication service is implemented using kernel threads. The kernel threads
are similar to regular userspace tasks and are generally treated same by the OS scheduler, but
execute entirely in the kernel space. To avoid superfluous context switching, they do not possess
an address space of their own and reuse the address space of the previous process. The kernel
threads are used to delegate critical system-management tasks, such as flushing disk caches,
swapping out unused pages, or servicing network connections [52, p. 123].

The kernel thread kpacd/n, where n is the ID of the CPU core it runs on, is started as soon as
non-empty set of CPU cores is stored in the respective cpumask file. Although the priority of the
kpacd thread is automatically set to the maximum, it is recommended that it is started on a CPU
core that is completely isolated from other tasks in the system. On Linux, this can be achieved
by using the isolcpus command-line parameter [47] or the cpuset mechanism [53]. The kernel
thread polls one or several kpac pages according to its cpumask list and fulfills requests which are
submitted by the user applications via these pages.

To synchronize with the kernel scheduler, the kpacd threads maintain a mask of the globally
polled CPU cores protected with a spin lock. In contrast to a simple union of the cpumask sets in
the debugfs, this mask does not include kpac threads that are temporarily scheduled away. To
achieve this, the kpacd threads do not allow preemption and instead call the scheduler manually
once their time slice expires, adjusting the mask of polled CPU cores beforehand. The following
section describes this synchronization mechanism in depth.
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3.3.4 Modifications to the OS scheduler
To provide management of the keys and enforce isolation between different processes scheduled
consecutively on the same CPU core, the pointer authentication service operates jointly with
the kernel scheduler. Furthermore, the thread control block (TCB), which is an internal data
structure representing the state of the tasks, is extended to hold the kpac context. The kpac
context includes the key used for computation of cryptographic signatures as well as the contents
of the kpac page registers at the moment the task was last scheduled away. To manage this state,
the extension introduces two new callbacks into the Linux kernel scheduler, namely kpac_finish()

and kpac_switch().
The kpac_finish() callback is executed early in the scheduling process, and the next task

chosen by the scheduler is not yet known. This callback resolves any pointer authentication
requests that were made by the task, but not yet finished at the moment the task was preempted.
It starts by verifying the value of the STATUS register in the kpac page. If it contains zero, then
no pending requests were interrupted by the preemption and the callback returns, resuming
the scheduling process. Otherwise, the callback locks the mask of the globally polled CPU cores
and checks whether the current CPU core is contained in this mask. At this point, there are two
possible cases:

• The CPU core is contained in the mask and there is a concurrent kpacd thread about to
fulfill this request. In this case, the callback spins until the value of the STATUS register
changes to zero, releases the lock, and returns.

• The CPU core is not contained in the mask of the polled CPU cores. This means that this
CPU core is either not assigned to any kpacd thread, or the respective kpacd thread was
temporarily scheduled away. In this case, the callback fulfills the request on the spot,
releases the lock, and returns.

For this mechanism to work, following requirements have to be satisfied:

• To avoid deadlocks, the kpacd threads cannot be scheduled away if there is a waiter in
the kpac_finish() callback. This condition can be easily overapproximated by checking
whether the mask of the polled CPU cores is locked. Once rescheduling is requested by
the kernel, the kpacd thread attempts to lock the mask, since it is also required to adjust
it before yielding the CPU core. If the attempt is unsuccessful, i.e., the lock is taken, no
rescheduling is done in favor of one more polling pass to unblock any potential waiters in
the kpac_finish() callback.

• To avoid race conditions, the kpacd threads cannot resume polling after being scheduled in
if another CPU core is fulfilling the request concurrently in the kpac_finish() callback. This
requirement matches the requirement to adjust the mask before polling is resumed. Since
doing so implies taking the lock, the kpacd thread will spin, waiting for the concurrent
kpac_finish() call to finish and release it.

