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A B S T R AC T

In contrast to the early days of computing, memory is no longer a scarce resource. The capacity
of dynamic random-access memory (DRAM) continues to successfully scale with ever-growing re-
quirements of the applications. Modern server systems can house terabytes of DRAM, yet in the
large-scale data centers, the average memory utilization does not exceed 70 percent. Especially
in such systems, memory is a major contributor to the overall power consumption, prompting the
question of whether it is possible to deactivate unused memory to conserve energy. However, nei-
ther hardware nor software offer sufficient support to realize these energy savings and millions of
systems continue to expend energy on maintaining unused memory.

On the hardware side, the existing power-saving modes are only applicable at the large granular-
ities of ranks and channels (>8 GiB). This is slowly changing with the LPDDR5 standard introducing
the PARC feature and bringing the power management granularity to the sub-rank level of around
1 GiB. On the software side, contemporary operating systems are still designed around the notion
of memory scarcity. They primarily manage memory in 4 KiB pages and operate under the assump-
tion that unused memory is a wasted resource. Over time, the available memory is filled with file
cache and used memory inevitably becomes scattered across all memory devices. Consequently, it
becomes impossible to find unused contiguous segments of memory for deactivation in any mod-
ern system with considerable uptime. In a nutshell, the possibility of memory power management
contradicts the foundational assumptions of the conventional memory management.

This work approaches the lack of power-saving mechanisms from the systems software perspec-
tive. It demonstrates that also Linux suffers from poor memory management, as the memory quickly
becomes unsuitable for deactivation and remains in this state even if the utilization declines. To
tackle this issue, the thesis proposes a novel compaction mechanism designed with DRAM power
management in mind. Applied to real-world workloads, it successfully increases the amount of un-
used memory segments and reduces the power consumption of a desktop system under heavy load
by up to 19.1 mW. These savings scale quickly when applied to numerous systems with overprovi-
sioned memory worldwide. Ultimately, this work is the first to reveal that it actually pays off to
actively reorganize memory contents with the goal of energy savings: the energy invested in a single
compaction procedure is recovered in just under one minute.
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KU R Z FAS SU NG

Im Gegensatz zu den frühen Tagen der Rechnertechnik ist Speicher heute keine knappe Ressource
mehr. Dynamic Random Access Memory (DRAM) skaliert erfolgreich mit den ständig wachsenden
Anforderungen der Anwendungen. Heutige Serversysteme können Terabytes an DRAM enthalten,
doch in den großen Rechenzentren liegt die durchschnittliche Speicherauslastung unter 70 Prozent.
Gerade in solchen Systemen trägt der Speicher wesentlich zum gesamten Stromverbrauch bei. Dies
wirft die Frage auf, ob es möglich ist, ungenutzten Speicher zu deaktivieren, um Energie zu sparen.
Allerdings bieten weder Hardware noch Software ausreichende Unterstützung, um diese Energie-
einsparungen zu realisieren. Somit verschwenden Millionen von Systemen weiterhin Energie für
ungenutzten Speicher.

Auf der Hardwareseite sind die vorhandenen Stromsparmechanismen nur auf die große Granulari-
tät der Ranks und Kanäle (>8 GiB) anwendbar. Dies ändert sich mit dem LPDDR5-Standard, der die
PARC-Funktion einführt und die Granularität der Energieverwaltung auf die Sub-Rank-Ebene von
etwa 1 GiB reduziert. Auf der Softwareseite sind die heutigen Betriebssysteme immer noch auf Spei-
cherknappheit ausgelegt. Sie verwalten den Speicher hauptsächlich in 4-KiB-Seiten und betrachten
ungenutzten Speicher als eine verschwendete Ressource. Im Laufe der Zeit wird der verfügbare
Speicher mit dem Datei-Cache gefüllt und der verwendete Speicher wird unvermeidlich über alle
Speicherbausteine verstreut. Folglich wird es in einem modernen System mit langer Betriebszeit
unmöglich, komplett ungenutzte Speichersegmente zu finden, um sie zu deaktivieren. Schlussend-
lich steht die Möglichkeit der Speicher-Energieverwaltung im Widerspruch zu den grundlegenden
Annahmen der konventionellen Speicherverwaltung.

In dieser Arbeit werden fehlende Stromsparmechanismen aus der Perspektive der Systemsoftware
betrachtet. Sie zeigt, dass die Speicherverwaltung auch in Linux suboptimal ist. Der Speichert
nimmt schnell einen Zustand an, wo jegliche Deaktivierung verhindert wird, und behält ihn bei,
selbst wenn die Auslastung sinkt. Um das Problem zu lösen wird in dieser Arbeit ein neuartiger Me-
chanismus zur Speicherkompaktifizierung speziell für DRAM-Energieverwaltung entwickelt. Ange-
wandt auf reale Arbeitslasten erhöht er erfolgreich die Menge der ungenutzten Speichersegmente
und reduziert den Stromverbrauch eines Desktop-Systems unter schwerer Last um bis zu 19,1 mW.
Diese Einsparungen skalieren schnell, wenn der Mechanismus auf eine Vielzahl von Systemen mit
überprovisioniertem Speicher weltweit angewendet wird. Diese Arbeit zeigt zum ersten Mal, dass
es sich lohnt, Speicherinhalt zur Energieeinsparung aktiv zu reorganisieren. Die in einem einzigen
Kompaktifizierungsvorgang investierte Energie wird in weniger als einer Minute zurückgewonnen.
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I NT RODUC T ION 1
In the early days of computing, memory was a scarce resource. The main memory was typically
implemented as a magnetic-core memory with magnetic ring cores threaded onto wires that can be
read or written by applying current [1]. Although the magnetic-core memory provided adequate
speeds for the processors of that time, it was costly to produce, limiting its maximum capacity. This
limitation led to the introduction of two-tiered storage systems, which divided the memory into
fast, low-capacity primary core storage and a slow, higher-capacity secondary drum storage. The
secondary storage enabled execution of programs with working sets larger than what the primary
storage could offer. However, this new capability came at the cost of significantly complicating al-
gorithms. Accessing secondary storage required special routines and the logic to load data from the
secondary into the primary storage had to be incorporated directly into the algorithms.

This changed with introduction of virtual memory [2, 3]. The idea of the virtual memory is to
abstract the complete storage resources of the system in a single address space. The secondary
storage can be mapped into this address space and accessed by programs as if it were primary
storage, without complicating their logic. This abstraction is supported by the operating system,
which now transparently implements the exchanging routines. It loads data from the secondary
into the primary storage on demand and evicts it when the primary storage becomes full.

Inadvertently, virtual memory—specifically its first [3] and most common implementation, pag-
ing—solved¹ another problem: external fragmentation. External fragmentation occurs when mem-

¹Or rather transformed it into the problem of internal fragmentation, which is not as severe.

ory is allocated in chunks of different sizes. Over time, as these chunks are allocated and freed,
a once large and contiguous area of free memory inevitably becomes divided into smaller, non-
contiguous pieces. Eventually, an allocation request might fail as there is no contiguous free chunk
of the required size in the memory, even though the total free memory—if combined—would be
sufficient to fulfill the request.

The technique of paging solves the problem of external fragmentation by defining a base unit
of memory management, the page. A page is typically 4 KiB in size. The virtual memory provides
a translation mechanism, which allows every page in the virtual address space to be mapped to a
contiguous page frame in the physical address space. As a consequence, the exact locations of the
page frames in the physical memory become irrelevant. Even if scattered arbitrarily throughout the
memory physically, the translation mechanism is able present them as a contiguous region virtually.
This greatly simplifies the memory management of the system.

The elegance of paging has led to the 4 KiB page becoming a standard for sharing memory be-
tween the OS, applications, and even external devices. Without the need to manage memory chunks
of different sizes, the OS memory management has evolved with two assumptions: “all page frames
are equal” and “only used memory is good memory.” With no concern for fragmentation, the OS lacks
initiative to keep memory unallocated and trades it for performance by filling it with the cache of
the secondary storage (also known as page cache). The page cache remains in memory until the
memory shortage occurs, at which point it can be easily evicted.

