
Leibniz Universität Hannover
Institut für Systems Engineering
Fachgebiet System- und Rechnerarchitektur

Bachelorarbeit im Fach Informatik 6. November 2024

On the Power Estimation of a RISC-V Platform
using Performance Monitoring Counters and RTOS
Events

Johannes Karl Arnold

Please cite as:
Johannes Karl Arnold, “On the Power Estimation of a RISC-V Platform using Performance
Monitoring Counters and RTOS Events” Bachelor’s Thesis, Leibniz Universität Hannover, Institut
für Systems Engineering, November 2024.

www.sra.uni-hannover.de

Leibniz Universität Hannover
Institut für Systems Engineering
Fachgebiet System und Rechnerarchitektur
Appelstr. 4 · 30167 Hannover · Germany

https://www.sra.uni-hannover.de

On the Power Estimation of a RISC-V Platform using
Performance Monitoring Counters and RTOS Events

Bachelorarbeit im Fach Informatik

vorgelegt von

Johannes Karl Arnold

angefertigt am

Institut für Systems Engineering
Fachgebiet System- und Rechnerarchitektur

Fakultät für Elektrotechnik und Informatik
Leibniz Universität Hannover

Erstprüfer: Prof. Dr.-Ing. habil. Daniel Lohmann
Zweitprüfer: Prof. Dr. Jan Simon Rellermeyer

Betreuer: Tim-Marek Thomas, M.Sc.

Beginn der Arbeit: 12. Juni 2024
Abgabe der Arbeit: 14. Oktober 2024

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,
sind als solche gekennzeichnet.

Declaration

I declare that the work is entirely my own and was produced with no assistance from third
parties. I certify that the work has not been submitted in the same or any similar form for
assessment to any other examining body and all references, direct and indirect, are indicated as
such and have been cited accordingly.

(Johannes Karl Arnold)
Hannover, 6. November 2024

A B S T R A C T

With the advent of the “zettabyte era” in the mid-2010s, power consumption has become an
increasing topic of interest as the number of computer systems continues to rise, affecting large
datacenters and consumer grade devices as well as embedded systems. Energy monitoring and
estimation has a significant impact on a number of key areas, including compiler optimization,
scheduling, thermal- and battery life management, as well as potential long-term economical
and environmental consequences.

While many contemporary CISC platforms incorporate features such as RAPL to estimate
power consumption, estimating the power consumed by a RISC processor often presents a
greater challenge in the absence of specialized hardware extensions, particularly in the context
of embedded systems.

This thesis examines the time and power consumption characteristics of a common embedded
RISC-V processor using a diverse set of algorithms representative of an embedded system. It
employs a bespoke benchmarking framework designed around the collection of PMC data.
The data is then subjected to analysis and transformation, and used to train and evaluate a
generalized model, thereby enabling the prediction of the system’s power consumption from
PMC data alone.

The final model was able to predict the SoC’s current draw with an error of around 0.88 %
when using data from benchmarks it was not trained on. This outcome provides compelling
evidence that PMC data can be effectively employed for the aforementioned use cases. The
correlations identified from PMC benchmarking data are then aligned with the tracing framework
of a contemporary RTOS, which could also benefit from run-time energy statistics.

v

KU R Z FA S S U N G

Mit dem Beginn der „Zettabyte-Ära“ Mitte der 2010er Jahre ist der Stromverbrauch zu
einem immer wichtigeren Thema geworden wie die Zahl der Computersysteme weiter steigt,
sowohl in großen Rechenzentren als auch bei Verbraucherelektronik und eingebetteten Systemen.
Die Überwachung und Abschätzung des Energieverbrauchs hat erhebliche Auswirkungen auf
eine Reihe von Schlüsselbereichen, darunter Compiler-Optimierung, Scheduling, Wärme- und
Batterielebensdauer-Management sowie potenzielle langfristige wirtschaftliche und ökologische
Folgen.

Während viele moderne CISC-Plattformen Funktionen wie RAPL zur Abschätzung der elek-
trischen Leistung enthalten, stellt die Abschätzung der Leistung eines RISC-Prozessors oft eine
größere Herausforderung dar, da es wenig bis keiner speziellen Hardware-Erweiterungen gibt,
insbesondere bei eingebetteten Systemen.

In dieser Arbeit werden die Zeit- und Stromverbrauchseigenschaften eines gewöhnlichen
eingebetteten RISC-V-Prozessors unter Verwendung einer Reihe von Algorithmen untersucht, die
für ein eingebettetes System repräsentativ sind. Es wird ein maßgeschneidertes Benchmarking-
Framework verwendet, welches für die Sammlung von PMC-Daten entwickelt wurde. Die Daten
werden dann einer Analyse und Transformation unterzogen und zum Trainieren und Bewerten
eines verallgemeinerten Modells verwendet, wodurch die Vorhersage des Stromverbrauchs des
Systems allein anhand der PMC-Daten ermöglicht wird.

Das endgültige Modell war in der Lage, die Stromaufnahme des SoC mit einem Fehler von
etwa 0.88 % vorherzusagen, wenn Daten von Benchmarks verwendet wurden, für die es nicht
trainiert wurde. Dieses Ergebnis ist ein überzeugender Beweis dafür, dass PMC-Daten für die
oben genannten Anwendungsfälle effektiv genutzt werden können. Die aus den PMC-Benchmark-
Daten ermittelten Korrelationen werden dann mit dem Tracing-Framework eines modernen
RTOS abgeglichen, das ebenfalls von Laufzeit-Energiestatistiken profitieren könnte.

vii

Es ist unwürdig, die Zeit von
hervorragenden Leuten mit knechtischen
Rechenarbeiten zu verschwenden, weil bei
Einsatz einer Maschine auch der
Einfältigste die Ergebnisse sicher
hinschreiben kann.

Gottfried Wilhelm Leibniz

ix

C O N T E N T S

Abstract v

Kurzfassung vii

1 Introduction 1

2 Fundamentals 3
2.1 Measuring Power . 3
2.2 Employed Hardware . 4

2.2.1 Power Supply & Measurement . 4
2.2.2 Host PC . 5

2.3 Employed Software . 5
2.4 Methods and Techniques . 6

2.4.1 Determining Event Count . 7
2.4.2 Modelling Power Correlations . 7

2.5 Related Work . 9

3 Architecture 11
3.1 Baseline Configuration & Values . 11
3.2 Reading ESP32-C3 CPU Events . 13
3.3 Building and Executing Benchmarks . 15

3.3.1 Preparing for a Benchmark . 15
3.3.2 Serial Benchmarking Control Protocol . 17
3.3.3 Benchmarking Procedure . 17
3.3.4 Collecting, Decoding and Saving Results . 19

4 Analysis & Modelling 21
4.1 Benchmark Time and Power Metrics . 21
4.2 Relationship between Events and Power Consumption 23
4.3 Model Selection and Validation . 26

4.3.1 Determining Model Accuracy with Metrics and Cross-Validation 27
4.3.2 Comparison of Linear Models . 27

4.3.2.1 Training Using a Preprocessing Pipeline 28
4.3.2.2 Training on Aggregated Data . 28

4.4 Extending Events to an real-time operating system (RTOS) 29
4.5 Discussion . 30

xi

5 Conclusion 33

Lists 35
List of Acronyms . 35
List of Figures . 39
List of Tables . 41
List of Listings . 43
Bibliography . 45

xii

1I N T R O D U C T I O N

Small computer systems have permeated nearly all parts of life in the 21st century, and it
is predicted that by 2035, these embedded and IoT systems will cumulatively surpass one
trillion in number, spending many years in service having an extraordinary impact on digital
infrastructure [Spa17]. As the sheer number of use cases for these embedded systems continues
to rise drastically, so has the interest in their power consumption.

Ensuring that power consumption can both be optimized towards and reliably predicted scales
from consumer applications, where batteries compete for space with other components in mobile
devices, to enterprise applications, where the cumulative energy efficiency of many such systems
incurs both economic and environmental costs. As a result, attention is increasingly moving from
CISC to RISC designs, which, by nature of their design, require less transistors per die, and thus
have a tendency1 to consume less energy. The power requirements of embedded systems also
play a deciding factor in deployments that must operate remotely or with constrained resources.
Because the RISC-V ISA is an open standard, it can be scaled and adapted across this spectrum of
embedded low-power use cases, ranging from medical implants to satellites [MR+23; Fur+22].

While many modern CISC processors provide hardware features to approximate power
consumption such as Intel’s RAPL [Dav+10], most RISC-based processors, especially those
geared towards embedded applications, are limited in these feature sets, instead relying on
software to extend functionality. Most current and previous research, such as that of Georgiou
et al. and Lee et al., has focused on the older and more prevalent ARM architectures, with less
practical tests being performed on the emerging RISC-V-based platforms [Geo+21; Lee+01].

This thesis will collect and analyze energy readings of the ESP32-C3 series system on a chip
(SoC), at the heart of which lies a modern RISC-V central processing unit (CPU). A configurable
bare-metal benchmarking framework is developed around a set of representative workloads to
collect hardware performance monitoring counter (PMC) values in a controlled fashion. The
aggregated PMC data is then correlated with the system’s current draw during the execution of
said workloads, allowing for power modelling from perspective of the embedded system.

As embedded systems frequently have restricted hardware counters, an effort will be made
to correlate the energy model with events in Zephyr, a contemporary real-time operating system
(RTOS) that targets a multitude of platforms, extending the energy model via software tracing.

1It should be noted that actual power consumption varies strongly by implementation, and the above is a general
trend. The exception proves the rule; x86-based processors do exist for embedded applications, and RISC ISAs have
been developed for HPC [NKK04; Lee+23].

1

2F U N DA M E N TA L S

This chapter introduces the fundamental general concepts and methodologies used in mea-
suring the power consumed by an embedded processor. Section 2.1 begins with a principal
explanation of the mechanisms involved in determining the power consumption of an electrical
system. The equipment and fundamental software used to implement these concepts is then
described in Sections 2.2 and 2.3. The techniques for quantifying event counts through hardware
PMCs are elaborated upon in Section 2.4, providing a non-intrusive way to later correlate specific
system activities with power consumption trends.

2.1 Measuring Power

Electrical power, measured in watts (W), is defined as the product of electric potential, measured
in volts (V) and denoted U , and current, measured in amperes (A) and denoted I . Given, for
example, a constant DC voltage supply U , we can thus easily determine the power P of a variable
resistive load (e.g. a microprocessor) at a point in time t in regards to the current at t as a
function expressed as

P(t) = U · I(t). (2.1)

Figure 2.1a shows the textbook implementation of a current measuring setup, in which a
commonly available multimeter with a low internal resistance is connected in series to measure
the current drawn by a load at constant voltage [SP24]. Because the benchmarking processes in
the later parts of this thesis can start and stop at very short intervals, an oscilloscope is substituted
for a multimeter. These devices feature a much higher temporal resolution with the restriction
that probes are usually limited to measuring only voltages. As a result, a high-precision shunt
resistor must be used to measure voltage drop-off by exploiting Ohm’s law in Equation (2.2)
[SP24]. When using a resistor value of R= 1Ω, this results in a one-to-one numerical conversion
of voltage to current, the implementation of which is shown in Figure 2.1b.

U = R · I ⇐⇒ I =
U
R

(2.2)

The oscilloscope captures n samples (c0, c1, c2, . . . , cn) in a given timebase t = [0, s], called
a trace. These samples vary from one another as the load’s current draw changes over time.
The arithmetic mean (Ī) of the currents consumed serves as a practical reference value of the
current over a period of time, and can be approximated from the trace through Equation (2.3).
Because the shunt’s resistance is simply a reciprocal linear factor of the mean, error tolerances of

3

U

A

Multimeter

Load

I(t)

(a) Basic circuit to measure current
draw from a load.

U

1Ω

1Ω ·I(t)

Oscilloscope

Load

I(t)

(b) Circuit to measure current draw
using a 1Ω shunt.

Figure 2.1 – Near-equivalent current measurement methods.

the resistor can easily be compensated for by adding a coefficient. For example, a shunt which
measures 1.10Ω in actuality could be easily by compensated for by multiplying the mean by
(1.1)−1 = 0.90.