The kpac_switch() callback is executed immediately prior to the context switch when the
next task is already determined. This callback does nothing more than saving the kpac context
of the previous task and restoring the kpac context for the next task. Managing the contents of
the kpac page in such way ensures separation between the processes and allows continuing the
execution at the same point if the task was preempted during request preparation. The callback
also adjusts the global reference to the task running on the respective CPU core. This reference
is used by the kpacd threads to match the ID of CPU core to the key of the process in the TCB.
The key is generated in the kpac_exec() callback that is inserted into the final stage of the exec()

system call.
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3.4 Summary

This chapter introduced the architecture of the CFI solution, which consists of the Linux kernel
extension and a GCC plugin. During development of this technique, a focus was laid on minimiz-
ing the performance overhead, while keeping the bar of security guarantees high. Particularly
close attention was paid to aspects that would benefit other works, such as PAC-PL [5]. These
aspects include support of compiler optimizations for the compiler plugin as well as support of
multithreaded applications for the Linux kernel extension. The pointer authentication service is
provided by kernel threads that fulfill pointer authentication requests submitted by other CPU
cores via a shared page in memory. This service is integrated tightly into the system scheduler
to ensure separation between pointer authentication transactions in different tasks and keep
the communication protocol simple without sacrificing performance. To support multiprocess-
ing, this work proposes a lightweight technique of per-CPU PGDs, which involves maintaining
separate versions of address spaces for each CPU core that differ only in the top-level page table.
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4EVALUAT ION

This chapter presents the evaluation of the Control-Flow Integrity (CFI) solution for return
address protection developed within the scope of this thesis. It starts with Section 4.1 analyzing
the effectiveness of multiple protection strategies implemented in the PAC-SW plugin based on
the past security vulnerabilities in the GNU C library. Then, the influence of various hashing
algorithms and protection scopes on the performance overhead are assessed in Section 4.2 using
a collection of synthetic benchmarks. Finally, Section 4.3 evaluates the performance overhead,
multicore scalability, and energy efficiency of the technique in a real-world multithreaded
environment.

4.1 Protection Effectiveness

The Common Vulnerabilities and Exposures (CVE) is an effort launched in September 1999 and
operated by The Mitre Corporation together with the NIST (US National Institute of Standards
and Technology) to maintain a database of publicly disclosed security vulnerabilities in software
projects [54]. In September 2022, it contained more than 180 thousand CVE records that are
scored in severity based on several metrics, including impact, exploitability and the involved
attack vectors. As this study was conducted in July 2022, the database contained 131 (CVE-
1999-0199 through CVE-2022-23219) records for the security vulnerabilities involving the GNU
C library project. The GNU C library is the standard and most widespread implementation of the
standard C library on GNU/Linux systems. To compare the effectiveness of various protection
scopes, the vulnerabilities in the CVE database involving the GNU C library were qualitatively
assessed in three aspects:

• Does the security vulnerability involve a stack-based buffer overflow? If yes, in which
functions?

• What is the minimal protection scope of the PAC-SW plugin to include the vulnerable
functions?

• Some vulnerabilities involve overflowing a buffer received from a function that links with
and calls into the GNU C library. Assuming this buffer is allocated on the stack of the
calling function, what would be the required protection scope to protect its return address?

To answer the last question, the typical use case of the function involving the vulnerability and
the type of the buffer are analyzed. For example, if the vulnerability involves overflowing an
int buffer, array protection scope is assumed, since it is the smallest scope that would include a
hypothetical function with an int array on the stack.

31



4.1 Protection Effectiveness

CVE ID Location of the buffer overflow Required protection scope

CVE-2022-23219 glibc function clnt_create() char

CVE-2022-23218 glibc function svcunix_create() char

CVE-2020-29573 caller of printf() char

CVE-2020-10029 glibc function __ieee754_rem_pio2l() array

CVE-2020-6096 caller of memcpy() strong

CVE-2020-1751 caller of backtrace() array

CVE-2018-1000001 caller of getcwd() char

CVE-2018-11236 glibc function __realpath() char

CVE-2016-1234 glibc function glob() char

CVE-2015-8982 glibc function strxfrm() char

CVE-2015-8779 glibc function catopen() char

CVE-2015-1781 caller of gethostbyname_r() char

CVE-2015-1473 glibc function _IO_vfscanf_internal() char

CVE-2015-1472 glibc function _IO_vfscanf_internal() char

CVE-2014-9761 glibc function __nan() char

CVE-2013-4237 caller of readdir_r() char

CVE-2012-4424 glibc function strcoll() char

CVE-2012-4412 glibc function strcoll() char

CVE-2012-3480 caller of strtod() char

CVE-2012-3405 glibc function vfprintf() char

CVE-2012-3404 glibc function vfprintf() char

CVE-2012-0864 glibc function vfprintf() char

Table 4.1 – Security vulnerabilities discovered in the GNU C library that involve a stack-based
buffer overflow.