1



1 Introduction

The return of external fragmentation
The first challenge to these assumptions came as soon as the early 1990s, when the original Pen-
tium processor introduced the Page Size Extension (PSE) feature. PSE extended the virtual memory
with support of larger 4 MiB pages that can coexist with the regular 4 KiB pages [4]. This feature
persisted, and modern systems now support 2 MiB huge and 1 GiB giant page frames. The usage
of these larger page frames puts less pressure on the translation mechanism and can potentially
improve application performance. However, their introduction brings back the problem of external
fragmentation, giving the OS a new reason to have free contiguous blocks of size larger than 4 KiB
at its disposal. Consequently, there is a substantial body of research analyzing benefits of huge pages
and proposing mechanisms for their management [5–11].

By the end of 1970s, the magnetic core memories were phased out in favor of their more ef-
ficient semiconductor counterparts [12]. The primary memory today is implemented as dynamic
random-access memory (DRAM), which has excelled in scaling its density to meet the ever-increas-
ing demands of applications. This memory is not a scare resource anymore: the price per gigabyte
approaches the value of $1 [13]. Meanwhile, modern server CPUs support up to 24 DRAM modules
and such modules can reach 256 GiB in size, yielding 6 TiB of memory in total [14]. These factors
make it economically feasible to equip the system with extra capacity, in case it is occasionally re-
quired for a demanding task.

Nevertheless, the substantial amounts of DRAM in use come with significant running costs.
As each new generation doubles the device capacity, the energy consumption rises correspond-
ingly [15]. Many studies attribute over 30 percent of the total energy consumption in data centers
to DRAM [16–18], and this figure is expected to steadily increase. Meanwhile, the average memory
utilization remains as low as 40 – 70 percent [19–21]. To handle usage spikes, memory in these
systems is often overprovisioned, leading to excessive capacity that goes unused most of the time.
A significant share of DRAM’s power consumption is independent of its usage: up to 20 percent are
required just to retain the stored data [15]. While it is theoretically possible to deactivate parts of
DRAM not in use, neither software nor hardware provide adequate support for this functionality.
Consequently, a substantial amount of power is wasted on maintaining memory that is not actively
used.

The missed opportunity for energy savings can be traced back to outdated assumptions that
shaped the memory management of the operating systems as we know it today. Modern DRAM
devices still offer very few power-saving techniques, applicable only at granularities constrained to
specific internal levels of DRAM organization. These granularities are significantly larger than the
4 KiB page frames managed by the operating system. This reintroduces the problem of fragmenta-
tion once again: for DRAM deactivation, large contiguous memory segments must be free of useful
data. Operating systems are largely blind to fragmentation (“all page frames are equal”), resulting
in data being scattered throughout the entire physical memory and thus all memory devices. Fur-
thermore, as the system is running, the page cache continuously grows in size (“only used memory
is good memory”). Consequently, in a modern system with considerable uptime, finding an unoccu-
pied DRAM segment that can be deactivated becomes impossible.

Contributions of this work
While the underlying reasons for the insufficient support of DRAM power management are deeply
rooted in the foundational aspects of contemporary memory management, this work does not aim
to redesign it from the ground up; such task would out of scope for a master’s thesis. Instead, it pro-
poses a mechanism to revert the damage done by suboptimal memory management. This is achieved
by keeping track of the DRAM segments in the system and providing a mechanism to proactively

2



1 Introduction

clear them from used memory. This implements a technique known as compaction, where multiple
partially used memory chunks are merged into one by migrating their memory contents.

Unlike the existing compaction approaches [11, 7, 8], the mechanism proposed in this thesis is
designed specifically with DRAM power management in mind. It supports large granularities of over
1 GiB that are necessary for existing DRAM power-saving modes. Moreover, it incorporates a cost-
benefit model, that allows it to assess whether the energy spent on cleaning memory segments will
be offset their deactivation. To facilitate this assessment, the mechanism scores each segment based
on the effort required for its reclamation. This scoring also enables strategic selection of segments
for merging that yields the best gains for the minimum effort. Finally, it shrinks the amount of the
page cache in the system as part of its operation: since the page cache continually expands and fills
all available memory, a mechanism for its earlier eviction it is essential for effective DRAM power
management.

The thesis consists of five chapters. Following this introduction (Chapter 1), Chapter 2 provides
the theoretical foundation necessary to understand the architecture of the proposed mechanism
for managing physical memory. Chapter 3 provides a detailed description of the mechanism, start-
ing with a conceptual overview and followed by a description of its implementation in the Linux
kernel. In Chapter 4, the mechanism is evaluated in terms of potential energy savings and the per-
formance impact. Finally, Chapter 5 concludes this work and discusses potential areas for future
improvement.
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F U N DA M E NTA L S 2
This chapter provides the theoretical foundation necessary for understanding this thesis. It opens
with an overview of DRAM technology in Section 2.1, introducing the internals of DRAM chips
and discussing their refresh mechanisms and power-saving modes. The second half of the chapter,
Section 2.2, deals with the operating system’s memory management, focusing specifically on the
intricacies of the Linux memory subsystem. It discusses disk caching, memory reclamation, and
memory migration features within Linux. Finally, Section 2.3 closes the chapter with an overview
of existing research that intersects memory management with power management.

2.1 Dynamic Random-Access Memory
If we examine the components of a general-purpose computer, we will discover a spectrum of dif-
ferent memory technologies. These technologies can generally be graded based on two key qualities
that tend to be inversely related: the access time and the price per bit. The latter economic qual-
ity also translates to another important characteristic, capacity. As the price per bit decreases, it
becomes feasible to use devices with larger capacities. As a consequence, the memory devices in
the system range from slow high-capacity memory, such as mechanically rotating hard drives, to
fast low-capacity memory, like CPU caches using static random-access memory (SRAM) cells.

This section delves into the technology that serves as a bridge between the two extrema of the
speed-capacity spectrum: the main memory based on DRAM technology. The designation “main
memory” comes from its role in the system—it holds the working set of all applications. The DRAM
capacity has managed to scale with ever-increasing memory requirements of applications. For in-
stance, DDR5 modules up to 128 GiB are commercially available [22], with the standard allowing
up to 256 GiB per module [23]. Multiple such modules can coexist in a system.

However, the scaling success story of DRAM capacity does not extend to its latency. In the early
1990s, the performance gap between CPUs and DRAM began to widen significantly [24]. This ne-
cessitated two drastic changes. Firstly, CPU caches had to grow in size to conceal the high latency of
DRAM accesses [24]. Secondly, the DRAM interface started evolving to accommodate high band-
width demands of larger CPU caches [25]. Unlike early asynchronous DRAM, contemporary devices
implement a synchronous (SDRAM) interface, which offers high predictability and enables high
throughput via pipelining [26].

Table 2.1 provides an overview of latency and bandwidth of different SDRAM generations. A
DDR4 SDRAM takes about 13 ns for a memory access in the best case and up to three times as
much in the worst case [27]. Given a 3 GHz CPU clock, this translates to 40 – 120 clock cycles per
memory access. For a multicore CPU generating at least one memory reference per core per cycle,
such latency is impractical. The CPU cache allows SDRAM to compensate its high latency with its
high bandwidth: up to 25.6 GiB/s per channel for DDR4, or over 8 B per clock cycle at 3 GHz. A
real system will require much smaller bandwidth due to data and code locality.

5



2 Fundamentals

Year Standard Latency [ns] Module bandwidth [GiB/s]
2002 DDR1 [28] 15 – 45 3.2
2006 DDR2 [29] 10 – 30 6.4
2010 DDR3 [30] 13 – 39 10.6
2016 DDR4 [31] 13 – 39 21.3

Table 2.1 – Latencies and bandwidth of different generations of DRAM memory [32]. While the
latency has remained constant since over 20 years, the bandwidth doubles with each generation.

2.1.1 Standardization

A major contributor to DRAM’s success is its interoperability. The dual in-line memory modules
(DIMMs) are the most widespread consumer form of DRAM. These modules, which are just PCBs
with DRAM chips and a standard connector, can be purchased off the shelf and installed into a
computer’s memory slot to improve its performance. This plug-and-play experience is made possi-
ble by standardization.