Ī =
1
s

∫ s

0

I(t)dt ≈
1
n

�

n
∑

i=0

ci

1Ω

�

. (2.3)

Assuming the approximate relationship between the variable load’s state and current is
bijective, it should be possible to predict future current draw by counting observable events
alongside the load’s current draw in controlled conditions.

2.2 Employed Hardware

The ESP32-C3-DevKitM-1 development board was chosen as the embedded platform for practical
measurements. The primary IC on board is the ESP32-C3-MINI-1, a RISC-V based SoC. This
platformwas chosen due to its ubiquity and implementation of custom control and status registers
(CSRs) [Esp24c, pp. 29–38, 742]. The CPU is based upon the rv32imc microarchitecture with
the ilp32 application binary interface (ABI). It features the base 32 bit integer (i) ISA with
multiplication/division (m) and compressed instruction (c) extensions. The significance of these
extensions will be discussed in greater detail in Section 2.3. The development board also
features pre-soldered pin headers, thereby enabling access to the SoC’s onboard JTAG, a 5 V to
3.30 V LDO, as well as general-purpose input/output (GPIO) [Esp24a]. The specific uses of the
aforementioned components are explained in Chapter 3.

2.2.1 Power Supply & Measurement

A KORAD KD3005D laboratory power supply unit (PSU) is used to provide a constant operating
voltage to power the ESP32-C3-DevKitM-1. Because the PSU stabilized, jumps in current drawn
by the development board have a negligible (≤ 0.01%) effect on the output voltage [Don, p. 6].

The multimeter used to determine the initial baseline power consumption values as described
in Section 3.1 was the RIGOL DM3058E digital multimeter. As the multimeter’s sampling rate
was too slow to effectively synchronize its sampling with the beginning and endings of the
ESP32-C3’s benchmarks, a Rohde & Schwarz HMO3004 digital oscilloscope was used. Both

4

instruments support the USBTMC standard, which allows for the configuration, control and
data acquisition from a PC programmatically.

2.2.2 Host PC

The host PC (from this point on referenced simply as “host”) in use is a standard x86_64
workstation running Debian GNU/Linux 12. This PC cross-compiles benchmarks, controls the
SoC, collects its benchmark data as well as the instruments’ samples, and later uses this collected
data to train predictive models.

2.3 Employed Software

In order to measure PMCs reliably, the SoC should run its benchmarks with minimal side-effects
caused by interrupts or system calls. For this reason, the decision was made to program the
processor bare-metal, without an operating system (OS). While possible, this method is atypical
for the ESP32-C3, which usually boots into a FreeRTOS-based application image via a multi-stage
bootloader [Esp24c, p. 192] using the Espressif IoT Development Framework (ESP-IDF).

In order to compile and execute C code to be executed without a full OS, an existing but
apparently no longer actively developed software development kit (SDK) project titled MDK
was hard-forked to c3dk [Lyu22; Arn24]. The forked project, as implied by its name, exclusively
focuses on the ESP32-C3 and has been extended to support reading and writing to the SoC’s
RISC-V CSRs as well as the built-in USB-JTAG bridge. Most of both projects’ functions were
implemented “from scratch” (without FreeRTOS or ESP-IDF components), using the ESP32-C3
Technical Reference Manual and the published read-only memory (ROM) source code2 published
by Espressif. Important components include:

link.ld a link script which defines memory regions for the stack, mapping instruction RAM
(IRAM) and data RAM (DRAM), as seen in Figure 2.2. This also allows access to mod-
ule/peripheral registers3 as listed in ESP32-C3 Technical Reference Manual, Table 3-3. The
entry point of the program is defined to a function in the startup code;

boot.c entry point for all programs. This startup code initializes the heap, sets the processor
clock frequency, and calls main();

c3dk.h a header file which defines a multitude of useful preprocessor macros and statically
inlined functions which can be called from other code. Most importantly, it provides a
convenient interface to access registers as well as GPIO and JTAG pins;

Build System consisting of a Dockerfile which defines a containerized build environment,
including the necessary toolchain, and a build.mk makefile stub, which can be included in
projects and defines compilation rules using the container and bind mounts.

The ESP32-C3 contains a small subset of GNU compiler collection (GCC) standard library
functions embedded in its ROM, which were initially linked against by the SDKs. During the
porting process of benchmarks described in Section 2.5, it was quickly discovered that many
other compiler routines required for extended arithmetic operations and floating point emulation
(e.g. __muldf3) were not implemented, and as a result, had to be included separately by the host.

2https://github.com/espressif/esp-idf/tree/master/components/esp_rom/esp32c3
3Note that RISC-V CSRs can only be accessed via specialized instructions, as shown in Listing 3.1

5

https://github.com/espressif/esp-idf/tree/master/components/esp_rom/esp32c3

icache (rwx)
ORIGIN = 0x4037_c000,

LENGTH = 16k

iram (rwx)
ORIGIN = 0x4038_0400,

LENGTH = 32k

SECTIONS:

.text (code)

dram (rw) ORIGIN = 0x3fc8_0000 + LENGTH(iram),

LENGTH = 128k
SECTIONS:

.data

.bss (NOLOAD)

_eram = ORIGIN(dram) + LENGTH(dram)

ENTRY(_reset)

Figure 2.2 – Memory regions defined by the linker script.

Because the specific microarchitecture and ABI combination of the ESP32-C3 is not packaged by
most distributions of GCC, a custom toolchain was configured and built from scratch using the
source code4 provided by the RISC-V International nonprofit organization. This tailored multilib
toolchain is enables complete soft-float and GNU C-Library support. To avoid the repeatedly long
build times involved with compiling GCC after executing make clean, the Dockerfile was adapted
to use a multi-stage build process, allowing the container used by the SDK to be discarded while
preserving the toolchain binaries compiled in the intermediate build container.

The c3dk project serves as the foundation for all bare-metal benchmarks later described in
Chapter 3.

2.4 Methods and Techniques

Many microprocessors implement special registers that are used for event and time tracking,
commonly referred to as PMCs, termed CSRs when specially implemented in RISC-V processors.
The specific purposes and total number of events counted in these PMCs varies by microarchitec-
ture, which in turn is designed to fulfill certain application goals (i.e. the balance between cost,
performance and power consumption). For example, a very simple microcontroller may only be
able to count cycles, while more advanced processors may be able to count memory accesses, as
listed in Table 2.1. These registers are not only useful for research or debugging purposes, but
are also used in RTOS scheduling and general performance analysis [XLT24; And15] and provide
direct insights into how the human-readable source code of a program is actually executed on
bare metal.

PMCs can be broadly generalized into two categories. A fixed counter is one that (if enabled)
continuously tracks a single event, such as a clock source, and is commonly implemented as a
timer on platforms that feature it. On the other hand, programmable counters can be configured

4https://github.com/riscv-collab/riscv-gnu-toolchain

6

https://github.com/riscv-collab/riscv-gnu-toolchain

RISC-V ARMv6-M ARMv8-M
µ-Architecture RV32IMC_Zicsr Cortex-M0+ Cortex-M33
Example ESP32-C3 RP2040 STM32-H5

Systick register size 54 bits 24 bits 24 bits
Total countable events 11 1 8
... Instruction count? Ø Ø
... Cycle count? Ø Ø Ø
... Load/store count? Ø Ø

Table 2.1 – Comparison of hardware counters between three ISAs typically used in embedded
systems.

on-the-fly using special instructions or other registers, such as ARM’s Data Watchpoint Trace
(DWT) [ARM24, p. 77].

2.4.1 Determining Event Count

32 bit RISC-V, like other CPU architectures, incorporates a variety of instructions which inherently
differ in their effective time complexity and the hardware resources they engage. For example, a
LOAD instruction which interfaces with (slower) main memory may require more time and power
than an ADDI instruction, which interfaces with other (fast) registers and typically completes
within one clock cycle [VO22].

As the sequential execution of instructions of an embedded processor can be viewed as largely
deterministic5, it can be expected that repeatedly executing the same instruction sequences
will result in the same changes in PMC values and power consumption. These instructions,
if used as a point of reference for comparison with other instruction sequences, can then be
called benchmarks. Ideally, each benchmark varies in its relative event frequencies and power
consumption to provide a broad range of values to form correlations with. For example, one
benchmark may execute mainly integer operations, while another is intentionally memory-
intensive, and as such should result in different time and power behavior when executed.
Provided a large collection of samples and subsequent events are recorded, these can then be
aggregated to determine how a specific correlates with power.

2.4.2 Modelling Power Correlations

After a benchmark completes, the p events counted by the processors PMCs can be read out and
mathematically represented by a p-dimensional vector together with the mean current y. It is
often difficult to compare benchmarks directly to one another, as the total number of events
recorded may vary by orders of magnitude between them while retaining a smaller difference
between mean current. As such, it is beneficial to determine the relative frequency of an event
occurring in a benchmark by means of unit normalization, as represented in Equation (2.4),
assuring that a comparison of the underlying patterns can take place regardless of magnitude.

x̂ =
1
∑p

i=1 ei

�

e1 e2 . . . ep

�T
=
�

x1 x2 . . . xp

�T
(2.4)

5Jitter, random number generation (RNG), caching or speculative execution will result in slight differences, which
can be accounted for by taking a large number of samples.

7

Figure 2.3 – Example of a two-dimensional ordinary least squares (OLS) regression by
“Scikit-learn: Machine Learning in Python.”

While the majority of instructions executed as part of a benchmarking algorithm modify the
processor’s state (either through registers or the pipeline), it can be assumed for the sake of
simplicity that the relationship between an event’s frequency and the mean current is linear: if6

an event has a measurable impact on the current draw of the processor, the mean current draw
of the benchmark as a whole will likely correlate by a real coefficient as the frequency of this
event increases. As demonstrated by Figure 2.3, the resulting prediction (blue line) is meant to
follow a trend in data as close as possible.

By collecting the resulting PMC states across different benchmarks a total number of n times,
one can define a feature matrix X together with the vector of resulting mean currents, y , as

X =

x̂1

x̂2
...

x̂n

=

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p

, y =

y1

y2
...
yn

.

Using a vector of unknown weights w = Rp, the mean current can now be solved for by a
linear combination of each feature with a weight, as seen in Equation (2.5) [Ped+11]. While
there are many possible approaches to determining the correct features and their associated
weights, the perhaps most common one is now known as the ordinary least squares (OLS)
regression, the discovery of which is attributed to Legendre in 1806, now an elementary machine
learning (ML) algorithm.

ŷ(w , x) = w0 +
p
∑

i=1

(wi fi) = w0 +w1 f1 + ...+wp fp (2.5)

6It is, of course, possible for an event frequency to have no meaningful correlation if mean currents are too variate
for the given frequency range across all benchmarks.

8

Note that w0 is an independent constant not paired with any feature, and serves as the bias,
also termed intercept [Ped+11].

Given the considerable number of variables and potential for error (noise) in the measured
current, it is highly probable that the linear system will have no perfect solution. Instead, the
OLS method seeks to identify the “best fit” for each weight component in w by finding the
smallest possible squared value of the error for each weight, as seen in Equation (2.6), termed
the objective function [Ped+11].

min
w
||X w − y ||22 (2.6)

2.5 Related Work

In the past, work done by Walker et al. was able to determine a relationship between PMC events
and their impact on power consumption on ARM Cortex-A7 and Cortex-A15 CPUs. Methods
were employed to avoid multicollinearity between weights in a linear model, which resulted
in an accuracy of 3.80 % and 2.80 % average error, respectively [Wal+17]. Rodrigues et al.
were able to predict energy consumption with 95% accuracy using just three counters on
Intel x86_64 architectures (# fetched instructions, L1 cache hits, and dispatch stalls) using 38
benchmarks. The authors demonstrated that the power metric from a high-performance core
could be employed to estimate power on a low-performance core of the same ISA [Rod+13].
The transfer of a power model from one platform to another was also attempted by Nikov et al.,
which employed a dual-platform approach using an field programmable gate array (FPGA) to
model power for a space-rated LEON3 processor which does not implement PMCs. The baseline
power consumption from Dengler et al. is used as a comparison point for the baseline power
consumption and further discusses energy-aware scheduling [Den+23].