Table 4.1 demonstrates the results of the study. Out of 131 analyzed security vulnerabilities,
22 contained vulnerabilities that could be used to cause a stack-based buffer overflow. More
than two thirds of these involve a buffer overflow within the GNU C library itself. In all but
one of these vulnerabilities, it would be enough to use the char protection scope to protect the
return address of the vulnerable function and prevent control-flow redirection. However, the
reason the vulnerable functions are included in the char protection scope is not necessarily a
character buffer within the function. The GNU C library extensively uses the alloca() compiler
builtin, which allocates additional space on the function’s stack frame at runtime. Since the
alloca() builtin can be used to allocate an array of any type (including char), the protection
scope char includes all functions that call alloca(). Besides, the alloca() builtin requires special
caution and is often misused. In fact, several of the analyzed vulnerabilities involved incorrect
usage of alloca() that caused a memory corruption on the stack. The only vulnerability that is
not covered by the char protection scope and requires the protection scope of at least array is
CVE-2020-10029. This vulnerability involves overflowing a three-element double buffer in the
floating point range reduction code of the GNU C library.

Seven of the analyzed vulnerabilities enable the attacker to overflow a buffer supplied by the
caller. The majority of them involve standard library functions that typically receive a character
buffer from the user, such as printf(), getcwd(), strtod(), and others. Thus, assuming the
passed buffer is located on the stack, these vulnerabilities require the protection scope char to
prevent their exploitation. The remaining two vulnerabilities require a larger protection scope,
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namely array for CVE-2020-1751 and strong for CVE-2020-6096. While the former vulnerability
involves an array of void pointers, the latter resulted from a memory corruption bug in the
memcpy() function. Since it is also customary to pass the address of local variables to memcpy(),
the required protection scope for CVE-2020-6096 is assumed to be strong.

Discussion

Despite the fact that the char protection score covers 86% of the software vulnerabilities dis-
covered in the GNU C library since 1999, a big portion of the vulnerable functions include a
call to alloca(). Regardless whether the security vulnerability is caused by incorrect usage of
alloca() or not, these functions are included in the protection scope char. Since such extensive
usage of the alloca() builtin is not typically seen in other projects, I consider these results to be
somewhat misleading. Nevertheless, improper string manipulation is still a very common source
of security vulnerabilities in C projects [2]. This makes the char protection scope an attractive
choice when low performance overhead is desired.

No vulnerabilities assessed in this study required a protection scope larger than strong to
prevent their exploitation. Functions not included in the strong scope do not expose references
pointing to their stack to the outside world and are fully self-contained from the attacker’s point
of view. Thus, a stack-based buffer overflow in such functions is extremely unlikely, making the
protection scope all an overkill in most cases. To provide a better context for these results and
examine the nature of the trade-off between security and performance, the following section
focuses, inter alia, on the performance footprint of various protection scopes.

4.2 Synthetic Benchmarks

The influence of the protection scope and the hashing algorithm on the performance overhead
is evaluated using the TacleBench [55] benchmark suite. TacleBench is a collection of 57
synthetic benchmarks from different vendors, which are fully self-contained (do not link with
any libraries), platform-independent and represent a CPU-intensive workload. For this evaluation,
the benchmarks were compiled without optimizations and performed on different systems for
each architecture. The x86-64 machine used for these measurements featured a quad-core Intel
Core i5-6500T @ 2.50GHz CPU and 8GiB of memory. The AArch64 machine was a Raspberry
Pi 4 single-board computer with 8GiB of RAM and a quad-core Cortex-A72 processor running at
1.8GHz. For the operating system, both machines ran a Debian GNU/Linux 11 system including
the Linux kernel 5.17 with the kpac extension. The x86-64 system had the kernel page-table
isolation mechanism [50] enabled. To reduce the operating system noise, the benchmarks and
the pointer authentication service were pinned on separate CPU cores with fixed frequency.
These CPU cores were isolated from the rest of the system and configured to run in tickless
mode [56] using the isolcpus [47] Linux kernel command-line parameter.

4.2.1 Impact of the hashing algorithms
Figure 4.1 illustrates the distribution of the performance overhead in terms of authentication
requests performed per benchmark run. The benchmarks were compiled with the protection
scope all. Since the TacleBench benchmarks are fully deterministic and perform equal amount
of authentications per each run, each benchmark is mapped to a value on the x-axis. Thus, for
each point on the scatter plot, the corresponding runs with different hashing algorithms can
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Figure 4.1 – TacleBench: Distribution of the performance overhead in benchmarks featuring
different hashing backends. The benchmarks were compiled with the protection scope all.