For SDRAM, the standard-governing body is JEDEC Solid-State Technology Association. JEDEC
defines three main categories of double data rate (DDR) standards, each tailored towards specific
application:

• Main DDR [33] targets laptops, desktops, and servers. The devices in this category come in two
form-factors: as a chip soldered onto a PCB or as a replaceable DIMM module.

• Low-power LPDDR [34] devices are found in smartphones, cars, and other embedded applica-
tions and include additional power-saving features. Unlike the main DDR standard, LPDDR does
not define a DIMM form-factor and these chips are always soldered directly onto the PCB.

• Graphics GDDR [35] standard targets high data bandwidth applications like GPUs and High-
Bandwidth Memory (HBM).

While the high level of standardization enables easy interoperability, it is also believed to obstruct
innovation [27]. New standards are released once every 5 to 8 years and the process of their ratifi-
cation is not transparent. It is likely highly influenced by the major DRAM market leaders: Samsung,
SK Hynix, and Micron, which collectively control 96.5 percent of the market [36]. The internal
workings of DRAM chips remain highly confidential and the body of research on microarchitecture
improvements is largely based on speculations [27].

2.1.2 Information Storage

At the core of the DRAM technology lies a cell consisting of a single capacitor and an access tran-
sistor. The bit of information is stored in the cell’s capacitor in the form of the electric charge. These
cells are arranged in a two-dimensional array known as mat with horizontal wordlines and vertical
bitlines. Figure 2.1 demonstrates the structure of this array. The wordlines control the gates of the
transistors of the whole row. When the wordline is pulled high, the transistor’s drain-source channel
electrically connects each capacitor to its respective bitline. This results in several peculiarities.

As the bitline is a long conductor that spans across numerous rows of the mat array, it exhibits
a high capacitance. When the bitline is connected to the cell’s capacitor—a process known as row
opening—the charge equalization takes place, resulting in a small voltage change on the bitline.

6



2 Fundamentals

Figure 2.1 – The DRAM cells consisting of a transistor and a capacitor arranged in a two-dimen-
sional mat array [26]. The array is spanned by horizontal wordlines and vertical bitlines.

Figure 2.2 – Simplified state diagram of the chip in the SDRAM protocol [37]. Accessing a cell
requires loading its whole row into the row buffer using ACT, allowing subsequent READ and WRITE
commands to operate on the contents of the row buffer. The PRE command writes the row-buffer
contents back into the cells and precharges the bitlines for the next ACT.

With a typical 1:6 ratio of cell to bitline capacitance [38], the voltage change on the bitline is under
15 percent.

To interpret this small voltage change, a mat contains a sense amplifier. Before the row is opened,
the sense amplifier precharges the bitline to a voltage level that is midway between logical 0 and
logical 1. Doing this allows the sense amplifier to compare the new voltage level of each bitline with
the well-defined precharge voltage after the row is opened. The result of this comparison for each
bit of row is stored in the row buffer.

Note that the charge equalization destroys the information in form of the charge in the capacitor.
The capacitor (dis)charges approximately to the precharge voltage when the row is opened. To
avoid data loss, the DRAM chip must write the contents of the row buffer back into the cells before
another row is accessed. This is achieved by charging each bitline to the voltage representing the
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bit stored in the row buffer and activating the wordline. Furthermore, due to the imperfections of
the physical implementation, the charge in the capacitors leaks over time. Accordingly, retaining
the data requires reading and rewriting (refreshing) each row periodically. Section 2.1.4 discusses
the specifics of the refresh mechanism in detail.

The SDRAM command interface reflects these characteristics of the mat’s operation. Figure 2.2
represents a simplified state diagram of data accesses in SDRAM. In the idle state, the bitlines re-
main precharged. The ACT command initiates the access by selecting a row and transferring it into
the row buffer. The individual bits of the open row are then accessed by providing the column
address to the WRITE and READ commands. Before accessing a different row, the protocol demands
issuing of the PRE command. This writes the contents of the row buffer back into the cells and
precharges the bitlines for the next ACT. Additionally, the refresh of the mat can be requested from
the idle state by sending the REF command.

2.1.3 Hierarchy

Figure 2.3 – The hierarchy of the DRAM memory system. In this example, a single channel contains
two ranks. Each rank contains four chips, each with four banks inside.

A hierarchical design is essential to enable high capacity and high throughput characteristic to
SDRAM. Figure 2.3 provides an overview of the memory system hierarchy with the signal routing.
This hierarchy can be divided into two categories: horizontal levels that broaden the memory sys-
tem’s data width, and vertical levels that expand its address space. The mat level, introduced in the
previous section, typically falls under the horizontal category. During a memory access, the row and
column addresses of the respective commands pinpoint a specific cell in the mat, yielding a single
bit of information. However, a single read operation from a DRAM chip can produce more than one
bit of data, depending on its column width. The SDRAM column width is represented using notation
x𝑁  and generally ranges from x4 to x16 [26]. The broad data bus is achieved by stacking multiple
mats and addressing them simultaneously, with each mat contributing one bit of data.

The second, vertical, hierarchy level within a chip is the bank level. Banks are memory arrays
that are addressed independently of each other, with the bank address being part of the command.
Their independence comes with a performance bonus: it introduces bank-level parallelism into the
chip’s operation [39]. While a single bank is busy processing a command, another bank can be
addressed for the next memory access. By interleaving bank accesses through clever address map-
ping [40–42] or strategic data partitioning [43, 44], the memory system’s throughput can be im-
proved significantly. The maximal amount of banks in a chip is defined by the standard, ranging
from only four banks in the initial DDR standard [28], to 16 banks in the latest LPDDR5 [34] and
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to 32 in DDR5 [33]. DDR4, DDR5, and LPDDR5 further optimize performance by splitting banks
into groups and relaxing the timing requirements for memory accesses to different bank groups.

Multiple memory chips that share the command/address bus and the chip select signal collec-
tively form a rank. The data pins of the chips within a rank are combined to form a wider data bus.
An example of a DRAM rank would be one side of a module’s PCB. In consumer modules, the width
of the rank data bus is 64 bits (72 bits on RAM with error correction codes), requiring 4 x16, 8 x8,
or 16 x4 DRAM chips [45].

The memory controller connects the CPU to the DRAM subsystem and arbitrates CPU’s mem-
ory accesses. It can have multiple independent channels (recent AMD EPYC processors feature 12
channels [14]), with one or more ranks in each. The chip select signal, shared by all chips within
a rank, is used to activate a specific rank in a multi-rank channel. Similar to banks, ranks are inde-
pendent of each other and introduce a level of parallelism into the memory subsystem [46, 47].
In contrast to bank-level parallelism, rank-level parallelism has another trade-off dimension to it.
Discrete chips on a PCB require long interconnects transferring data at a high rate. Many ranks
in a single channel represent an increased load on the shared transmission lines (e.g., command/
address buses connecting to each chip), affecting the maximum operational frequency [26]. Regis-
tered DIMMs (RDIMMs) mitigate this issue by buffering the signals and reducing the electrical load
on the memory controller, allowing more modules per channel.

2.1.4 Refresh Mechanisms

As established in Section 2.1.2, the DRAM cells require periodical refresh to retain data due to
inherent leakage currents in the cell. For this, the DRAM standard mandates that each cell must
be refreshed once in the refresh window 𝑡REFW = 64 ms. For temperatures over 85 °C, the window
is halved to 32 ms. In fact, the majority of DRAM cells hold their contents over much longer time
spans [48]. For instance, Baek and associates [49] successfully reduce the refresh rate to 512 ms by
identifying weak cells and removing up to 0.1 percent of respective page frames from the operating
system’s page-frame pool. Nevertheless, the refresh window figure has been chosen conservatively
to account for the highest leakage currents occurring due to manufacturing process variations. Fur-
thermore, the cells have also been observed to change their retention period over time [50].

During normal operation, the refresh cycle is managed through the Auto-Refresh (AR) mechanism.
As the state diagram in Figure 2.2 illustrates, the memory controller issues the REF command to
initiate the refresh process. Refreshing the whole chip at once is costly, so the refresh window is
split into 8192 refresh intervals, each lasting 𝑡REFI = 7.8 us. To ensure data retention, the memory
controller must issue at least eight refresh commands within the 8 ⋅ 𝑡REFI period [31]. Technically,
a single refresh command refreshes 𝑁rows/8192 rows in a round-robin order. The SDRAM device
contains an internal counter of refreshed rows that advances with each refresh command [15].