Mair et al. lay some foundational best practices in “Myths in PMC-Based Power Estimation.”
While not all points discussed apply to the small, passively cooled RISC development board used
in this thesis, their observation on memory-related PMC events also applies to the later analysis
in Chapter 4[Mai+13].

In the perhaps most influential work for this thesis, Pallister, Hollis, and Bennett created a
pool of benchmarks for embedded systems to measure energy consumption based on integer
and floating point operations, memory access intensity, and branching frequency in their paper
“BEEBS: Open Benchmarks for Energy Measurements on Embedded Platforms.” The algorithm
executed in each benchmark was specifically chosen to simulate common workloads of em-
bedded systems across five broad categories, namely for security, network, telecommunications,
automotive, and consumer applications. The authors selected ten benchmarks which appeared
to be the most suitable for power modelling, which will be adapted for the ESP32-C3 in this
thesis [PHB13].

It is also worth mentioning that the RISC-V target of this thesis, the ESP32-C3, has a hardware
abstraction layer (HAL)7 written in the Rust programming language, and there exists at least
one PMC related benchmarking project8 using it.

7https://docs.esp-rs.org/esp-hal/esp-hal/0.20.1/esp32c3/esp_hal/index.html
8https://github.com/onsdagens/esp32c3-rt-benchmarks

9

https://docs.esp-rs.org/esp-hal/esp-hal/0.20.1/esp32c3/esp_hal/index.html
https://github.com/onsdagens/esp32c3-rt-benchmarks

3A R C H I T E C T U R E

The rationale and physical setup of the experiment to record current and PMC data are
outlined in this chapter. Section 3.1 begins by describing the hardware connections between
the PSU, the development board, various measurement instruments, and the host alongside
initial baseline current values. Section 3.2 then describes how PMCs are accessed by the
benchmarking firmware image running on the SoC, after which Section 3.3 illustrates the
complete benchmarking sequence and software components required to coordinate and execute
benchmarks.

3.1 Baseline Configuration & Values

The ESP32-C3-DevKitM-1 features three ways to provide (and thus measure) power:

• 5 V DC, via the LDO, provided via the host’s USB

• 5 V DC, via the LDO, provided via the 5V and GND pins

• 3.30 V DC, provided directly via the 3V3 and GND pins

Because a reliable physical serial connection between the host and the development board is
required for flashing, erasing, and transferring data, it is critical to ensure that the connection
will not interfere with the measured current in one of two ways: Voltage from the host’s 5 V
USB should not reach the development board, interfering with the stabilized reference voltage
provided by the external power supply, and the USB connection must not cause additional
components (e.g. the USB-UART of the development board) to sporadically activate, resulting
in increased power consumption.

The ESP32-C3 SoC provides an unpowered serial interface via its integrated USB Serial/JTAG
Controller which is independent of the USB-UART of the development board and can be accessed
via the GPIO pin headers. To utilize this interface, an off-the-shelf shielded USB-A cable was
stripped to expose the white and green differential data wires (D- & D+ respectively) along with
the GND wire. These individual cables were then stripped and crimped with Mini-PV receptacle
connectors9 to provide a secure connection to the pins on the development board. In this
configuration, both the multimeter as well as the oscilloscope can be used to measure current
(see Figure 2.1 in Chapter 2). The final configuration used in Section 3.3 to collect benchmark
data is illustrated in Figure 3.1. As the oscilloscope is connected to the host’s ground via USB

9Also known under the genericized trademark “DuPont connector”

11

E
S
P
3
2
-
C
3
-
D
e
v
K
i
t
M
-
1

CH1

CH2
GND

GPIO19 / D+

GPIO18 / D-

GND

3V3

GND

GPIO1

5V

USB 2.0

5 V

1Ω

Figure 3.1 – Powering the development board with an external 5 V supply. Note that CH1
and CH2 are part of the same oscilloscope, and thus share the GND connection.

and its ground probe was attached to the ESP32-C3-DevKitM-1’s GND, the need for a separate
USB ground between the host and development board is annulled and could lead to a short
circuit.

To provide a general idea of the current draw of an idling processor, baseline values are
needed. To determine baseline power consumption in different configurations, the 4 MiByte
onboard SPI flash chip was fully erased or flashed with an image containing a minimal firmware.
The multimeter was then set to the slow current sampling mode, allowing for 5 1

2 digit sampling
precision.

After booting the chip, a Python script collected samples from the multimeter while the
processor was idling in each configuration. Each sample read via the USBTMC interface was
parsed to a decimal.Decimal data type to ensure good floating point accuracy, with the arithmetic
mean (Ī) and standard deviation (σ) being calculated after recording 1000 samples. The
resulting values for each voltage and CPU frequency (f) are shown in Table 3.1.

Configuration CPU Current
Pin Flash Contents Connections f Ī σ

3V3 erased — 20 MHz 8.68 mA 8.14 µA
5V erased — 20 MHz 9.04 mA 6.2 µA
5V erased JTAG 20 MHz 9.25 mA 82.91 µA
3V3 minimal image — 160 MHz 27.76 mA 7.05 µA
5V minimal image — 160 MHz 28.8 mA 19.23 µA
5V minimal image JTAG 160 MHz 28.83 mA 14.77 µA

Table 3.1 – Baseline currents at different voltages. No serial data was transferred during
the evaluation.

12

With an empty flash chip, the ESP32-C3 boots with the default CPU clock frequency of
20MHz [Esp24c, Section 6.2.3] and starts a watchdog timer which resets the chip after 100 ns
[Esp24c, Section 12.2.2.2] of inactivity. The standard deviations for most configurations are well
within the DC current noise tolerances of the multimeter [RIG24, p. 2], with the exception of
the JTAG connection. These larger deviations in power are due to the ROM bootloader printing
information after the watchdog triggers a reset, which can only be circumvented by loading a
firmware image and disabling the watchdog to allow for true idling.

The minimal firmware image, built upon c3dk, contains a small setup routine in the boot
code which sets the CPU frequency source to the 320 MHz phase-locked loop (PLL) source with
a divisor of 2, resulting in a stable 160 MHz clock, and a main() function which disables the
watchdog timer [Arn24]. The processor is then left in an idling state where current draw can be
measured. The negligible difference in current draw caused by attaching the JTAG in the 5 V
configuration makes this configuration suitable for measuring power while collecting data. The
circa 1.04 mA increase in current when powering the board with 5 V instead of 3.30 V can be
attributed to the onboard LDO voltage regular and power LED, which are conditionally activated
when the board is supplied with 5 V. As the USB-JTAG connection can only be established with
the 5 V power configuration and the bare-metal benchmarks run at 160 MHz, 28.83 mA will be
used as a comparison value. This current aligns with the typical current consumption to be
expected according to the manufacturer’s datasheet [Esp24b, p. 21]. Thus, we can define an
appropriate idle power consumption as

Pidle ≈ 95.13 mW = 3.30V · 28.83mA. (3.1)

This idling wattage is just under that described by Dengler et al. [Den+23, p. 7]. Note that,
despite providing an external input power of 5 V, the ESP32-C3 chip itself is still powered by
3.30 V.

3.2 Reading ESP32-C3 CPU Events

The ESP32-C3 implements the “Zicsr” extension for accessing and modifying CSRs. In place of
further implementing the standard “Zicntr” and “Zihpm” extensions for counters and timers
[Wat+19, p. 50], the processor instead implements a single 32 bit custom machine performance
counter, configured by three registers in the address space reserved by the RISC-V standard for
custom use. These custom PMCs can be accessed by RISC-V-specific CSR assembly instructions
as seen in Listing 3.1, and have been implemented in c3dk’s header file, allowing a benchmarking
framework to access and modify the registers in a C program. These macros behave like regular
functions, with the condition that the CSR address must be defined at compile-time.

1 // Return value from CSR

2 #define csr_read(addr) __extension__ ({ \

3 uint32_t __tmp; \

4 asm volatile ("csrr %0, " #addr : "=r"(__tmp)); \

5 __tmp; \

6 })

7

8 // Write value to CSR

9 #define csr_write(addr , value) __extension__ ({ \

10 asm volatile ("csrw " #addr ", %0" :: "r"(value)); \

11 })

13

Listing 3.1 – GCC C preprocessor macros to read and write CSRs.

Two additional 54 bit hardware system timer are also available [Esp24c, pp. 30, 262],
configurable to set alarm-style interrupts10. These operate using the 40 MHz Xtal clock source,
passed in alternating ticks to a 1

3 and 1
2 fractional scaler, effectively resulting in a 40MHz

2.5 =
16MHz= 62.50ns timer resolution [Esp24c, p. 263]. This specific resolution proves to be useful
in benchmarking as it is an independently sourced 10 : 1 scale of the frequency set by c3dk
during startup as well as a high-resolution wall-clock. The elapsed clock ticks are read from
memory-mapped high (22 bit long) and low (32 bit long) registers, not specialized CSRs.

Despite being de facto limited to only timers and a single programmable general purpose
counter, a wider set of events can be measured compared to similar embedded processors, as
shown in Table 2.1.

Register 3.1 – mpcer (0x7E0)

(re
se
rv
ed
)

0x000

31 11

IN
ST
_C
OM

P

0

10

BR
AN
CH
_T
AK
EN

0

9

BR
AN
CH

0

8

JM
P_
UN

CO
ND

0

7

ST
OR

E

0

6

LO
AD

0

5

ID
LE

0

4

JM
P_
HA

ZA
RD

0

3

LD
_H
AZ
AR
D

0

2

IN
ST

0

1

CY
CL
E

0

0

Reset

INST_COMP Count Compressed Instructions. (R/W)

BRANCH_TAKEN Count Branches Taken. (R/W)

BRANCH Count Branches. (R/W)

JMP_UNCOND Count Unconditional Jumps. (R/W)

STORE Count Stores. (R/W)

LOAD Count Loads. (R/W)

IDLE Count IDLE Cycles. (R/W)

JMP_HAZARD Count Jump Hazards. (R/W)

LD_HAZARD Count Load Hazards. (R/W)

INST Count Instructions. (R/W)

CYCLE Count Clock Cycles. Cycle count does not increment during wait-for-
interrupt mode. (R/W)

The programmable PMC at offset 0x7E2, designated machine performance counter count
register (mpccr), is a full 32 bit register representing the current event count value. As this
register is read/write, the counter can be reset to 0 or otherwise adjusted, if needed. Its behavior
is configured by the mpcer and mpcmr registers at offsets 0x7E0 and 0x7E1, respectively.

10Purposefully not enabled in the context of benchmarking.

14

The mpcmr register contains two bit flags to control the event counting behavior. COUNT_EN

enables event counting per se, while COUNT_SAT either halts the processor upon reaching the
maximum mpccr value (=1) or allows the counter to overflow (=0) [Esp24c, p. 36]. By default,
these bits are both set to 1, which ensures that selected events are counted and mpccr will not
overflow after 232 − 1 events11, the desired behaviour when collecting benchmarking data.

The bit fields of the mpcer register as described in the ESP32-C3 Technical Reference Manual
are shown in register diagram 3.1, which enables the specific events to include in the total
event count. Although it is possible to enable multiple bits in the field, it is noted that “each
bit selects a specific event for counter to increment. If more than one event is selected and
occurs simultaneously, then counter increments by one only.” [Esp24c, p. 36] Because the
ESP32-C3’s CPU incorporates a four-stage pipeline, it is extremely likely that events will occur
simultaneously, and therefore it is not possible to guarantee an accurate count of simultaneous
events. As a result, each event of the 11 bit wide mpcer register must be counted independently
by repeating benchmarks. Nonetheless, 100 samples were collected for both one and two possible
event combinations as an extra precaution, resulting in 100 ·

��11
1

�

+
�11

2

��

·10= 66000 individual
samples for all of the ten BEEBS benchmarks used as the foundation for the final experiment.