Architecture Hashing backend Third quartile [%] Overhead factor (𝜎)

x86-64 QARMA 196.15 3.70 (0.203)
xxHash 57.38 1.08 (0.04)
None 52.35 1

AArch64 QARMA 4.34 4.93 (0.792)
xxHash 1.63 1.29 (0.077)
None 1.24 1

Table 4.2 – TacleBench: Exact values of the third quartile in Figure 4.1 and the average
overhead factor for different hashing backends.

be found on the same axis. The results show a broad distribution of performance overhead for
various benchmarks, ranging from near 0 to 5872% overhead on an x86-64 system with QARMA
hashing backend. The AArch64 system with QARMA hashing performs better with an overhead
of up to 535%, which is an order of magnitude lower than x86-64 for the worst-performing
benchmarks. In case the xxHash hashing algorithm is used, the performance overhead can be
as high as 1668% for x86-64 and 122% for AArch64 systems. With no hashing, the worst-case
performance overhead is 1594% for an x86-64 system and 88.6% for an AArch64 system.

While the numbers mentioned in the previous paragraph are too large for any practical
application, they represent a pathological case. As indicated by the dashed lines in Figure 4.1
representing the third quartile (75th percentile) of the overhead distribution, the majority of the
benchmarks exhibit significantly lower performance overhead. For instance, three quarters of
the benchmarks in TacleBench demonstrate an overhead that is lower than 57.38% on x86-64
and 1.63% on AArch64 for xxHash. For the QARMA hashing backend this figure is somewhat
higher and amounts to 196.15% on x86-64 and 4.34% on AArch64. The exact values of the
third quartiles are listed in Table 4.2.
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A remarkable observation can be made by inspecting the relation between the performance
overheads of various hashing backends for each benchmark: the difference between the perfor-
mance overheads of different hashing algorithms is a constant factor. The values of this factor
computed by averaging the increase in performance overhead with respect to the run with no
hashing are listed in Table 4.2, together with their standard deviation. To avoid benchmarks
with low overhead and high relative error distorting the value, the computation only included
the benchmarks with an overhead of at least 5%. Particularly low standard deviation proves
that this heuristic can be used to estimate performance overhead for various hashing algorithms.

Discussion

The hashing algorithm has a very significant influence on the performance overhead of the pointer
authentication mechanism. It can be observed from the measurements that the relation between
different hashing algorithms can be reduced to a single constant factor. The QARMA algorithm,
while designed specifically for pointer authentication, cannot be implemented as efficiently in
software and increases the performance overhead by roughly a fourfold. In contrast to QARMA,
the xxHash algorithm comes with much lower cost that is comparable to the run without hashing.
The performance overhead of hashing can be reduced even further, while maintaining high
security standard, by utilizing the hardware-accelerated cryptography extensions present in
modern CPUs. Examples of such extensions are AES-NI [57] instructions by Intel and the
optional cryptographic extensions implementing the AES and SHA256 algorithms in the ARMv8
architecture [9].

While the performance overhead of the individual benchmarks in the TacleBench benchmark
suite ranges from very low to extremely high values, considering the benchmark suite as a whole
yields a more informative picture. Apart from several outliers, the majority of benchmarks show
a relatively low performance overhead even when using the protection scope all. In the next
section, the mitigations of the performance overhead are analyzed further by comparing the
difference in performance overhead between various protection scopes.

4.2.2 Impact of the protection scopes
Figure 4.2 illustrates the differences between various protection scopes in the 12 benchmarks
with the largest performance overhead for each architecture. The upper plot shows the amount
of protected functions, while the lower plot demonstrates the performance overhead. It is
noteworthy that the protection scope all does not protect 100% of the functions on AArch64,
in contrast to x86-64. This is due to omission of the leaf functions, which do not save their
return address on the stack on AArch64 and thus require no protection from stack-based buffer
overflows.