The duration of the refresh command, also known as 𝑡RFC, depends on the device’s memory den-
sity. For DDR4, it ranges from 160 ns with 2 Gib devices to 550 ns with 16 Gib devices [31]. Thus,
the whole rank is not available for 𝑡RFC/𝑡REFI (7 percent for 550 ns) of the time and the memory
accesses have to stall. Consequently, refresh comes with a performance penalty and its real cost can
be even higher due to the requirement to precharge all banks before refresh and the subsequent
row reactivation after refresh.

Selective refresh with existing hardware
Until recently, none of the SDRAM standards provided a possibility to selectively refresh portions
of memory during normal operation. One way to work around this limitation, is to stop issuing AR
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commands altogether and simulate it by activating the row and then immediately precharging the
bank, as shown in Figure 2.4. This has the effect equivalent to a refresh: reading the row into the
row buffer and then writing it back again, without the IO transfer overhead.

Figure 2.4 – Commands issued during Auto-Refresh and row-granular refresh [51] and their timing
constraints.

Symbol Value [ns] Name Description
𝑡RAS 32 Row Address Strobe Duration of the ACT command
𝑡RP 13.75 Row Precharge Duration of the PRE command
𝑡RRD 4.9 Row-to-Row Delay Minimum gap between ACTs to different banks
𝑡FAW 21 Four Activation Window Timespan in which no more than four activa-

tions are allowed to limit peak current

Table 2.2 – Timing parameters of Micron MT40A2G8VA-062E at 3200 MT/s [52].

However, the comparison of REF and ACT+PRE latencies shows the disadvantage of this approach.
Consider a DDR4 16 Gib x8 SDRAM device Micron MT40A2G8VA-062E  [52] operating at the
highest data rate. It contains 217 rows, each 1 KiB wide. Thus, a single refresh command handles 
217/8192 = 16 rows in all 16 banks at a time and takes 𝑡RFC = 350 ns to complete. On the other
hand, to perform the equivalent ACT+PRE sequence, the memory controller must respect the timing
parameters shown in Figure 2.4 and Table 2.2. Even ignoring the four activation window 𝑡FAW this
requires twice as much time:

(𝑁banks − 1) ⋅ 𝑡RRD +
𝑁rows

8192
⋅ (𝑡RAS + 𝑡RP) = 805.5 ns (2.1)

Although explicit row opening achieves selective refresh on the granularity in the ballpark of mem-
ory paging (explained in Section 2.2), it appears exceedingly inefficient. This hints that the internal
implementation of the Auto-Refresh is highly optimized and the optimized mechanisms are not
exposed through the SDRAM interface—at least when operating within the specification.

Mathew et al.  [51] investigate this experimentally and discover that by reducing the SDRAM
timing parameters (i.e., violating the specification) the overhead of row-granular refresh can be re-
duced without the loss of reliability. The DDR3 device under test has 16384 rows and thus refreshes
two rows per refresh command, which takes 262.5 ns to complete. Two equivalent ACT+PRE issued
for each bank in parallel (2 rows × 8 banks = 16 commands in total) require 292.5 ns according
to the specification. With relaxed timing, the duration of the manual refresh reduces to 146.25 ns,
44 percent less than Auto-Refresh. The energy figures are promising as well: while the optimized
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row-granular refresh still uses more energy than a full AR, it is enough to omit refresh for just 10
percent of the memory to break even. Due to the out-of-spec operation, the success of this technique
may vary from device to device and relies on low amount of rows.

LPDDR2+ standards provide a per-bank refresh command REFpb. Initially, this command refreshed
a single bank in a round-robin manner with an internal bank counter. In LPDDR4 and later, the
command encoding reserved a few bits to specify the bank address, allowing the memory controller
to schedule bank refreshes in an arbitrary order. Similarly, DDR5 gained a same-bank refresh com-
mand REFsb, allowing refresh of bank groups in any order. However, the standard forbids issuing
this kind of refresh command to the same bank (or bank group in DDR5) unless all other banks
(bank groups) have been refreshed, making selective refresh on the bank granularity using these
commands illegal. Perhaps also here energy and performance improvements can be achieved by
violating the standard. To the best of my knowledge, no works have attempted this yet.

Finally, the LPDDR5 [34] standard introduces Partial-Array Refresh Control (PARC), a mecha-
nism previously described in a 2017 Qualcomm patent [53]. Both documents advertise the new
feature as a way to reduce refresh power consumption. PARC splits banks into eight segments and
uses an 8-bit bitmap register to mask the refresh operation within the specific segment of all banks,
providing a way to reduce refresh power consumption during normal operation applicable on the
1/8 rank granularity.

Proposed selective refresh mechanisms
The first suggested but never actually implemented technique for selective refresh of DRAM, Selec-
tive Refresh Architecture (SRA) [54], dates back to 1998. It proposes introducing a bitmap that allows
toggling refresh per row. Cui at al. [55] survey hardware- and software-based refresh reduction
techniques and use the results to design their DTail mechanism. Extending SRA, their proposal fea-
tures a 4-bit register for each row that can be used to either disable refresh altogether or to extend
the refresh window beyond the standard 64 ms. These mechanisms come with significant memory
and chip area overhead and are thus unlikely to be adopted by future standard versions.

Seeking to modify the hardware as little as possible, Flexible auto-refresh (REFLEX) [56] utilizes
the fact that DRAM chips include an internal counter of recently refreshed rows that is advanced
on each refresh command. The authors propose exporting this counter to the memory controller
along with a “dummy refresh” command that increments the counter without performing any ac-
tual refresh operations. In a similar vein, Jafri and colleagues propose Partial Array Auto-Refresh
(PAAR) [57], a refresh reduction technique in two variations: (1) the bank-granular version with
minimal hardware modifications resembling PARC and (2) a version with a register containing an
address range that will be refreshed on auto refresh. Their primary contribution is the algorithm to
bypass refresh of accessed rows in an application with a predictable access pattern (e.g., a convo-
lutional neural network). Indeed, as memory accesses have a side effect of refreshing the row, such
rows need not be refreshed if accessed frequently. Utilizing this fact, Smart Refresh [58] introduces
counters into the memory controller to track recent accesses and skip the refresh accordingly.

2.1.5 Power-Saving Modes

SDRAM devices feature several power-saving modes that can be entered during periods of inactivity.
The Self-Refresh (SR) mode disables most of the clock circuitry and the external IO. In this mode, data
is retained by internal timers triggering refresh without the intervention of the memory controller.
To reduce the standby current further, data retention can be disabled for specific memory regions
by setting the Partial-Array Self-Refresh (PASR) register before entering Self-Refresh. Notably, the
same segment mask is utilized for both PASR and PARC in LPDDR5. Although the PASR feature is
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mandatory in all LPDDR standards, it was optional in DDR2 and DDR3. The DDR4 standard does
not include PASR and it is officially deprecated in DDR5 due to security concerns [59], which sug-
gests that its low-power sibling PARC is unlikely to appear in the future DDR standards.

When examining power-saving modes and in particular the hierarchy levels they apply to, it is
important to consider the on-die termination (ODT). The memory subsystem includes long off-chip
interconnects as traces on a PCB. When transferring signals at a high rate, the interconnect has to
be analyzed as a transmission line. Any nonuniformities within the impedance of the transmission
line cause reflections and distort the signal, affecting the maximum frequency [60]. To combat
this challenge, the DRAM chips include a configurable (34 to 240 Ω or Hi-Z when off in DDR4)
impedance on the die. While ranks can independently enter any power-saving modes, some of the
modes (including Self-Refresh) disable ODT. This makes their application at this level impractical:
by disabling the termination of a single rank, the whole channel suffers from resulting reflections
and the transfer rates plummet.