In a straight-line code sequence without branching or calls, individual pipeline stages allow
all subcomponents of the CPU to be utilized simultaneously. For example, as one instruction is
being executed, the successive instruction is already being decoded concurrently. This, however,
opens up the possibility of an instruction in one stage of the pipeline interfering an instruction
in another stage, resulting in data or control dependencies which must be resolved by bubbling
the pipeline with no-operations (NOPs), and are counted by mpcer as LD_HAZARD and JMP_HAZARD

events, respectively.

3.3 Building and Executing Benchmarks

To build and execute code without an RTOS, it was decided to fork and and extend the MDK
project to create a small, modern SDK focusing on the ESP32-C3. More information on the work
done on this foundational piece of software can be found in Section 2.3.

The host PC must also manage the configuration and compilation of benchmarks, control
the development board (described in 3.3.2), interface with the oscilloscope via USBTMC, and
manage resulting data. Due to the large scope of functionality, various Python modules (files)
were bundled into a package named autobench. The root of this package contains an executable
__main__.py file, which uses the versuchung package12 to handle inputs (e.g. a directory contain-
ing benchmarks) and benchmarking parameters. When executing autobench, the host iterates
through the combination of all specified benchmarks and the selected mpcer bitmasks specified
in Section 3.2, and then executes the steps described in the following Sections 3.3.1, 3.3.3
and 3.3.4.

3.3.1 Preparing for a Benchmark

Before the benchmarking process begins, the oscilloscope must be set-up via specific USBTMC
commands and the benchmark itself must be built and flashed to the SoC, the detailed sequence
of events being visualized in Figure 3.2.

11It would take 26.84 s to overflow when counting clock cycles at 160 MHz.
12https://pypi.org/project/versuchung/

15

https://pypi.org/project/versuchung/

Host PC esptool.py Oscilloscope ESP32-C3

*RST

TRIGger:A:SOURce CH2

etc.

benchmark.build()

compile

elf2image

firmware image

write_flash

reset to serial bootloader mode

image data

reboot

RUNSingle

STAT:OPER:COND?

1

LoopLoop Ensure device is ready for capture

Figure 3.2 – Setup sequence in preparation for a benchmark. As the Oscilloscope sets up
after a reset, a bootable firmware image is built and flashed. Before a benchmark is initiated,
the host PC waits an operational status register bit to be set, indicating that all commands
have been processed and the device is ready to capture.

16

To ensure a known instrument state, the oscilloscope is reset (*RST) and configured with
a series of commands which set voltage scales and an initial timebase of 100 ns. One channel
(CH1) is configured to monitor the voltage drop across the shunt resistor with the scale 8 mV,
and the other (CH2) is set to trigger when the development board’s benchmark state signal flanks
high13, indicating a measurable benchmark has begun.

Each specified benchmark is then compiled using to an ELF binary by autobench, using
the espbench wrapper, which implements the serial control protocol and benchmarking setup
described in Sections 3.3.2 and 3.3.3. This binary is then passed to Espressif’s esptool, which
contains the elf2image and write_flash subcommands to convert the executable binary into
a bootable image for the SoC and subsequently writes it to the flash chip. The SoC is then
rebooted and the oscilloscope is set capture a single trace by issuing the RUNSingle command.
The operation status condition register of the instrument is queried until it reports the device is
ready for capture.

3.3.2 Serial Benchmarking Control Protocol

In order for the host to effectively coordinate between instruments and control actions of the
SoC, a basic control protocol had to be implemented. Upon boot, the SoC begins waiting for
one of the command bytes listed in Table 3.2 and executes the desired action, after which it
returns to listening again.

PC Command Byte ESP Response Byte(s) Purpose

'p' 'p' Ping to determine connectivity
'b' 'o' Begin benchmark, response: okay
'r' binary data Request result of benchmarks

Table 3.2 – Serial command protocol showing request and expected response

The first and simplest command ('p') is implemented as a simple ping-style echo. This is used
to ensure that the SoC has its JTAG interface enabled and is ready to accept the next command.
The second command ('b') tells the SoC to begin the benchmarking procedure. This command
is necessary in order to ensure that the benchmark only begins after the oscilloscope has been
set-up and configured. The response is sent as a short confirmation to that the benchmark will
start, during which the JTAG is disabled.

The final command ('r') requests the data after the execution of a benchmark, the process
of which is further described in 3.3.4.

3.3.3 Benchmarking Procedure

Upon receiving the command byte to begin a benchmark, the SoC disables the JTAG by setting
the bit USB_SERIAL_JTAG_USB_PAD_ENABLE (number 14) of the register USB_SERIAL_JTAG_CONF0_REG
(offset 0x018), as during initial benchmarking trials with the oscilloscope, it was found that
simply opening the serial device file resulted in large current fluctuations as seen in Figure 3.4a.
Immediately after disabling the JTAG, current draw drops to baseline levels and the event
sequence shown Figure 3.3 proceeds between the three devices.

13High-level output is defined as a voltage ≥ 0.8 · 3.30V [Esp24b, p. 20].

17

Host PC Oscilloscope ESP32-C3

benchmark.run()

'b'

warmup() runs

reset PMC

GPIO high
serial disabled benchmark()

GPIO low
serial re-enabled

record PMC

Benchmark ExecutionBenchmark Execution

*OPC?

1

CHAN1:DATA?
CHAN2:DATA?

<traces>

'p'

'p'

LoopLoop Re-connect to the interrupted serial port

'r'

<counter data>

complete result

Figure 3.3 – Benchmark execution sequence. Writing 'b' to the serial line triggers the
ESP32-C3 to begin preparation for a benchmark, while 'r' triggers the ESP32-C3 to write
benchmark results to the serial port. The SCPI command *OPC? blocks until the full trace has
been captured after a trigger event.

18

The processor now begins a warm-up phase, in which the initialise_benchmark()14 and
benchmark() functions are repeatedly15 called. Directly before calling the benchmarking function
for the actual measurement, the system tick count and mpcer values are stored for later verification
on the host, the benchmarking signal pin is set to high to trigger the oscilloscope, and the mpccr

register is reset to 0.

(a) Demonstration of the current interference caused by
toggling the JTAG on (when the indicator signal (CH2) is
set to low)

(b) Single trace of a benchmark from start to finish. The
current stays at a continuous level, even outside of the
indicator signal (CH2) due to warm-up and -down rounds.

Figure 3.4 – Captured oscilloscope traces, with CH1 showing voltage drop-off

As soon as the benchmarking function returns, the mpccr and system tick timer contents are
read and the benchmarking signal pin is set to low. Warm-down rounds are run right before
re-activating the JTAG to avoid the risk of contaminating oscilloscope’s trace with a current
spike directly at the end of a benchmark, demonstrated in Figure 3.4b.

3.3.4 Collecting, Decoding and Saving Results

Benchmark data is collected on-board the SoC using the C data structure as shown in Listing 3.2,
and output directly to serial when the 'r' request byte is processed.

1 typedef struct Result {

2 uint64_t bitmask;

3 uint64_t start;

4 uint64_t end;

5 uint64_t pmc;

6 } Result;

Listing 3.2 – The resulting data passed to the host after a benchmark.

Because the data structure uses the same byte-aligned type for all fields, it is trivial to
interpret and unpack the raw data on the host using the Python standard library’s built-in struct

14This function is a part of all BEEBS benchmarks and serves to set up any needed state, such as initializing variables
or seeding the random number generator.

15100 times by default, overridable with a compile-time flag.

19

module16 with the format string "<QQQQ", denoting four little-endian unsigned long long (64 bit)
integers. As the length of 4× 8Byte is known to the host, a re-transmission can be requested if
the read number of bytes does not equal the expected number.

The whole process on the host side is blocked until the oscilloscope reports that a com-
plete (SINGLE) trace has been captured, implying that the begin of a benchmark triggered the
oscilloscope. The host then reads the oscilloscope’s CH2 trace. If the last value of CH2 trace is
high, it can be assumed that the timebase was too small to capture the entire duration of the
benchmark’s power consumption. The timebase is doubled, and the process is repeated until a
trace is collected which was triggered by a high signal and ends in a low one, a case in which it
can be assumed that the current was monitored during a full benchmark execution, after which
CH1 is queried and trimmed down to the period where CH2 is high. From this series of data the
minimum, maximum, mean, and median values are computed. These statistics, along with the
fields described in Listing 3.2 and sample metadata such as benchmark name are saved to a
Pandas DataFrame for later serialization and processing [tea24].

The architecture allows for capturing all of the bare-metal data needed to train a model. After
successfully collecting the required samples from all benchmarks, the samples, each consisting of
the benchmark’s name (required for later aggregation operations) along with the CPU tick count,
the mpcer and mpccr bitmasks and the mean current drawn are finally serialized to a Parquet file.
This column-oriented file format was chosen over the more common comma-seperated values
(CSV) file format because its self-describing nature leaves little room for misinterpretation of
data types [Voh16].

16https://docs.python.org/3/library/struct.html

20

https://docs.python.org/3/library/struct.html

4A N A LY S I S & M O D E L L I N G

Understanding the relationships between the recorded PMC events and current draw is critical
to effectively estimating power. Section 4.1 scrutinizes the aggregated samples collected from
each of the BEEBS benchmarks collected in Chapter 3, which are then correlated with current
consumption in Section 4.2. Building upon concepts introduced in Chapter 2, these observations
are then used to evaluate different models, the predictions of which are then validated using
PMC data from new, foreign benchmarks in Section 4.3. Finally, this analysis is extended to a
real-time operating system in Section 4.4.

4.1 Benchmark Time and Power Metrics

The source code of each of the ten benchmarks chosen by Pallister, Hollis, and Bennett was
compiled and executed with autobench. The mean power draw and CPU ticks elapsed for each
benchmark are shown in Table 4.1. Because the mean value (µ) and standard deviation (σ)
can vary strongly between each of the benchmarks, the percentual coefficient of variation (CV),
defined in Equation 4.1, is deemed a useful metric to determine the distribution of sampled
values between benchmarks. Because this value is low across the board (< 2.50%), it can be
inferred that the benchmarks were executed in a mostly deterministic fashion.

CV=
σ

µ
× 100% (4.1)

Because the benchmarks cover a wide range of time and current draw (Figure 4.1), they
appear to provide a suitable range of targets for a regression model. The only notable outlier is
the forward discrete cosine transform (FDCT) benchmark, which in the BEEBS implementation,
is almost exclusively based on a series of integer operations. As a result, this benchmark executes
very quickly, needing around only 178 ticks on average (circa 11.12 µs) and a large amount of
power (34.34 mA).

Despite its quick execution time, it shares superficial properties with the other two relatively
high-power benchmarks, SHA256 and matmult-int (3rd and 1st, respectively), both of which are
also memory and especially integer-focused. Notably, FDCT performs a memcpy() call, which may
have side effects in power draw. While the Blowfish and SHA256 benchmarks call this function
as well, the extraordinarily short duration of the FDCT benchmark may still skew median and
mean power draw samples as a result.

Another interesting metric are the cycles per event (CPE) shown in Figure 4.2, used to
measure how many processor clock cycles are required, on average, to complete a specific

21

Power CPU Ticks
mean σ CV mean σ CV

Benchmark

blowfish 109.25 mW 208 µW 0.19 % 88425.26 429.94 0.49 %
crc32 107.68 mW 877 µW 0.81 % 1732.08 41.86 2.42 %
cubic 105.19 mW 150 µW 0.14 % 99850.62 8.72 0.01 %
dijkstra 107.82 mW 283 µW 0.26 % 68334.39 168.14 0.25 %
fdct 113.32 mW 1.90 mW 1.68 % 177.27 0.66 0.37 %
fir2d 106.31 mW 534 µW 0.50 % 2691.06 2.66 0.10 %

matmult-float 107.74 mW 245 µW 0.23 % 20097.50 4.14 0.02 %
matmult-int 113.59 mW 553 µW 0.49 % 8732.03 72.04 0.82 %
rijndael 108.09 mW 183 µW 0.17 % 81444.01 10.39 0.01 %
sha256 110.24 mW 658 µW 0.60 % 890.73 1 0.11 %

Table 4.1 – General power and time statistics of the BEEBS benchmarks.

cubic fir2d crc32 matmult-float dijkstra rijndael blowfish sha256 fdct matmult-int
Benchmark

32 mA

33 mA

34 mA

35 mA

36 mA

37 mA

38 mA

M
ea

n
Cu

rre
nt

Figure 4.1 – Mean current consumption across 660 samples per benchmark, with quartiles
marked for each.

event or task during the execution of a benchmark. This metric can easily be calculated by
aggregating the mean number of events in a benchmark and dividing these by the mean sum of
clock cycles needed to complete a benchmark. Section 3.2 notes that the timer register operates
at 16 MHz, one tenth the speed of the independently sourced processor clock. As such, it is no
surprise that the CYCLE and INST counts congregate around 0.10 ticks, aligning with the findings

22

of Van Overveldt [VO22]. Noteworthy is the pronounced distribution of BRANCH, BRANCH_TAKEN,
JMP_UNCOND and LD_HAZARD events, which are distributed along multiple orders of magnitude,
indicating strong differences in the low-level execution of benchmarks.