On x86-64, the overhead in case the protection scope char is used does not exceed 100%,
while for 9 out of 12 benchmarks, the overhead lies below 2%. The protection scope array

increases this figure by about a tenfold for 4 benchmarks and by up to a threefold for another
6 benchmarks. Rather surprisingly, the array protection does not influence the performance
overhead of the ammunition and anagram benchmarks. The reason for this is that these benchmarks
are based on string manipulation and contain character arrays in functions that are frequently
called. Thus, the protection scope char already covers all the “hot” paths in the code, and array

does not introduce a significant impact. While the protection scope strong triples the overhead
for three benchmarks, it does not introduce a substantial change in the overall picture of the
performance overhead. For 11 out of 12 analyzed benchmarks, the performance overhead stays
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below 100%, which is a reasonable figure for practical application of the solution. The protection
scope all, in contrast, increases the performance overhead by at least another tenfold for each
benchmark in the analyzed set.

A similar tendency, but of a different magnitude, can be observed on AArch64. With exception
of ammunition, the performance overhead of protection scopes char, array, and strong stays below
10% for 11 out of 12 benchmarks. For the ammunition benchmark, the performance overhead
is 30% for char and 48% for both array and strong protection scopes. While protecting all
functions raises the performance overhead considerably, it still stays below 20% for the majority
of benchmarks. For the worst-performing benchmark ammunition this figure amounts to 90%.

Discussion

The selection of an appropriate protection scope allows to mitigate the performance overhead
further, bringing even the worst-performing benchmarks into a range that is acceptable in
practical applications. In this way, choosing the proper protection scope constitutes a trade-off
between degree of security and run-time performance.
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Figure 4.2 – TacleBench: Impact of various protection scopes on the benchmarks with high
performance overhead. The contribution of each protection scope with respect to its closest
subset is represented by the respective segments of the bars. The pointer authentication
service performed no hashing for this experiment.
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The analysis shows that as long as the protection scope stays below all, the overhead remains
in the reasonable range. In agreement with the conclusion made in Section 4.1, protecting
all functions is an excessive measure that does not introduce much value in terms of security.
Therefore, the protection scope strong represents the most adequate compromise between the
performance overhead and security in all benchmarks analyzed in this section.

4.3 Multithreaded Application

The previous sections analyzed the influence of various variables on the performance of synthetic
benchmarks. These synthetic benchmarks do not necessarily represent a realistic usage of the
CFI solution presented here. In this section, the solution is evaluated in its practical aspects
by integrating it into a real-world multithreaded application. For this purpose, the distributed
memory object caching system memcached [58] was selected. This choice is motivated by
memcached’s simple code base written in plain C, the availability of benchmarking tools and its
frequent use on commercial servers.

4.3.1 Run-time performance and multicore scalability

To examine the multicore scalability, the performance is evaluated on high-performance servers
with numerous CPU cores. For x86-64, a PowerEdge R740 server with two 24-core Intel Xeon
Gold 6252 CPUs @ 2.10GHz and 374GiB of RAM was used. The hyperthreading and frequency
scaling were disabled to avoid distorting the measurements. Circumventing the costly communi-
cation between NUMA (Non-Uniform Memory Access) nodes, both the 12 memcached server
threads and up to 12 pointer authentication services were pinned on cores within a single NUMA
node. The benchmarking client memtier [59], executed on the same machine but on a separate
NUMA node, ran with 12 concurrent threads as well. The AArch64 measurements were carried

GET request latency [ms]

Average P50 P99 P99.5 P99.9

x86-64 nil-0 2.032 1.876 2.990 3.420 10.101
strong-1 2.087 1.714 8.438 17.558 21.790
all-12 2.930 2.788 5.812 6.778 12.262
all-6 3.296 3.108 6.602 7.354 13.259
all-2 4.445 4.290 8.815 9.428 14.902
all-1 7.599 7.515 13.081 14.924 19.088

AArch64 nil-0 0.472 0.459 0.704 0.715 0.828
strong-1 0.615 0.591 1.201 1.222 1.569
all-12 1.503 1.484 1.941 2.777 4.620
all-6 1.541 1.521 1.866 2.898 4.655
all-2 2.356 2.340 2.719 3.349 5.877
all-1 4.663 4.625 5.849 6.646 8.375

Table 4.3 – Memcached: Latency spectrum for various protection scopes and kpac configu-
rations. The number next to the protection scope stands for the amount of assigned kpac
instances.
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Figure 4.3 – Memcached: Distribution of the request latencies for various protection scopes
and a single kpac instance.

out on a Gigabyte R152-P30 server featuring an Altra Q80-30 CPU with 80 cores clocked at
3GHz and 250GiB of RAM. The AArch64 arrangement corresponded to the x86-64 experiment,
i.e, 12 CPU cores assigned to each one of memcached, memtier, and kpac. On the software side,
both machines ran a Debian GNU/Linux 11 system on Linux kernel 5.17 with kpac extension
featuring the xxHash hashing backend.