Another power-saving mode disabling ODT is the DDR4′s Maximum Power Saving Mode (MPSM).
In principle, MPSM is a variation of Self-Refresh without any refresh activity. Thankfully, DDR5 in-
troduces a variation of MPSM that retains ODT and is applicable at the rank level. Moreover, all DDR
and LPDDR standards support idle Power-Down mode that is entered when the clock enable (CKE)
signal is asserted low. This mode keeps the ODT and exhibits very quick entry and exit latencies
(7.5 ns). As a result, it can be exited periodically to send refresh commands and retain data. In fact,
some standards limit the maximum duration of Power-Down to the refresh interval [34]. Table 2.3
presents a summary of power-saving modes along with entry/exit latencies and estimated potential
power savings for an exemplary DDR5 memory system featuring eight 16 Gib Micron MT60B4G4
devices in a rank.

DDR LPDDRPower mode Granularity Power saving [mW/GiB] Latency 1 2 3 4 5 1 2 3 4 5

Full ch. power off Channel 82.8 (100 %) >25 ms ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Self Refresh Channel 0.53 (0.6 %) 640 ns ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MPSM Channel 22.95 (27.7 %) 640 ns ✓ ✓ ✓ ✓ ✓

MPSM (DDR5) Rank (16 GiB) 15.97 (19.1 %) 21.5 ns ✓

Power-Down Rank (16 GiB) 14.6 (15.6 %) 7.5 ns ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PASR 1/8 Rank (2 GiB) 0.53 – 22.95 (0.6 – 27.7 %) 640 ns ✓ ✓ ✓ ✓ ✓ ✓ ✓

PARC 1/8 Rank (2 GiB) 0 – 9.19 (0 – 11.1 %) 14 ns ✓

Table 2.3 – Power-saving modes of all standards with their granularity, estimated power savings,
and latency for a 16 Gib Micron MT60B4G4 [61].

2.2 Operating Systems
Modern computers of any scale—from smartphones to supercomputers, and even some embedded
systems—rely on virtual memory. Virtual memory allows abstracting the address space of the main
memory of the system into one or several virtual address spaces. The modern implementations of
virtual memory use paging. With paging, the physical address space is divided into equally-sized
page frames (typically 4 KiB). In the exact same way, the virtual address space is divided into pages.
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Using a translation mechanism, like a page table, the dedicated hardware Memory Management
Unit (MMU) maps the virtual pages to physical page frames transparently on each memory access.

The details of the translation mechanism are not essential here; instead, we outline its key char-
acteristics. Firstly, the translation mapping is dynamic: it can be modified at runtime or completely
swapped out for another one. By switching the mapping on program scheduling, the OS provides
each application with its own virtual address space. Incidentally, this results in isolation, as the
applications can only access memory that has a mapping in their virtual address space. This guar-
antees that programs do not interfere with each other’s data unless explicitly allowed via a shared
memory mechanism.

Secondly, virtual memory effectively conceals fragmentation of physical memory. Even if the
application’s physical page frames are scattered throughout the main memory, the translation map-
ping allows the OS to present them at an arbitrary virtual memory location in any order, or even
as a contiguous memory region. And lastly, the operating systems use virtual memory to imple-
ment other virtualization techniques. For example, this allows the OS to defer memory allocations
until they are actually needed or to transparently present other storage media as memory. These
techniques are implemented by providing a page-fault handler, a routine that gets called when the
process accesses unmapped memory.

2.2.1 Page-Frame Allocator

To manage physical page frames, the operating systems utilize a page-frame allocator. Its task is
to manage the pool of unused and available page frames and to provide them to OS subsystems
or applications on demand. Once the requesting thread finishes using the page frame and frees it,
the allocator adds the released page frame back to its reserves. A common allocator design, also
employed by the Linux kernel, is the buddy allocator [62, 63].

The buddy allocator maintains several lists of free contiguous naturally-aligned blocks, one list
for each block size. The block sizes are limited to power-of-two multiples (orders) of the basic unit
of memory management: a single page frame. Thus, there are separate lists for contiguous blocks
of sizes 4 KiB (20 frames), 8 KiB (21 frames), 16 KiB (22 frames), and so on. In Linux, the maximum
tracked order is 10 or 210 ⋅ 4 KiB = 4 MiB in size.

When a contiguous memory block of the specific order is requested, the buddy allocator first
checks the corresponding list for an available block. If the list contains a free block of the requested
size, it is removed from the list and returned to the caller. Should the list contain no such block, the
allocator proceeds to check the list for the next higher order. This ascending process continues until
a free block larger than the requested size is found. Once a suitable block is located, it is isolated
from the list and the splitting begins.

Having isolated the block larger than the requested size, the allocator splits it into two equally-
sized buddies. One of the buddies is placed on the next lower list corresponding to its halved size and
the other buddy is used for further splitting. If the block is still bigger than requested, the process
is recursively repeated until it reaches the desired size. At that point, the memory block is returned
to the caller and all its former buddies reside on the respective lists. The merging is the reverse
operation of splitting. When a block is freed, the respective list is checked for its buddy. If the buddy
is present (i.e., together they form a naturally-aligned contiguous block), they are melted together
into a single next-order block. The lists are recursively ascended until no melting is possible and
the resulting block is stored on the list.

Figure 2.5 illustrates the working principle of the buddy allocator by example. In this case, a zero-
order page frame is requested. Queries on zero-, first-, and second-order lists return no suitable
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Figure 2.5 – Example allocation of order 0 with the buddy allocator. The algorithm finds no suitable
blocks in lists for orders 0, 1, and 2. The order 3 block is split thrice to acquire a single page frame.

blocks  1 , only the third-order list returns a block consisting of eight page frames  2 . The block is
split into two four-frame blocks, with one half put back on the second-order list  3 , and the other
half used for further splitting. The process is repeated for the four-frame block 4  and the two-frame
block  5 . The result is a single page frame, which is returned to the caller  6 .

Pageblocks
By maintaining page frames as contiguously as possible, the buddy allocator proves to be effective
against external fragmentation: scattering of blocks throughout the physical address space  [64].
However, based on the observation that single page frames are much more frequently requested than
higher-order blocks, Linux optimizes such allocations by employing per-CPU page-frame caches [65].
Each such cache contains some page frames that are instantly returned for page-frame requests by
the local CPU core. In Linux 5.13, the cache was extended to other common orders. Unfortunately,
this optimization eliminates the defragmenting character of the buddy allocator by delaying merg-
ing operations and complicating defragmentation heuristics [66, 10].

Huge frames or order 9 (2 MiB) blocks have a particularly high value for the memory manage-
ment. Along with 4 KiB page frames, they can be used for virtual address mappings on all major
architectures [67, 68]. Such mappings put less pressure on the address translation mechanism and
exhibit better performance [5]. To counteract the effect of the per-CPU caches and attain huge
frames, the Linux kernel introduced pageblocks. In a nutshell, the pageblock mechanism assigns a
migrate type to each huge frame in the system. The migrate type categories indicate the mobility
of the memory contained in the huge frame:

• MIGRATE_RECLAIMABLE if it can be freed quickly,
• MIGRATE_MOVABLE if it can be moved,
• MIGRATE_UNMOVABLE for immovable memory, like kernel allocations,
• and several others reserved for special cases.

The Linux buddy allocator maintains separate free-block lists for each order and for each migrate
type. Keeping track of this information and separating the free lists enables the Linux kernel to place
new allocations (which indicate their planned mobility) in the respective pageblocks, grouping al-
locations with the same mobility together. This grouping makes active defragmentation described
in Section 2.2.3 more effective.

Nodes and Zones
The Linux kernel memory management supports Non-Uniform Memory Access (NUMA). NUMA
systems feature different access latencies to different regions of memory, depending on the CPU
core that performs the access. For example, the CPU may access its local memory quickly, but it
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also might access memory of another CPU with additional performance penalty. In such systems it
is desirable to pin applications and their memory to a particular CPU and its local memory, where
it benefits from fast accesses. To implement this, Linux splits memory into nodes.