CYCLE INST INST_COMP LOAD BRANCH STORE BRANCH_TAKEN IDLE JMP_UNCOND LD_HAZARD JMP_HAZARD
Event

10 1

100

101

102

103

Ti
ck

s @
 1

6
M

Hz

Figure 4.2 – Strip plot showing the CPE for each of the ten BEEBS benchmarks, where
applicable.

4.2 Relationship between Events and Power Consumption

As noted at the end of Section 3.2, the ESP32-C3 is only capable of counting a single event type
at a time. To ascertain the number of events occurring in the sampled benchmarks, the data
can be aggregated into a pivot table, where the benchmark name serves as the row index and a
column is allocated for each bit in mpcer. Aggregation operations can then be applied for each
of the recorded samples. Table 4.2 shows the standard deviations of recorded event counts,
which are extremely consistent. The only notable exception is rijndael, which uses RNG to yield
a long sequence of random numbers which likely causes the large deviations compared to other
benchmarks. Because events are consistent between samples, the mean between samples of a
pivot table appears to be a suitable aggregate metric to estimate for the number of events per
benchmark, as seen in Figure 4.3, which can be used to compensate for the ESP32-C3’s lone
event counter. An insignificant deviation also occurs for crc32 with the event bitmask 8 (IDLE),
which can be attributed to load hazards.

Because events can vary greatly between benchmarks due to different execution times, it is
difficult to directly compare the number of a particular event between benchmarks. Therefore,
their relative frequency can be determined by normalization, as described by Equation (2.4) in
Section 2.4.2.

The most power-intensive benchmarks in Figure 4.1, such as FDCT, SHA256 and matmult-int
also present a relatively high (brighter) share of memory-intensive operations such as LOAD and
STORE in Figure 4.3.

23

CYCLE
INST

LD_HAZARD
JM

P_HAZARD
IDLE

LOAD
STORE

JM
P_UNCOND

BRANCH
BRANCH_TAKEN

INST_COM
P

Event

blowfish

crc32

cubic

dijkstra

fdct

fir2d

m
atm

ult-float

m
atm

ult-int

rijndael

sha256

Benchmark

881910.0
723986.0

522.0
0.0

32759.0
116929.0

110689.0
30237.0

56373.0
31982.0

321672.0

17425.0
13329.0

1024.0
0.0

2.2
1025.0

1.0
2.0

1024.0
1023.0

9222.0

998074.0
818869.0

2696.0
59.0

16041.0
72615.0

66523.0
19871.0

86071.0
45178.0

443398.0

678329.0
515788.0

50229.0
0.0

21133.0
113240.0

66842.0
5321.0

84829.0
42076.0

256579.0

1665.0
1549.0

16.0
0.0

34.0
290.0

191.0
5.0

30.0
21.0

650.0

26817.0
22591.0

0.0
0.0

490.0
1887.0

1638.0
845.0

3145.0
1402.0

11949.0

200899.0
173978.0

0.0
0.0

3991.0
13014.0

12114.0
6264.0

24065.0
8221.0

89281.0

87584.0
67001.0

0.0
0.0

1920.0
16001.0

8401.0
3.0

8420.0
7999.0

41333.0

814837.0
759011.8

933.2
0.0

10013.6
131234.0

25518.8
1355.2

19281.0
17319.0

238277.8

8806.0
8530.0

38.0
1.0

38.0
857.0

328.0
25.0

104.0
70.0

2275.0

Figu
re

4.3
–
H
eatm

ap
ofm

ean
event

occurrence
per

benchm
ark,w

ith
colors

norm
alized

by
benchm

ark
(row

)

24

10
5

m
W

11
0

m
W

11
5

m
W

12
0

m
W

12
5

m
W

meanPower

ev
en

tN
am

e
=

CY
CL

E
ev

en
tN

am
e

=
IN

ST
ev

en
tN

am
e

=
LD

_H
AZ

AR
D

ev
en

tN
am

e
=

JM
P_

HA
ZA

RD

10
5

m
W

11
0

m
W

11
5

m
W

12
0

m
W

12
5

m
W

meanPower

ev
en

tN
am

e
=

ID
LE

ev
en

tN
am

e
=

LO
AD

ev
en

tN
am

e
=

ST
OR

E

0.
0%

10
.0

%
20

.0
%

30
.0

%
40

.0
%

fre
qu

en
cy

ev
en

tN
am

e
=

JM
P_

UN
CO

ND

0.
0%

10
.0

%
20

.0
%

30
.0

%
40

.0
%

fre
qu

en
cy

10
5

m
W

11
0

m
W

11
5

m
W

12
0

m
W

12
5

m
W

meanPower

ev
en

tN
am

e
=

BR
AN

CH

0.
0%

10
.0

%
20

.0
%

30
.0

%
40

.0
%

fre
qu

en
cy

ev
en

tN
am

e
=

BR
AN

CH
_T

AK
EN

0.
0%

10
.0

%
20

.0
%

30
.0

%
40

.0
%

fre
qu

en
cy

ev
en

tN
am

e
=

IN
ST

_C
OM

P

Fi
gu

re
4.

4
–
R
el
at
io
ns
hi
ps

be
tw

ee
n
a
gi
ve

n
m
p
c
e
r
ev

en
t’s

fr
eq

ue
nc

y
an

d
th
e
re
sp
ec
ti
ve

sa
m
pl
e’
s
m
ea

n
po

w
er

co
ns
um

pt
io
n.

25

mpcerBitmask 1 2 4 8 16 32 64 128 256 512 1024
benchmark

blowfish 0 0 0 0 0 0 0 0 0 0 0
crc32 0 0 0 0 422.95× 10−3 0 0 0 0 0 0
cubic 0 0 0 0 0 0 0 0 0 0 0
dijkstra 0 0 0 0 0 0 0 0 0 0 0
fdct 0 0 0 0 0 0 0 0 0 0 0
fir2d 0 0 0 0 0 0 0 0 0 0 0
matmult-float 0 0 0 0 0 0 0 0 0 0 0
matmult-int 0 0 0 0 0 0 0 0 0 0 0
rijndael 95.88 6.53 16.48 0 35.51 0 1.31 435.19× 10−3 0 0 3.05
sha256 0 0 0 0 0 0 0 0 0 0 0

Table 4.2 – Standard deviations of events per benchmark and mpcer bitmask. For a mapping
of bitmasks to events, see register diagram 3.1.

In contrast Figure 4.4 shows how JMP_UNCOND and BRANCH operations are associated with a
strong drop in mean current, as these deviate from the processor’s previous control flow, leading
to possible pipeline stalls and subsequent bubbling, which may be supported by the negative
correlation of Energy with CYCLE events. As the ESP32-C3 does not employ a branch predictor, it
is no surprise that the latter event has an even more drastic effect on power consumption. In
contrast, BRANCH_TAKEN has a lesser correlation with power, as the processor begins following a
new sequence of instructions and must insert NOPs. The weak INST_COMP event correlation is
likely due to the instruction cache (I-cache). Although compressed instructions are a feature
originally implemented to reduce RISC binary code size, the reduced instruction fetch- and
decoding efforts provide a mild performance gain [Yos+97; LHW00], especially in devices with
an I-cache, such as the ESP32-C3 [CBM97; Esp24c].

The observed trends in the data suggest a priori that a linear model will effectively capture
the underlying relationships between the variables.

4.3 Model Selection and Validation

There is a real possibility that a model may overfit, in other words, a known combination of
ticks, bitmask, and event count may be identified, especially as many samples are gathered for
each mpcer bitmask for each benchmark. To illustrate the effectiveness of a model for general
data, foreign samples from benchmarks not included in the training set are employed to assess
a model’s performance. As such, the same procedure described in subsection 3.3.3 is repeated
with other benchmarks found in the BEEBS code repository, namely “whetstone” (a commonly-
employed benchmark dating to 1976), “levenstein” (a benchmark measuring string differences,
known as the Levenshtein distance), “jfdct” (JPEG’s discrete cosine transform), “jannes-complex”
(particle flow analysis) and “huffbench” (a common compiler benchmark). These benchmarks
are also available as part of the BEEBS project and were chosen as candidates for validation due
to their ubiquity or historical prominence [PHB13].

The resulting data from the ideal ten BEEBS benchmarks for modelling power is then used
to fit several linear models available from “Scikit-learn: Machine Learning in Python,” which
must then predict the current from the five other BEEBS benchmarks selected for validation.

26

4.3.1 Determining Model Accuracy with Metrics and Cross-Validation

Various metrics have been developed to score the error between the actual (y) and predicted
(ŷ) values of linear regression models. The perhaps most straight-forward metric, the mean
absolute error (MAE), measures the mean error (difference) between all n predicted values
and actual values, as seen in Equation (4.2). In its simplicity lies its strength: it retains the
units of the prediction (e.g. mA) and treats statistical outliers no different from other values.
Like the coefficient of variation (CV), it is also easy to represent as a percentual value relative
to the largest actual value, then referred to as the mean absolute percentage error (MAPE),
Equation (4.3), making it sensitive to relative errors in the predicted values [Ped+11]. As both
of these metrics measure the error, a low value is most desirable.

MAE(y , ŷ) =
1
n

n
∑

i=1

|yi − ŷi | (4.2)

MAPE(y , ŷ) =
1
n

n
∑

i=1

|yi − ŷi |
max |yi |

(4.3)

Amore complex but expressive metric is the coefficient of determination (R2), which “provides
an indication of goodness of fit and therefore a measure of how well unseen samples are
likely to be predicted by the model, through the proportion of explained variance.” [Ped+11]
Equation (4.4) shows a definition of R2 as used by scikit-learn, with the mean ȳ defined as
ȳ = 1

n

∑n
i=1 yi [Ped+11].

R2(y , ŷ) = 1−

∑n
i=1(yi − ŷi)2
∑n

i=1(yi − ȳ)2
(4.4)

Note that, because the metric subtracts from 1, always predicting the mean value (i.e. a
flat line across the trend) would result in a score of 1 − 1

1 = 0, and predicting against the
correlation of data (e.g. a downwards line, when data points trend upwards) causes the value
of the fraction to increase, resulting in a negative score. Positive scores therefore indicate more
accurate predictions, with the best possible score being 1 if all the predicted trend line perfectly
intercepts all data points. The resulting metric can, because of its proportional nature, be
represented as a percentage.

A flaw of the R2 is that it may increase as insignificant features are added. In the 1929
publication “The Application of the Theory of Error to Multiple and Curvilinear Correlation,”
Ezekiel proposed the adjusted coefficient of determination (R

2
) shown in Equation (4.5), which

accounts for the number of predictors (p) in a linear regression model trained on n samples,
making it a stronger indicator of the model’s explanatory power relative to its complexity,
especially useful when comparing models [Eze29].

R
2
= 1− (1− R2) ·

n− 1
n− p− 1

(4.5)

Because the discrepancy between the training targets of the benchmarks is only a few mA, the
MAE/MAPE metrics will yield comparably small scores, and because the quality of the regression
plays a deciding factor in this case, the R

2
metric serves as the main criterion to determine if a

model fits the trends in events better than simply predicting the mean.