The memtier benchmark used for these measurements was modified to output individual
latencies of GET requests handled by the memcached server. Figure 4.3 demonstrates the
histogram of latency distribution for three protection scopes and a single pointer authentication
service. The latency spectrum for various configurations is summarized in Table 4.3. The number
next to the protection scope stands for the amount of assigned pointer authentication services.
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For instance, all-6 is used to denote the protection scope all with six pointer authentication
threads that are assigned to the CPU cores running memcached.

The change in average response latency for strong protection scope computes to 2.7% for
x86-64 and to 30.3% for AArch64. In general, the pointer authentication has more pronounced
impact on the latency distribution then on the average value by broadening the spectrum. For
instance, the increase of the 99th percentile latency is 182.2% on x86-64 and 70.6% on AArch64
for the protection scope strong. As can be observed in the latency histogram, the protection
scope strong introduces a second peak in the latency distribution on the AArch64 system, which
also explains the higher average response latency.

Figure 4.4 shows a change in throughput for different protection scopes, which is computed as
an amount of requests performed in a unit of time. The protection scope all with a single pointer
authentication service reduces the throughput to 27% on x86-64 and to 10% on AArch64.
The reason for this, apart from the increased amount of authentications, is the contention
caused by a single pointer authentication thread serving too many cores at once. To reduce
the load on this kpac thread, a second instance of the pointer authentication service can be
introduced. Doing so doubles the throughput, raising it to about 45% on x86-64 and 20% on
AArch64. According to Table 4.3, this increase in throughput corresponds to a reduction in
average response latency of 41.5% on x86-64 and 49.7% on AArch64. By increasing the amount
of pointer authentication threads to 6, the throughput is improved further to 62% on x86-64
and 31% on AArch64. At this point, the pointer authentication service is no longer saturated on
AArch64, since additional increase of pointer authentication threads to 12 instances does not
yield any measurable improvement in the request latency. On the other hand, configuring 12
pointer authentication threads on x86-64 does bring a modest benefit of boosting the throughput
to 69%.
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Figure 4.4 – Memcached: Throughput with respect to the baseline for various protection
scopes and kpac configurations.
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Discussion

Contrary to synthetic benchmarks, the pointer authentication mechanism performs better when
applied to a multithreaded memory object caching system. A possible reason for this is that the
additional runtime overhead introduced by return address protection is small compared to the
time spent waiting or performing I/O in the OS kernel. Such workload profile is inherent to
real-world applications, which are not purely CPU-bound, and represents the real performance
cost of the return address protection by pointer authentication more precisely.

The strong protection scope has proved to be a reasonable compromise between the security
improvement and the performance slowdown. However, if the applications running on the
system produce more requests than the pointer authentication service can efficiently handle,
the duration of the spin-wait loop increases drastically. This can be avoided by increasing the
amount of pointer authentication services and spreading the pointer authentication load over
multiple CPU cores.

4.3.2 Energy efficiency
To analyze the additional energy consumption introduced by the pointer authentication mecha-
nism, a fixed workload is executed on the low-power systems introduced in Section 4.2. The
workload consists of a memcached server that receives and handles 64 · 10⁶ requests sent by
another machine over network. Since only four CPU cores are available, the memcached server
is configured to run three threads, which are served by a single kpac instance, if the pointer
authentication is used. The pointer authentication backend used in this experiment is xxHash.

Figure 4.5 shows the total energy and the average power consumption of the workload
measured on these machines. The return address protection on the x86-64 machine increases
the average power from 34.3W to 37.3W, which corresponds to an increase of 8.7%. On
the AArch64 machine, the power increases by 16.2% or from 5.86W to 6.81W. Despite the
considerably lower power consumption of the AArch64 machine, it requires much longer time to
process the workload. Thus, the total energy consumption of the AArch64 system is comparable
to the x86-64 case. The energy consumed by the x86-64 system amounts to 5.3Wh without
pointer authentication and 6.6Wh with pointer authentication. The figures of the AArch64
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Figure 4.5 – Memcached: Energy consumption of the system for a fixed workload with and
without pointer authentication. The workload consists of a memcached server that handles
64 · 10⁶ requests sent over network by another machine.
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system are somewhat lower and amount to 3.74Wh without pointer authentication and 4.55Wh
with pointer authentication. On both systems, the increase in the total energy consumption does
not exceed 25%.