The nodes are split once again into zones. Each zone hosts its own allocator instance with its
own free lists and bookkeeping. This division enables allocations with special physical address re-
quirements. For example, ZONE_DMA/ZONE_DMA32 contain the first 16 MiB/4 GiB of memory and are used
to allocate memory shared with devices that have that kind of addressing constraint. The rest of
allocations fall into ZONE_NORMAL. The optional ZONE_MOVABLE zone, which is disabled by default, splits
the node into another region reserved for movable allocations, making compaction (Section 2.2.3)
even more effective. Immovable kernel allocations are not allowed in the movable zone and are
directed to other zones. On the other hand, movable allocations may fallback to other zones if the
movable zone is full [69].

2.2.2 Disk Caching

The concept of virtual memory was initially developed in response to the limited memory resources
available in the early days of computing [1]. With low amount of memory at hand, the programmers
who needed to use more memory than the primary, directly-addressable storage could provide had
to design their algorithms accordingly. This involved tedious swapping of sections of program data
in the primary storage with sections located in the secondary storage (e.g., disk). Wishing to relieve
the algorithm designers of this burden, the OS and hardware designers came up with a technique
that makes accesses to the secondary storage transparent [3].

While the primary storage no longer poses a significant constraint for most program workloads,
virtual memory is still used to abstract secondary storage. When a user program accesses a file on
a disk for the first time, the OS loads the file contents into RAM and adds it to the page cache.
Subsequent file accesses then utilize this cached copy, allowing for faster access times. The cache
pages can also be mapped into the program’s virtual memory mapping, virtualizing disk contents
as a regular memory region. If the program modifies the file, the changes are not propagated to the
disk immediately. The writeback is deferred in case the data is modified again in the near future.
The page is said to be dirty if it contains unwritten content. Furthermore, even after the program
has terminated or finished its file operations, the associated pages remain in the page cache in case
the file is opened again.

This design is based on two assumptions: (1) disk accesses are prohibitively slow, and (2) free
memory is wasted memory. Indeed, the access latency for hard drives typically falls within the mil-
lisecond range [70, 71]. Incurring such latency on each file access would render the system unus-
able. However, the advent of SSDs, which offer random-access latencies in microseconds [72] chal-
lenges this assumption. Moreover, unlike hard drives, SSDs can service multiple parallel requests
efficiently, resulting in much higher throughput. In fact, the current Linux memory management
subsystem, originally designed for HDDs, has been identified as too slow to fully utilize the high
bandwidth offered by modern SSDs [73]. The second assumption that unused memory is a stranded
asset [74] is reinforced by the fact that none of the power-saving modes described in Section 2.1.5
are utilized on consumer systems. This is partly due to the lack of support from operating systems
and memory controllers for these features.

Page-frame reclamation
With the memory usage growing constantly due to disk caching, the memory reserves eventually
deplete. Thus, the OS requires a mechanism to evict some of the pages to make room for new allo-
cations. The Linux page-frame reclamation algorithm (PFRA) is commonly referred to as the LRU
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(least recently used) mechanism. However, this is not strictly true, as Linux does not maintain an
LRU-ordered list of page frames [75]. Instead, Linux implements a simplified version of the 2Q al-
gorithm [76].

The algorithm differentiates between two page types: anonymous (program memory not associ-
ated with a file) and file (page cache). For each page type, the algorithm maintains two lists per
page type: the active and the inactive list. Under memory pressure, the lists are iterated and all the
pages are checked for references. To check the page for references, the kernel utilizes the reverse
mapping, which returns all virtual address spaces that map the page. In the mapping structures of
the virtual address space, the MMU provides the accessed bit that is set transparently by hardware
when a memory access to the page is detected.

By checking and resetting the accessed bit in each mapping, the kernel can determine whether
the page has been accessed by the user process since the last scan. This information is then used
to either promote the page to the active state, or to demote it to the inactive state. When the page
is already inactive and has not been referenced, it is freed. To add some inertia to this mechanism,
the page frame descriptor (struct page) stores another referenced bit, representing whether the page
has been classified as accessed on the last scan. Figure 2.6 demonstrates the states that the page
can assume and the possible transitions.

Figure 2.6 – The states assigned to pages within the Linux page-frame reclamation algorithm.

2.2.3 Page Migration

The internal Linux kernel interface provides functions for memory migration. These functions can
be used to move contents of a set of source page frames into another set of destination page frames.
More importantly, the migration functions also take care of all the mappings referencing the source
page frames, allowing migration of pages that may be concurrently used by applications. Apart
from the NUMA support, the two major subsystems making use of the migration infrastructure are
compaction and hotplugging.

Compaction
As briefly mentioned in Section 2.2.1, contiguous naturally-aligned blocks of physical memory are
a valuable resource to the memory management subsystem of the OS, as they can be used for
huge 2 MiB frames. Moreover, as the kernel primarily uses a fixed identity mapping of the physical
memory, all its internal allocations have to be contiguous. As shown in Figure 2.7, over 90 percent
of the kernel allocations fall within the 16 – 32 KiB range and allocations as big as the maximum
size of 210 page frames or 4 MiB are not uncommon [66].
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Figure 2.7 – Requested allocation sizes (logarithmic) during system startup and a 120-second
Memcached benchmark [66].

Figure 2.8 – The Linux compaction algorithm. The algorithm collects movable pages from the be-
ginning of the zone and migrates them into free page frames at the end of the zone.

To defragment the memory and gain such contiguous blocks, Linux employs active compaction.
The compaction can be triggered either manually by the user, proactively by the kernel, or when an
allocation of a large size fails [77, 78]. Figure 2.8 demonstrates the algorithm by a simple example.
At the beginning, two iteration cursors are placed: one at the beginning of the zone and the other at
the end of the zone. Then, iterating through the pages at the beginning of the zone, the algorithm
accumulates movable pages that it encounters in the movable list 1 . As optimization, compaction
checks the migrate type assigned to the pageblock (4 MiB) and skips it completely if it indicates
immovable pages. Meanwhile, the second part of the algorithm works from the end of the zone,
moving toward lower addresses, and adding free page frames to the free list 2 . Eventually the two
cursors meet or enough movable pages have been collected to satisfy the failed allocation. At that
point, the migration routine is called to migrate all the movable pages into the accumulated free
page frames 3 .

The presence of kernel pages makes compaction less effective. Unlike user pages, which can be
relocated by adjusting the mapping structures of the processes, kernel pages are generally immov-
able. This immobility renders the entire block unreclaimable to the defragmentation algorithm.
Although the Linux kernel does have a mechanism for movable kernel pages [79], it requires explicit
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support from the subsystems. As of Linux 6.1, only two drivers (z3fold and zsmalloc) provide the
necessary callbacks to relocate their pages.

Memory Hotplugging
Linux supports memory hotplugging [80], enabling removal of memory from the system at runtime.
To avoid system crashes or data corruption, the administrator must ensure that no data currently
in use by the OS or user applications resides on the memory device (e.g., a DIMM) before physi-
cally disconnecting it from the system. The hotplugging infrastructure facilitates this, providing an
interface to offline specified memory regions.

Technically, memory hotplugging divides the memory node into contiguous blocks of fixed size
depending on build-time configuration. On x86-64, these blocks are typically 128 MiB in size. Each
block is presented as a separate device in /sys/devices/system/memory. If the user requests offlining by
writing into the respective file, the kernel first iterates through the pageblocks (see Section 2.2.1)
in the range and sets their migrate type to one of special types, MIGRATE_ISOLATE. As each migrate type
has its own set of free lists within the buddy allocator, this has the effect that concurrently freed
pages within the range end up on the MIGRATE_ISOLATE lists. These lists are never used by the buddy
allocator.

Having isolated the pageblocks, the mechanism iterates through the individual page frames in
the range. If the page frame is in use, it is migrated to a page frame outside the offlining range. In
this case, the source page frame automatically ends up on the isolated lists of the buddy allocator
after it is freed by the migration routine. The pages within the range that are already free are man-
ually moved to the isolated lists. Finally, with all pages being removed from the allocator’s pool,
memory hotplugging adjusts the bookkeeping structures and returns. Memory onlining performs
the reverse operation: it populates the allocator’s free lists with the new page frames and sets all
the pageblocks within the range to MIGRATE_MOVABLE.

Just like with compaction, the presence of an immovable kernel page within the range makes its
offlining impossible. Because of this reason, the Linux documentation suggests enabling ZONE_MOVABLE
(which is typically disabled) to increase the likelihood of successful offlining [80].