4.3.2 Comparison of Linear Models

The OLS method of determining the optimal weights of the linear model described in Chapter 2
is commonly extended using hyperparameters (tunable coefficients independent of training

27

data, set before the solving process begins) and regularization (controlling the relative strength
of feature weights to prevent overfitting) to further modify the weighting of features. The
alternatives and their advantages are briefly presented and compared.

• The Ridge regression by Hoerl and Kennard extends OLS “by imposing a penalty on the size
of the coefficients” [Ped+11], known as the `2 penalty. It uses the hyperparameter α≥ 0
to control the learning rate, adding robustness against highly collinear17 features [HK70;
Ped+11], which can make it difficult to determine the individual effects of a feature.

• The least absolute shrinkage and selection operator (Lasso) regression by Tibshirani again
extends OLS with an α, however drives the coefficient vector towards an `1 norm instead,
thereby strongly reducing or even completely eliminating the weights of less-relevant
features [Tib96; Ped+11].

• The elastic net regression by Zou and Hastie combines the `1 and `2 normalizations. This
allows for the strong feature selection of Lasso, picking multiple features if these correlate
with one another [ZH05; Ped+11].

A variety of preprocessing and training methods were employed in an effort to create a
model with a high degree of predictive accuracy.

4.3.2.1 Training Using a Preprocessing Pipeline

The initial attempts to train a linear model relied on directly fitting a model using scikit-learn’s
Pipeline module to pre-process feature data. Before the model is fit (trained) on data or used to
make predictions, the operations seen in Figure 4.5 are applied on each column of the collected
samples.

The mpcer bitmask is treated separately from other data points of a sample, as it represents
nominal, not ordinal, data. It is used to one-hot encode the data, essentially separating each
sample’s data by the mpcer bitmask via a binary encoding scheme [Ped+11]. By calculating the
second polynomial, interactions between inputs can better be observed, in this case beneficial
as it has already been established in Section 4.1 that a relationship exists between the number
of times an event is observed and the duration of a benchmark. This extended set of features is
then normalized column-wise as to ensure that all inputs are on a similar scale when multiplied
with their respective weights.

This transformed input matrix was then used to fit a model based on scikit-learn’s ElasticNetCV
model. As implied by the name, it is based upon the elastic net regression by Zou and Hastie,
with this specific implementation automatically selecting the ideal coefficients for its `1 and `2
normalization by means of cross-validation (CV), in which a certain ratio of training data is
reserved and compared to predicted values, adjusting hyperparameters thereafter if the R2 score
worsens [ZH05; Ped+11].

The final model resulted in an error of only 1.85 % MAPE (604.56 µA MAE), but an R2 score
of −0.01, a strong indicator that it is ineffective by the criteria previously set in Section 4.3.1.

4.3.2.2 Training on Aggregated Data

Due to the theoretically promising yet unsuccessful attempts at training a model using the
pipeline-transform method, a different approach is needed, using the pivot-normalization

17The issue of multicollinearity arises when when two or more independent variables (i.e. PMC event frequencies) are
similarly correlated with the dependent variable (i.e. power consumption)

28

mpcer Bitmask
1, 2, 4, ..., 1024

Event Occurence Count
563456, 0, 273, ..., 23409

Tick Count
681294, 5839678, 629, ... 42068

Parquet File

One-Hot Encoding
(0, 1, ..., 0)

2nd Polynomial
(1, X1, X2, X 2

1 , X1X2, X 2
2)

Normalization
(0.873, 0, 0.056, ..., 0.483)

Transformed Feature Matrix Linear Model

Model Output

Figure 4.5 – Feature preprocessing pipeline for a linear model.

method described in Section 2.4.2 of Chapter 2 and already implemented for Figure 4.4. An
exhaustive search of all 1< p < 11 combinations of events is used to train and score a model to
determine the highest scoring combinations in a process called feature selection, from which a
pivot table with a moving window over each of the n= 100 samples taken per benchmark/mpcer
bitmask is created and normalized. Note that the effects of normalization are much more
pronounced for each event with a smaller p, as only a subset of the total counts are now
included.

These proportional events are then used as direct training features for scikit-learn’s Linear-
Regression, RidgeCV, LassoCV, and ElasticNetCV models. The three top scoring models are shown
in Table 4.3 — interestingly, each was an instance of LinearRegression.

Composite mpcer events in aggregation R
2

R2 MAPE MAE

INST|BRANCH_TAKEN|INST_COMP 0.619020 0.619 402 0.88 % 283 µA
INST|LD_HAZARD|IDLE|BRANCH_TAKEN|INST_COMP 0.555249 0.555 694 1.08 % 346 µA

CYCLE|BRANCH_TAKEN|INST_COMP 0.491844 0.492 353 1.25 % 405 µA

Table 4.3 – Three top-scoring models after an exhaustive feature- and hyperparameter
search. Note that all are instances of LinearRegression.

Given the large amount of noise in Figure 4.4 and discrepancies in the CPEs, an R
2
> 0.5

can be interpreted as moderate to substantial [HRS09; Nau20], as the majority of variance can
be explained. It can thus be confidently concluded that the highest scoring linear model uses
the counted regular as well as compressed instructions and branches taken to effectively predict
current, and thus power, consumption.

4.4 Extending Events to an RTOS

The next reasonable step in evaluating the power characteristics of a computer system is
to measure a piece of software with more complex behavior than the mostly deterministic
benchmarks; in the case of an embedded system specifically, an RTOS would be a suitable
environment.

Because the ESP32-C3 does not feature the atomic (A) ISA extension, several steps must be
taken to ensure that shared resources can safely be synchronized; the ISA specification notes
that for RV32I, “RISC-V does not guarantee that stores to instruction memory will be made

29

visible to instruction fetches on the same RISC-V thread until a FENCE.I instruction is executed”
[Wat+19], in which “... a simple implementation ... might be able to implement the FENCE
and FENCE.I instructions as NOPs.” [Wat+19] The ESP32-C3 Technical Reference Manual also
recommends that, before the global machine mode interrupt enable (MIE) is enabled, a FENCE

instruction18 must be executed [Esp24c]. This overhead will be a priori measurable in the CYCLE,
INST and potentially IDLE counts when an RTOS manages interrupts, CPU time, and hardware
resources.

The Zephyr RTOS includes a tracing framework which implements the common trace format
(CTF) and, when enabled, can can automatically log kernel as well as application events [Zi23].
The major advantage over simply counting PMC data is that the RTOS can multiplex data; even
on a simple processor, is is feasible to count multiple software events. Similar to the transmission
process described in Chapter 3, CTF serves the purpose of serializing and transmitting event
data to a host, but supports concrete data types, including maps (key-value pairs) and full data
structures [Pro24, Section 5.3].

Zephyr integrates its tracing functionality to several host-side tools, including Percepio AB’s
Tracealyzer and the Eclipse Trace Compass, but also allows users to directly define custom event
handlers19 for thread scheduling, interrupt service routines (ISRs), and idling [Zi23]. Deeper
tracing at the kernel level is also possible via the zephyr/tracing/tracing.h header file, which
features a plethora of additional tracing APIs. Those expected to correlate with energy based on
high instruction counts, branching, and memory accesses are:

Semaphores and Mutexes are used to count and limit access to specific resources in both the
kernel- and userspace of Zephyr. Not only will they cause higher instruction counts on
an processor such as the ESP32-C3, but their attempted and blocked entries can also be
traced, metrics which likely correlate with system and interrupt activity;

Memory Slabs are kernel objects used by the RTOS to dynamically allocate memory blocks
from specific regions. Especially of interest is the blocking behavior20, as each memory
slab must access must be synchronized;

Syscalls in the RTOS are, by very definition, likely to cause significant branching, as the single-
threaded CPU must begin executing a new code path; syscall tracing has often been used
in power modelling applications for embedded systems [Pat+11; Agg+14].

4.5 Discussion

One of the difficulties encountered in training were the extremely small measurement ranges.
Although trend lines in Figure 4.4 show noticeable trends in data for common events such as
LOAD, STORE, JMP_UNCOND, BRANCH and INST_COMP, unfortunately, the dataset is still quite compressed;
frequencies range only over 5 %–10 % with circa 5 mW power difference with significant noise
relative to the size. This noise is likely a significant contributor to the R2 score described in
Section 4.3.2.2. An architecture geared towards more sensitivity may have yielded better results;
as the finest scale for the HMO3000-Series oscilloscope is limited to 1 mV per div, a smaller shunt
resistor value would yield larger voltage-drop readings. For comparison, Walker et al. were able

18“The FENCE instruction is used to order device I/O and memory accesses as viewed by other RISC-V threads and
external devices or coprocessors” [Wat+19]

19https://docs.zephyrproject.org/latest/services/tracing/index.html#user-defined-tracing
20sys_port_trace_k_mem_slab_alloc_blocking(slab, timeout)

30

https://docs.zephyrproject.org/latest/services/tracing/index.html#user-defined-tracing

to achieve an R2 of 0.99 on ARM Cortex-A7 and A15 CPUs [Wal+17]. In response, other kinds
of non-linear tree-based regression models were attempted to be fit, ranging from plain decision
trees to ensembled histogram-based gradient boosting regression trees, again with exhaustive fea-
ture set searches. The only one which performed better than the simple OLS linear regression was
the HistGradientBoostingRegressor using CYCLE|INST|IDLE|STORE|BRANCH|BRANCH_TAKEN|INST_COMP,
which scored an R

2
of 0.73, albeit with a slightly higher MAPE of 0.93 %. This regressor, while

effective, is outside of the scope of this thesis and may serve as an interesting starting point for
future work.

While the MAPEs of the models trained in this thesis are satisfactory (≤ 2%) and correspond
to the findings in related power-modelling work, it is difficult to compare the quality of regression
without the R2, which was rarely published [Rod+13; Pat+11; Nik+21; Geo+21]. The strong
variations in CPE shown in Figure 4.2 suggest that events such as JMP_UNCOND and LD_HAZARD are
strongly dependent on the processor state, and indicate that a larger pool of benchmarks may
increase the precision of future models, which may also profit from stochastic approaches that
consider the ordering of events.

One further unexplored topic is the effect of compiler flags on the energy characteristics of
the CPU. In the interest balancing a production use case where performance efficiency takes
precedence over debuggability, while avoiding I-cache misses and undefined behavior [Myt+09;
DB17], all BEEBS benchmarks passed to espbench have been compiled with c3dk’s default -O2
GCC flag, in contrast to other PMC-oriented power modelling experiments of Singh, Bhadauria,
and McKee; Mair et al.

31

5C O N C LU S I O N

Power modelling has played and will continue to play an important role in the design and
analysis of both embedded software and hardware as more attention is paid to optimizing the
resource usage and lifetime of embedded systems.

By preparing a processor for interference-free bare-metal benchmarking and running a set
of diverse benchmarks, it was possible to identify small but useful correlations between the
frequency of occurrence in an event and energy consumption. In the past, these benchmarks
were explicitly selected for the measurement of power on embedded systems, and still provided a
fair range of performance monitoring counter (PMC) data to train a diverse set of linear models.
Metrics were introduced to assess the goodness of the model estimates, where, in contrast to
some previous power modelling publications, a focus was placed on not just minimizing the
mean absolute error (MAE), but also maximizing the adjusted coefficient of determination
(R

2
) score, ensuring that the regression model explained as much variance as possible. The

integration of RTOS traces will likely further increase the precision of modelling to an even
greater extent. Insight into these trace metrics not only opens up more possibilities for power
modelling, but also optimizations in user application code as well as well as kernel configuration.

The models used nothing but the aggregated PMC data already available to the processor
itself. As such, it is not ruled out that the models, given their relative simplicity, could be
pre-trained and either used on a coprocessor such as an FPGA, in an approach similar to that of
Nikov et al. [Nik+21], or run directly on RISC-V based SoCs using projects such as TinyML21

and its related projects, which are specifically tailored to machine learning applications on
embedded systems [Lin+23].