Discussion

Due to both the pointer authentication services and user application using busy-wait loops to
achieve synchronization, the return address protection comes with an additional energy cost.
The technique of busy waiting, while considered an anti-pattern in programming [60], is used
here to avoid unnecessary context switching and achieve low performance overhead. Assuming a
loaded system, the power consumption increase of up to 16.2% might be considered an adequate
price in cases where better security is desired and suitable hardware is not available.

4.4 Summary

To summarize, the pointer authentication mechanism and its usage as a return address protection
technique are connected with an additional performance overhead. This overhead depends on
several variables, such as the hashing algorithm, the protection scope, the amount of pointer
authentication threads, and the profile of the workload. Analyzing this overhead using a set of
synthetic benchmarks allowed to determine these dependencies and get a feel for the nature
of the trade-off between security and performance. According to these results, the further
evaluation focused on the return address protection using the xxHash hashing algorithm and the
protection scope strong.

This configuration, introduced into the distributed memory object caching systemmemcached,
demonstrated an increase in average response latency of 2.7% on a x86-64 system and 30.3% on
an AArch64 system. Furthermore, the energy assessment showed a moderate increase in power
consumption of 8.7% on an x86-64 machine and 16.2% on an AArch64 machine. Apart from
that, it was observed that high amounts of authentication requests from multiple CPU cores can
saturate a single pointer authentication service. To avoid this, the amount of requests handled
per instance of the pointer authentication service should be held low by providing multiple kpac
instances in multiprocessing environments.
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This thesis presents a complete Control-Flow Integrity (CFI) solution for return address protection
based on the technique of storing cryptographic signatures along with the return addresses. This
technique has strong security guarantees that are achieved by computing the cryptographic
signature in the OS kernel and not storing the secret key in the address space of the protected
application. To achieve this, the Linux kernel was extended with a flexible pointer authentication
service that imitates the ARMv8.3-A pointer authentication mechanism. The extension is tightly
integrated into the process scheduler and virtual memory subsystem, allowing it to support
multithreaded applications.

At the price of giving up CPU cores to the pointer authentication needs, this solution manages
to avoid system calls and the high performance overhead associated with them by using a shared
memory page to facilitate communication between the operating system and the userspace
applications. As a part of this work, a GNU Compiler Collection (GCC) plugin to perform
code instrumentation and automatically add return address protection to functions in userspace
programs was developed. To mitigate the performance overhead further, the GCC plugin includes
multiple heuristics that restrict protection only to functions that are deemed vulnerable.

An evaluation based on a collection of synthetic benchmarks and a multithreaded server
application demonstrates that moderate performance overhead can be achieved without consid-
erably sacrificing security. To elaborate, a performance overhead of 2.7% on x86-64 and 30.3%
on AArch64 is observed when applying return address protection based on the hashing algorithm
xxHash to functions that contain arrays or variables that had their address taken. For the same
configuration, low-power consumer systems of both architectures exhibit a power consumption
increase of up to 16.2%. Such figures are acceptable in practical applications.

In the future, the software-emulated pointer authentication service can be extended to
provide more operations and multiple keys per application, akin to the ARMv8.3-A mechanism.
Apart from that, the list of hashing algorithms supported by the kernel extension can be expanded
to include the hardware-accelerated cryptographic extensions commonly present on modern
CPUs. Perhaps, the scope of software-emulated pointer authentication mechanism can be to
extended onto the operating system itself by leveraging the system hypervisor. Furthermore, a
comparison of the performance overheads between the software-emulated solution presented
here and the FPGA-based solution of PAC-PL [5] on the same machine would allow to put the
economic viability of both approaches in a context.
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L I ST OF ACRONYMS

ABI application binary interface
ASLR address-space layout randomization
CFG control-flow graph
CFI Control-Flow Integrity
CRA code-reuse attack
CVE Common Vulnerabilities and Exposures
FPGA field-programmable gate array
GCC GNU Compiler Collection
JIT Just-In-Time
LR link register
MAC message authentication code
MMU memory management unit
PAC pointer authentication code
ROP return-oriented programming
RTL register transfer language
SMP symmetric multiprocessing
SP stack pointer
SSP stack-smashing protection
TCB thread control block
TLB translation lookaside buffer
TLS thread-local storage
W⊕X Write xor eXecute
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