2.3 Related Work
As shown in Section 2.1.4, numerous works have raised the subject of energy-efficient memory
management and proposed novel hardware mechanisms. However, a gap remains in the collabora-
tion between the OS and the hardware to address this issue effectively. This section provides an
insight into how different studies have attempted to tackle this challenge.

OS-based DRAM power management
ESKIMO [81] is the first work to propose disabling the DRAM refresh for unused memory regions.
They base their work on SRA [54], a proposal to introduce a bitmap for toggling refresh on a per-
row basis. To track unused memory regions, the authors modify the C standard library functions
malloc() and free(). They simulate their approach using the DRAMsim simulator [82] and observe
up to 86 percent energy savings.

Baek and colleagues  [49] recognize that the OS already possesses the necessary information
at row-level granularity. Consequently, they integrate their mechanism into the Linux kernel and
evaluate it on single-board ARM computers, specifically the BeagleBoard [83] and PandaBoard.
To circumvent the lack of selective refresh in existing hardware, they simulate row-granular re-
fresh by (1) disabling the hardware Auto-Refresh and (2) introducing a software real-time thread
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that refreshes used rows by performing reads on them. Given the inefficiency of this arrangement,
they do not provide energy measurements. Instead, they demonstrate that selective refresh at a
row granularity can reduce refresh operations by as much as 93.8 percent on average, and that
the OS support at such fine granularities is trivial. Additionally, they propose to mask page frames
containing weak DRAM cells in the OS, allowing for reduced refresh rates and thus demonstrating
performance improvements.

GreenDIMM [84] proposes a deep power-down state in the DRAM at sub-array (128 – 512 MiB)
granularity that comes with Linux support. The OS power manager monitors the memory utiliza-
tion and employs memory hotplugging to clear randomly selected blocks before transferring them
into the power-down state. Having no block selection policy, this technique does not account for
the trade-off between the cost of offlining blocks and the potential energy savings achieved.

Fragmentation and its costs
There is an extensive body of research dedicated to maximizing the benefits provided by huge
pages  [9, 6–8, 85, 86, 11]. Much like with DRAM power management, the OS is faced with a
dilemma whether it is worth investing processor cycles to construct a huge-page mapping before
the future performance benefits can be known. MEGA [11] is a compaction mechanism that, unlike
built-in Linux compaction, monitors both the occupancy levels of huge frames and the age of the
pages within them. This information is then used to make a cost-benefit analysis before compacting.
In a similar vein, Mansi et al. [87] introduce a policy into the Linux virtual memory management
that employs an empirically-based cost-benefit model to determine whether the performance ben-
efits of a huge-page mapping outweigh the associated costs.

While blocks larger than huge frames may not be as widely discussed, there are still some studies
that emphasize their importance. On mobile systems, external devices such as the video camera
may suddenly demand large contiguous blocks. To meet these requests, the prevalent approach
is to reserve this memory in advance, resulting in resource underutilization. Seeking to make the
reserved memory useful, the rental memory approach [88, 89] restricts the pages allocated within
these reserved blocks to pages that can be quickly and easily evicted, such as page cache. Essentially,
the device’s memory is temporarily borrowed by the kernel to store quickly reclaimable data.

Alverti and associates [90] seek to alleviate address translation overhead in virtualized environ-
ments by employing large contiguous blocks. Their approach, termed as contiguity-aware paging,
is a modification to demand paging that attempts to use physically contiguous pages for virtually
contiguous mappings (VMAs). They have noted that this technique has a side effect of slowing down
fragmentation development by physically grouping pages with similar lifetimes. The same effect is
observed by Kim et. al [91], who implement memory management on mobile devices that groups
pages with the same deallocation time in contiguous regions.
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A R C H IT E C T U R E 3
This chapter describes the implementation of the thesis. It starts by introducing the theoretical
concepts behind the mechanism in Section 3.1. Then, it moves on to the technical details of the
practical implementation in Section 3.2. Finally, Section 3.3 outlines the limitations of the imple-
mentation and proposes solutions to address them in the future.

3.1 Concept
When it comes to managing DRAM power, there is a substantial gap between software and hard-
ware. As illustrated in Table 2.3, the power-saving modes supported by contemporary DRAM chips
are restricted to coarse granularities exceeding 1 GiB. The mode with the finest granularity, PARC
was introduced only recently in LPDDR5. Although systems incorporating LPDDR5 memory are now
commonly available, current CPU memory controllers still do not provide software access to PARC.
Not surprisingly, my extensive search has failed to yield any examples of PARC being applied in
practice.

On the other side of the gap, operating systems lack any infrastructure that would facilitate usage
of DRAM power-saving modes with coarse granularities effectively and the previous attempts to
build such infrastructure were ultimately abandoned [92]. This situation presents a classic chicken-
and-egg problem: hardware developers are reluctant to incorporate these features into DRAM and
memory controllers without existing software support, yet such support is hindered by the absence
of corresponding hardware features. The objective of this work is to tackle this issue from the soft-
ware perspective by developing a comprehensive framework to support both existing and emerging
DRAM power-saving modes within the operating system.

For brevity, I refer to DRAM segments capable of entering power-saving modes as slices and the
process of transitioning them into a low-power state as offlining. More precisely, the required OS
support would entail (1) the identification of unused slices, (2) communication with the memory
controller to offline them, and (3) the possibility to clear partially used slices with the goal of saving
energy. The first two requirements are a matter of introducing additional bookkeeping into the OS
memory management and providing hardware-specific drivers. However, effectively implementing
the third requirement is more complex; it necessitates evaluating the costs and benefits of the op-
eration before proceeding.

Depending on the physical-to-DRAM address mapping, the slices may either be fully contiguous
or consist of smaller contiguous segments distributed throughout the physical address space in
a regular pattern. As a long as each slice maps to a subset of the physical memory consisting of
complete page frames, there is a potential for energy savings. Given that the address mapping is
determined solely by the memory controller, this work assumes a configuration that maps every
slice to a single contiguous region in physical memory. It is reasonable to expect that if future mem-
ory controllers provide software access to slice power management, they will offer a (configurable)
address mapping that makes this feature practical. Nevertheless, the presented concepts are just as
well applicable to mappings with noncontiguous slices.
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3.1.1 Understanding Fragmentation

Organizing data to retain large contiguous blocks of memory free is referred to as defragmenta-
tion. Most defragmentation efforts in the systems software research are directed towards support-
ing huge pages, both via passive fragmentation avoidance  [90, 91, 9] strategies and active com-
paction [11, 7, 8] mechanisms. However, the passive allocation strategies that attempt to keep large
contiguous blocks of memory free can at most delay the fragmentation. Eventually, the memory
becomes cluttered and no allocation strategy can revert this process. To see why this is the case, it
is important to understand the source of external fragmentation in main memory. It occurs when
pages with different lifetimes get intermixed. As the short-lived pages get deallocated, holes in
rather allocated regions appear. In an attempt to reduce fragmentation, the allocator fills these gaps
with newly allocated—potentially long-lived—pages. If the memory utilization sinks, the short-lived
pages eventually cease to exist but the long-lived pages remain scattered throughout the memory,
rendering large contiguous blocks unusable for slice offlining or huge page-frame allocation.

An ideal allocation strategy clusters pages with similar lifetimes together. This approach would
lead to large contiguous blocks of free memory following their nearly simultaneous deallocation.
However, allocators lack information about the lifetimes of pages because neither user programs
nor kernel subsystems provide such data at allocation. Assuming that programs do not interact
with the outside world (e.g., user), retrieving this information generally requires solving the halt-
ing problem, as the last possible time at which an anonymous page is deallocated is the program
termination. Without this information, the page-frame allocators can only work with heuristics,
inevitably intermixing pages with different lifetimes to some extent. There is no free lunch in de-
fragmentation: eventually it is up to compaction to actively revert the clutter via page migration.