21https://hanlab.mit.edu/projects/tinyml

33

https://hanlab.mit.edu/projects/tinyml

L I S T O F A C R O N Y M S

R
2
adjusted coefficient of determination

σ standard deviation

R2 coefficient of determination

MIE global machine mode interrupt enable

mpccr machine performance counter count register

mpcer machine performance counter event register

mpcmr machine performance counter mode register

ABI application binary interface

API application programmer interface

CISC complex instruction set computer

CPE cycles per event

CPU central processing unit

crc32 cyclic redundancy check, 32-bit

CSR control and status register

CSV comma-seperated values

CTF common trace format

CV coefficient of variation

CV cross-validation

DC direct current

DRAM data RAM

DWT Data Watchpoint Trace

ELF Executable and Linkable Format

35

List of Acronyms

ESP-IDF Espressif IoT Development Framework

FDCT forward discrete cosine transform

FPGA field programmable gate array

GCC GNU compiler collection

GNU “GNU’s not UNIX” project

GPIO general-purpose input/output

HAL hardware abstraction layer

HPC high-performance computing

I-cache instruction cache

I/O input/output

IC integrated circuit

IoT internet of things

IRAM instruction RAM

ISA instruction set architecture

ISR interrupt service routine

JTAG Joint Test Action Group (debugging standard named after group)

Lasso least absolute shrinkage and selection operator

LDO low-dropout voltage regulator

MAE mean absolute error

MAPE mean absolute percentage error

matmult-int integer matrix multiplication

ML machine learning

NOP no-operation

OLS ordinary least squares

OS operating system

PLL phase-locked loop

PMC performance monitoring counter

PSU power supply unit

RAM random access memory

RAPL running average power limit

36

List of Acronyms

RISC reduced instruction set computer

RNG random number generation

ROM read-only memory

RTOS real-time operating system

SDK software development kit

SHA256 Secure Hash Algorithm 2, 256 bit digest

SoC system on a chip

SPI serial peripheral interface

UART universal asynchronous receiver transmitter

USB universal serial bus

USBTMC USB test & measurement class

Xtal crystal oscillator

37

L I S T O F F I G U R E S

2.1 Near-equivalent current measurement methods. 4
2.2 Memory regions defined by the linker script. 6
2.3 Example of a two-dimensional OLS regression by “Scikit-learn: Machine Learning

in Python.” . 8

3.1 Powering the development board with an external 5 V supply. Note that CH1 and
CH2 are part of the same oscilloscope, and thus share the GND connection. 12

3.2 Setup sequence in preparation for a benchmark. As the Oscilloscope sets up after
a reset, a bootable firmware image is built and flashed. Before a benchmark is
initiated, the host PC waits an operational status register bit to be set, indicating
that all commands have been processed and the device is ready to capture. 16

3.3 Benchmark execution sequence. Writing 'b' to the serial line triggers the ESP32-
C3 to begin preparation for a benchmark, while 'r' triggers the ESP32-C3 to write
benchmark results to the serial port. The SCPI command *OPC? blocks until the
full trace has been captured after a trigger event. 18

3.4 Captured oscilloscope traces, with CH1 showing voltage drop-off 19

4.1 Mean current consumption across 660 samples per benchmark, with quartiles
marked for each. 22

4.2 Strip plot showing the CPE for each of the ten BEEBS benchmarks, where applicable. 23
4.3 Heatmap of mean event occurrence per benchmark, with colors normalized by

benchmark (row) . 24
4.4 Relationships between a given mpcer event’s frequency and the respective sample’s

mean power consumption. 25
4.5 Feature preprocessing pipeline for a linear model. 29

39

L I S T O F TA B L E S

2.1 Comparison of hardware counters between three ISAs typically used in embedded
systems. 7

3.1 Baseline currents at different voltages. No serial data was transferred during the
evaluation. 12

3.2 Serial command protocol showing request and expected response 17

4.1 General power and time statistics of the BEEBS benchmarks. 22
4.2 Standard deviations of events per benchmark and mpcer bitmask. For a mapping

of bitmasks to events, see register diagram 3.1. 26
4.3 Three top-scoring models after an exhaustive feature- and hyperparameter search.

Note that all are instances of LinearRegression. 29

41

L I S T O F L I S T I N G S

3.1 GCC C preprocessor macros to read and write CSRs. 13
3.2 The resulting data passed to the host after a benchmark. 19

43

R E F E R E N C E S

[Agg+14] Karan Aggarwal et al. “The power of system call traces: predicting the software
energy consumption impact of changes.” In: Proceedings of 24th Annual International
Conference on Computer Science and Software Engineering. CASCON ’14. Markham,
Ontario, Canada: IBM Corp., 2014, pp. 219–233.

[And15] Gabor Andai. “Performance monitoring on high-end general processing boards
using hardware performance counters.” MA thesis. KTH, School of Information and
Communication Technology (ICT), 2015, p. 68.

[ARM24] ARM Limited. ARM® Cortex®-M33 Processor. Technical ReferenceManual. Version r1p0.
2024. 137 pp. URL: https://developer.arm.com/Processors/Cortex-M33 (visited on
09/28/2024).

[Arn24] Johannes Karl Arnold. c3dk. A bare metal SDK for the ESP32-C3. Version ff0e77a.
2024. URL: https://github.com/j0hax/c3dk (visited on 08/16/2024).

[CBM97] I-Cheng K. Chen, Peter L. Bird, and Trevor N. Mudge. The Impact of Instruction
Compression on I-cache Performance. Tech. rep. CSE-TR-330-97. EECS Department,
University of Michigan, 1997. URL: https://api.semanticscholar.org/CorpusID:
860126.

[Dav+10] Howard David et al. “RAPL: memory power estimation and capping.” In: Proceed-
ings of the 16th ACM/IEEE International Symposium on Low Power Electronics and
Design. ISLPED ’10. Austin, Texas, USA: Association for Computing Machinery,
2010, pp. 189–194. ISBN: 9781450301466. DOI: 10.1145/1840845.1840883. URL:
https://doi.org/10.1145/1840845.1840883.

[DB17] Manjeet Dahiya and Sorav Bansal. “Black-Box Equivalence Checking Across Com-
piler Optimizations.” In: Programming Languages and Systems. Ed. by Bor-Yuh
Evan Chang. Cham: Springer International Publishing, 2017, pp. 127–147. ISBN:
978-3-319-71237-6.

[Den+23] Eva Dengler et al. “FusionClock: Energy-Optimal Clock-Tree Reconfigurations for
Energy-Constrained Real-Time Systems.” In: 35th Euromicro Conference on Real-
Time Systems (ECRTS 2023). Ed. by Alessandro V. Papadopoulos. Vol. 262. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 6:1–6:23. ISBN: 978-3-95977-
280-8. DOI: 10.4230/LIPIcs.ECRTS.2023.6. URL: https://drops.dagstuhl.de/

entities/document/10.4230/LIPIcs.ECRTS.2023.6.

45

https://developer.arm.com/Processors/Cortex-M33
https://github.com/j0hax/c3dk
https://api.semanticscholar.org/CorpusID:860126
https://api.semanticscholar.org/CorpusID:860126
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.4230/LIPIcs.ECRTS.2023.6
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2023.6
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2023.6

References

[Don] Dongguan Korad Technology Co., Ltd. Programmable DC Power Supply. KD3000-
6000 Series User Manual. 6 pp. URL: https://v4.cecdn.yun300.cn/site_1801250020/
KD3000--6000%20Series%20User%20Manual%20V1.12.pdf (visited on 10/06/2024).

[Esp24a] Espressif Systems (Shanghai) Co., Ltd. ESP32-C3-DevKitM-1. Version 5.3. 2024. URL:
https://docs.espressif.com/projects/esp-idf/en/stable/esp32c3/hw-reference/

esp32c3/user-guide-devkitm-1.html (visited on 06/30/2024).

[Esp24b] Espressif Systems (Shanghai) Co., Ltd. ESP32-C3-MINI-1 Datasheet. Version 1.5.
2024. Chap. 4, p. 15. 35 pp. URL: https://www.espressif.com/sites/default/files/
documentation/esp32-c3-mini-1_datasheet_en.pdf (visited on 07/11/2024).

[Esp24c] Espressif Systems (Shanghai) Co., Ltd. ESP32-C3 Technical Reference Manual. Ver-
sion 1.1. 2024. Chap. 1, pp. 28–56. 877 pp. URL: https://www.espressif.com/sites/
default/files/documentation/esp32-c3_technical_reference_manual_en.pdf (visited
on 06/30/2024).

[Eze29] Mordecai Ezekiel. “The Application of the Theory of Error to Multiple and Curvilin-
ear Correlation.” In: Journal of the American Statistical Association 24.165 (1929),
pp. 99–104. ISSN: 01621459, 1537274X. URL: http://www.jstor.org/stable/

2277015 (visited on 10/12/2024).

[Fur+22] Gianluca Furano et al. “A European Roadmap to Leverage RISC-V in Space Applica-
tions.” In: 2022 IEEE Aerospace Conference (AERO). 2022, pp. 1–7. DOI: 10.1109/
AERO53065.2022.9843361.

[Geo+21] Kyriakos Georgiou et al. “A Comprehensive and Accurate Energy Model for Arm’s
Cortex-M0 Processor.” In: (2021). arXiv: 2104.01055 [cs.SE]. URL: https://arxiv.
org/abs/2104.01055.

[HK70] Arthur E. Hoerl and Robert W. Kennard. “Ridge Regression: Biased Estimation
for Nonorthogonal Problems.” In: Technometrics 12.1 (1970), pp. 55–67. ISSN:
00401706. URL: http://www.jstor.org/stable/1267351 (visited on 10/09/2024).

[HRS09] Jörg Henseler, Christian Ringle, and Rudolf Sinkovics. “The Use of Partial Least
Squares Path Modeling in International Marketing.” In: vol. 20. Jan. 2009, pp. 277–
319. ISBN: 9781848554689. DOI: 10.1108/S1474-7979(2009)0000020014.

[Lee+01] Sheayun Lee et al. “An Accurate Instruction-Level Energy Consumption Model for
Embedded RISC Processors.” In: SIGPLAN Not. 36.8 (2001), pp. 1–10. ISSN: 0362-
1340. DOI: 10.1145/384196.384201. URL: https://doi.org/10.1145/384196.384201.

[Lee+23] Joseph K. L. Lee et al. “Test-Driving RISC-V Vector Hardware for�HPC.” In: High
Performance Computing. Ed. by Amanda Bienz et al. Cham: Springer Nature Switzer-
land, 2023, pp. 419–432. ISBN: 978-3-031-40843-4.

[Leg06] Adrien Marie Legendre. Nouvelles méthodes pour la détermination des orbites des
comètes. Avec un supplément contenant divers perfectionnemens de ces méthodes et
leur application aux deux comètes de 1805. French. Courcier, 1806.

[LHW00] H. Lekatsas, J. Henkel, and W. Wolf. “Code compression for low power embedded
system design.” In: Proceedings 37th Design Automation Conference. 2000, pp. 294–
299. DOI: 10.1145/337292.337423.

[Lin+23] Ji Lin et al. “Tiny Machine Learning: Progress and Futures [Feature].” In: IEEE
Circuits and Systems Magazine 23.3 (2023), pp. 8–34. DOI: 10.1109/MCAS.2023.
3302182.

46

https://v4.cecdn.yun300.cn/site_1801250020/KD3000--6000%20Series%20User%20Manual%20V1.12.pdf
https://v4.cecdn.yun300.cn/site_1801250020/KD3000--6000%20Series%20User%20Manual%20V1.12.pdf
https://docs.espressif.com/projects/esp-idf/en/stable/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://www.espressif.com/sites/default/files/documentation/esp32-c3-mini-1_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-mini-1_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
http://www.jstor.org/stable/2277015
http://www.jstor.org/stable/2277015
https://doi.org/10.1109/AERO53065.2022.9843361
https://doi.org/10.1109/AERO53065.2022.9843361
https://arxiv.org/abs/2104.01055
https://arxiv.org/abs/2104.01055
https://arxiv.org/abs/2104.01055
http://www.jstor.org/stable/1267351
https://doi.org/10.1108/S1474-7979(2009)0000020014
https://doi.org/10.1145/384196.384201
https://doi.org/10.1145/384196.384201
https://doi.org/10.1145/337292.337423
https://doi.org/10.1109/MCAS.2023.3302182
https://doi.org/10.1109/MCAS.2023.3302182

References

[Lyu22] Sergey Lyubka. MDK. A bare metal SDK for the ESP32 & ESP32C3. Version 39a23c4.
Cesanta Software Ltd., 2022. URL: https : / / github . com / cpq / mdk (visited on
08/10/2024).

[Mai+13] Jason Mair et al. “Myths in PMC-Based Power Estimation.” In: Energy Efficiency in
Large Scale Distributed Systems. Ed. by Jean-Marc Pierson, Georges Da Costa, and
Lars Dittmann. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 35–50.
ISBN: 978-3-642-40517-4.

[MR+23] Roberto Molina-Robles et al. “An Energy Consumption Benchmark for a Low-Power
RISC-V Core Aimed at Implantable Medical Devices.” In: IEEE Embedded Systems
Letters 15.2 (2023), pp. 57–60. ISSN: 1943-0671. DOI: 10.1109/LES.2022.3190063.

[Myt+09] Todd Mytkowicz et al. “Producing wrong data without doing anything obviously
wrong!” In: Proceedings of the 14th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ASPLOS XIV. Washing-
ton, DC, USA: Association for Computing Machinery, 2009, pp. 265–276. ISBN:
9781605584065. DOI: 10.1145/1508244.1508275. URL: https://doi.org/10.1145/
1508244.1508275.

[Nau20] Robert Nau. What’s a good value for R-squared? Statistical forecasting: notes on
regression and time series analysis. Fuqua School of Business. 2020. URL: https:
//people.duke.edu/~rnau/rsquared.htm (visited on 10/12/2024).

[Nik+21] Kris Nikov et al. “Robust and Accurate Fine-Grain Power Models for Embedded
Systems With No On-Chip PMU.” In: IEEE Embedded Systems Letters 14 (2021),
pp. 147–150. URL: https://api.semanticscholar.org/CorpusID:235266247.

[NKK04] H.T. Nguyen, L.M. King, and G. Knight. “Real-time head movement system and
embedded Linux implementation for the control of power wheelchairs.” In: The
26th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society. Vol. 2. 2004, pp. 4892–4895. DOI: 10.1109/IEMBS.2004.1404353.

[Pat+11] Abhinav Pathak et al. “Fine-grained power modeling for smartphones using system
call tracing.” In: Proceedings of the Sixth Conference on Computer Systems. EuroSys
’11. Salzburg, Austria: Association for Computing Machinery, 2011, pp. 153–168.
ISBN: 9781450306348. DOI: 10.1145/1966445.1966460. URL: https://doi.org/10.
1145/1966445.1966460.

[Ped+11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.” In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[PHB13] James Pallister, Simon Hollis, and Jeremy Bennett. “BEEBS: Open Benchmarks for
Energy Measurements on Embedded Platforms.” In: arXiv e-prints, arXiv:1308.5174
(Aug. 2013), arXiv:1308.5174. DOI: 10.48550/arXiv.1308.5174. arXiv: 1308.5174
[cs.PF].

[Pro24] Philippe Proulx. CTF2�SPEC�2.0. Common Trace Format version 2. Tech. rep. Ver-
sion 2.0. DiaMon Workgroup, 2024. URL: https://diamon.org/ctf/ (visited on
10/12/2024).

[RIG24] RIGOL TECHNOLOGIES CO., LTD. RIGOL Data Sheet. DM3058/DM3058E Digi-
tal Multimeter. 2024. 8 pp. URL: https://beyondmeasure.rigoltech.com/acton/

attachment/1579/f-001f/0/-/-/-/-/file.pdf (visited on 07/11/2024).

47

https://github.com/cpq/mdk
https://doi.org/10.1109/LES.2022.3190063
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/1508244.1508275
https://people.duke.edu/~rnau/rsquared.htm
https://people.duke.edu/~rnau/rsquared.htm
https://api.semanticscholar.org/CorpusID:235266247
https://doi.org/10.1109/IEMBS.2004.1404353
https://doi.org/10.1145/1966445.1966460
https://doi.org/10.1145/1966445.1966460
https://doi.org/10.1145/1966445.1966460
https://doi.org/10.48550/arXiv.1308.5174
https://arxiv.org/abs/1308.5174
https://arxiv.org/abs/1308.5174
https://diamon.org/ctf/
https://beyondmeasure.rigoltech.com/acton/attachment/1579/f-001f/0/-/-/-/-/file.pdf
https://beyondmeasure.rigoltech.com/acton/attachment/1579/f-001f/0/-/-/-/-/file.pdf

References

[Rod+13] Rance Rodrigues et al. “A Study on the Use of Performance Counters to Estimate
Power in Microprocessors.” In: IEEE Transactions on Circuits and Systems II: Express
Briefs 60.12 (2013), pp. 882–886. DOI: 10.1109/TCSII.2013.2285966.

[SBM09] Karan Singh, Major Bhadauria, and Sally A. McKee. “Real time power estimation
and thread scheduling via performance counters.” In: SIGARCH Comput. Archit.
News 37.2 (July 2009), pp. 46–55. ISSN: 0163-5964. DOI: 10.1145/1577129.1577137.
URL: https://doi.org/10.1145/1577129.1577137.

[SP24] Leonhard Stiny and Martin Poppe. “Der unverzweigte Gleichstromkreis.” German.
In: Grundwissen Elektrotechnik und Elektronik: Eine leicht verständliche Einführung.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2024, pp. 23–55. ISBN: 978-3-662-
68459-7. DOI: 10.1007/978-3-662-68459-7_2. URL: https://doi.org/10.1007/978-3-
662-68459-7_2.

[Spa17] Philip Sparks. The route to a trillion devices. The outlook for IoT investment to
2035. White Paper. ARM Limited, 2017. URL: https://community.arm.com/cfs-
file/__key/telligent-evolution-components-attachments/01-1996-00-00-00-01-30-

09/ARM-_2D00_-The-route-to-a-trillion-devices-_2D00_-June-2017.pdf.

[Sys24] Espressif Systems. esptool. Version v4.8.1. Sept. 2024. URL: https://github.com/
espressif/esptool.

[tea24] The pandas development team. pandas-dev/pandas: Pandas. Version v2.2.3. Sept.
2024. DOI: 10.5281/zenodo.13819579. URL: https://doi.org/10.5281/zenodo.

13819579.

[Tib96] Robert Tibshirani. “Regression Shrinkage and Selection via the Lasso.” In: Journal
of the royal statistical society series b-methodological 58 (1996), pp. 267–288. URL:
https://api.semanticscholar.org/CorpusID:16162039.

[VO22] Timon Van Overveldt. Counting CPU cycles on ESP32-C3 and ESP32-C6 microcon-
trollers. 2022. URL: https://ctrlsrc.io/posts/2023/counting-cpu-cycles-on-

esp32c3-esp32c6/ (visited on 10/06/2024).

[Voh16] Deepak Vohra. “Apache Parquet.” In: Practical Hadoop Ecosystem: A Definitive Guide
to Hadoop-Related Frameworks and Tools. Berkeley, CA: Apress, 2016, pp. 325–
335. ISBN: 978-1-4842-2199-0. DOI: 10.1007/978-1-4842-2199-0_8. URL: https:
//doi.org/10.1007/978-1-4842-2199-0_8.

[Wal+17] Matthew J. Walker et al. “Accurate and Stable Run-Time Power Modeling for Mobile
and Embedded CPUs.” In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 36.1 (2017), pp. 106–119. DOI: 10.1109/TCAD.2016.2562920.

[Wat+19] Andrew Waterman et al. The RISC-V Instruction Set Manual, Volume I: User-Level
ISA, Version 2.1. Tech. rep. Version 20191214-draft. EECS Department, University
of California, Berkeley, 2019. URL: https://riscv.org/technical/specifications/.

[XLT24] Yixiao Xing, Yixiao Li, and Hiroaki Takada. “A Multi-core RTOS Benchmark Method-
ology To Assess System Services Under Contentions.” In: Journal of Information
Processing 32 (2024), pp. 829–843. DOI: 10.2197/ipsjjip.32.829.

[Yos+97] Y. Yoshida et al. “An object code compression approach to embedded processors.” In:
Proceedings of 1997 International Symposium on Low Power Electronics and Design.
1997, pp. 265–268. DOI: 10.1145/263272.263349.

48

https://doi.org/10.1109/TCSII.2013.2285966
https://doi.org/10.1145/1577129.1577137
https://doi.org/10.1145/1577129.1577137
https://doi.org/10.1007/978-3-662-68459-7_2
https://doi.org/10.1007/978-3-662-68459-7_2
https://doi.org/10.1007/978-3-662-68459-7_2
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-1996-00-00-00-01-30-09/ARM-_2D00_-The-route-to-a-trillion-devices-_2D00_-June-2017.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-1996-00-00-00-01-30-09/ARM-_2D00_-The-route-to-a-trillion-devices-_2D00_-June-2017.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-1996-00-00-00-01-30-09/ARM-_2D00_-The-route-to-a-trillion-devices-_2D00_-June-2017.pdf
https://github.com/espressif/esptool
https://github.com/espressif/esptool
https://doi.org/10.5281/zenodo.13819579
https://doi.org/10.5281/zenodo.13819579
https://doi.org/10.5281/zenodo.13819579
https://api.semanticscholar.org/CorpusID:16162039
https://ctrlsrc.io/posts/2023/counting-cpu-cycles-on-esp32c3-esp32c6/
https://ctrlsrc.io/posts/2023/counting-cpu-cycles-on-esp32c3-esp32c6/
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1109/TCAD.2016.2562920
https://riscv.org/technical/specifications/
https://doi.org/10.2197/ipsjjip.32.829
https://doi.org/10.1145/263272.263349

References

[ZH05] Hui Zou and Trevor Hastie. “Regularization and Variable Selection via the Elastic
Net.” In: Journal of the Royal Statistical Society. Series B (Statistical Methodology)
67.2 (2005), pp. 301–320. ISSN: 13697412, 14679868. URL: http://www.jstor.
org/stable/3647580 (visited on 10/09/2024).

[Zi23] Zephyr Project members and individual contributors. Zephyr Project Documentation.
Tech. rep. Version 3.7.99. Zephyr Project, 2023. URL: https://docs.zephyrproject.
org/latest/ (visited on 06/12/2024).

49

http://www.jstor.org/stable/3647580
http://www.jstor.org/stable/3647580
https://docs.zephyrproject.org/latest/
https://docs.zephyrproject.org/latest/

	Abstract
	Kurzfassung
	1 Introduction
	2 Fundamentals
	2.1 Measuring Power
	2.2 Employed Hardware
	2.2.1 Power Supply & Measurement
	2.2.2 Host PC

	2.3 Employed Software
	2.4 Methods and Techniques
	2.4.1 Determining Event Count
	2.4.2 Modelling Power Correlations

	2.5 Related Work

	3 Architecture
	3.1 Baseline Configuration & Values
	3.2 Reading ESP32-C3 CPU Events
	3.3 Building and Executing Benchmarks
	3.3.1 Preparing for a Benchmark
	3.3.2 Serial Benchmarking Control Protocol
	3.3.3 Benchmarking Procedure
	3.3.4 Collecting, Decoding and Saving Results

	4 Analysis & Modelling
	4.1 Benchmark Time and Power Metrics
	4.2 Relationship between Events and Power Consumption
	4.3 Model Selection and Validation
	4.3.1 Determining Model Accuracy with Metrics and Cross-Validation
	4.3.2 Comparison of Linear Models
	4.3.2.1 Training Using a Preprocessing Pipeline
	4.3.2.2 Training on Aggregated Data

	4.4 Extending Events to an RTOS
	4.5 Discussion

	5 Conclusion
	Lists
	List of Acronyms
	List of Figures
	List of Tables
	List of Listings
	Bibliography