3.1.2 Optimal Compaction

To achieve optimal compaction, the target block size must be known ahead of time. For instance,
the Linux kernel compaction tends to invest excessive effort for the given gain in free blocks of the
desired size. Its size-agnostic design enables simple implementation without requiring additional
bookkeeping. The simplicity alleviates the extra cost, which stays within acceptable bounds for rel-
atively fine granularities of 2 MiB. However, for the coarse RAM slice granularities, this approach is
impractical.

Specifying the target size allows the compaction mechanism to analyze the memory utilization
beforehand and calculate a score for each slice using a metric that reflects the effort required to
reclaim it. Based on these scores, the algorithm can make informed decisions regarding two vari-
ables of memory migration: the source and the target. Aiming to maximize the benefit relative to
the cost, the algorithm selects slices that require the least effort as the migration source. Conversely,
the optimal target for memory migration are the nonfull slices that would require the most effort to
free, as they are least likely to become the migration source. This approach results in the maximum
fragmentation reduction for a given block size [61].

Page cache
In the context of compaction for DRAM power-saving, the page cache represents a double-edged
sword. On the one hand, its pages remain allocated until they are evicted due to memory pressure.
Thus, they are the prime example of the long-lived pages that fill the holes and get thereby scattered
through the memory, causing fragmentation. On the other hand, unused (i.e., not mapped into
applications) and clean (i.e., containing no unwritten changes) cache pages are easy to remove:
they require no migration and can be simply discarded. Nevertheless, this removal comes with a
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Figure 3.1 – The optimal compaction algorithm with special handling of cache pages. The memory
is split into 4-page slices and each slice is assigned a reclamation price. The algorithm moves pages
from the cheapest slices into the most expensive, freeing unused cache pages in the process.

caveat: if these pages are accessed again later, the removal incurred delayed costs associated with
reloading the data from the backing storage. For slice offlining, however, shrinking the page cache
is a necessity as it eventually fills the whole memory and prevents potential energy savings.

This distinction between different page types also complicates construction of the slice metric
for optimal compaction. The hidden costs of page cache removal cannot be known ahead of time.
Moreover, the cache pages can be freed in the target slice and thus become potential migration
destinations, increasing compaction effectiveness. However, the single reclamation effort metric is
no longer sufficient to optimally determine the target migration slice. The algorithm also needs to
consider the cost and benefit of allocating pages in the destination slice. For instance, the destina-
tion slice containing 𝑛 free page frames should be preferred to a slice containing 𝑛 freeable cache
pages: it provides equal benefit for less cost.

Figure 3.1 illustrates the algorithm on the example arrangement used in Figure 2.8 previously.
The physical memory is divided into four-page slices and each slice is assigned a reclamation price.
The price is equal to the amount of movable pages in the slice, while a freeable cache page counts
as half a page. Slices that contain unmovable pages are assigned infinite price. The compaction
reclaims four slices in total, requiring six migrations and two frees in the process. It also includes
special handling of the page cache: the unused cache page in slice vi is freed instead of being mi-
grated. Similarly, the cache page in the last slice iix is freed to accommodate a movable page from
slice vii.

3.2 Implementation
The described algorithm is implemented in the Linux kernel version 6.1. Hereinafter, this imple-
mentation of the algorithm is called Ramslice. Overall, the changes span over 28 source files, all
of which are in the memory management subsystem. The modifications in existing files are nonin-
trusive, minimal, and do not exceed few lines. The heart of the algorithm is self-contained in its
own source file, which spans just over 1200 (+200 for the respective header file) significant lines
of code.
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3.2.1 Data Structures

The first and foremost requirement for the effective slice offlining and compaction is defining the
target slice size. In Ramslice, the slice size is a boot-time parameter passed via the kernel com-
mand line. This point in time is chosen to accommodate the second requirement: maintaining the
necessary bookkeeping. The bookkeeping structures must be initialized before the page-frame al-
locator becomes active. In Linux, early system initialization employs the specialized memblock al-
locator [93], which handles contiguous regions rather than individual page frames. Only after the
memory management is setup, Linux switches to the buddy allocator. In order to maintain consis-
tent statistics, the Ramslice mechanism must be ready by that time.

Symbol Name Description
𝑁free RSI_FREE Amount of free page frames
𝑁lru RSI_V_LRU Amount of pages in all LRU lists (userspace pages)
𝑁anon RSI_ANON_MAPPED Amount of anonymous pages

𝑁filemap RSI_FILE_MAPPED Amount of file pages mapped into userspace
𝑁fileall RSI_FILE Total amount of file pages
𝑁maps RSI_MAPPINGS Total sum of userspace mappings for all pages

Table 3.1 – Per-slice statistics tracked by Ramslice. These counters are used to calculate the amount
of freeable, movable, and unmovable pages in the slice and determine its reclamation price.

Ramslice maintains its own state per each instance of the page-frame allocator and thus extends
the kernel’s data structure representing a memory zone. The core component of this state is a fixed-
size array of struct ramslice structures that contain per-slice statistics about allocated pages. To
avoid unnecessary locking and allow updates in any context, the counters are atomically updated
on respective events. Table 3.1 provides an overview of the tracked values. Section 3.2.5 describes
how these values are used to determine the amount of pages of each type: freeable, movable, and
unmovable.

Another crucial component of Ramslice is the slice reserve, likewise stored in the zone structure.
During compaction, the slice reserve contains all nonfull slices in the zone, ordered by the recla-
mation effort called the price. Section 3.2.5 describes the computation of the reclamation price in
detail. Technically, the slice reserve is a red-black tree with 𝑂(log 𝑛) search and insertion. Accessing
the most expensive slice is a frequent operation, so the reserve caches it for 𝑂(1) access time. The
tree is not maintained constantly; doing so would require recalculating the price on each update
of the per-slice counters. Instead, it is constructed from scratch when compaction is requested by
the user.

3.2.2 Slice Isolation

With the data structures established, we can proceed with the technical details of Ramslice com-
paction. The slice offlining, which can be requested through the user interface (described in Sec-
tion 3.2.6), is an improved version of the existing memory hotplugging mechanism in Linux. Like
with memory hotplugging, the offlined memory must remain isolated from the allocator to pre-
vent instant reuse. Algorithm 3.1 demonstrates the offlining logic, implemented in the function
ramslice_offline.
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Inputs: (variable: Description)
zone: Allocator state; LRU: PFRA state; slice reserve: Slices ordered by price;
slice: Slice to be offlined; budget: Maximum allowed offlining cost

1 abort if not enough free(able) space in slice reserve for slice pages Memory is already compacted
2 price ← 𝑝′(slice, slice reserve) Final price adjustment (Section 3.2.5)
3 abort if price > budget Cost exceeds benefits
4 if slice is not eligible for offlining Spans across multiple zones, contains memory holes, etc.
5 poison slice and abort Reflect eligibility in future price calculations
6 disable LRU and zone caches Ensure consistent state
7 for each pageblock in slice:
8 migrate type of pageblock ← MIGRATE_ISOLATE Future frees will end up on isolated list automatically
9 with lock on zone Already free frames have to be moved there manually

10 move each free page frame in pageblock to isolated list of zone
11 movable list ← ∅
12 for each page in slice:
13 if page is unmapped, clean, and belongs to a file: Page is freeable
14 free page
15 else if page is on LRU lists: Page is movable
16 move page from LRU lists to movable list
17 else abort Page is immovable
18 until movable list = ∅:
19 source page ← pop from movable list
20 target page frame ← Algorithm 3.2 Fetch migration destination
21 migrate source page to target page frame Adjust mappings and copy contents

Algorithm 3.1 – The slice offlining algorithm corresponding to ramslice_offline function in the
source code. The significant changes from the memory hotplugging offline_pages function are
highlighted in green.

Sanity checks
Firstly (lines 1 – 5), the offlining mechanism verifies whether the given slice is a valid and viable
offlining target. This involves confirming that the free and freeable space in the slice reserve is suf-
ficient to accommodate all movable pages of the passed slice. If the result is negative, then the
memory is already compacted to the maximum. Subsequently, the slice reclamation price is adjusted
according to the contents of the slice reserve and compared with the expected benefit budget. If the
price exceeds the budget, offlining aborts. The final check verifies that the slice is fully contained
in its zone and does not span over any architectural memory holes. Inter-zone slices are not sup-
ported as they do not appear in most memory configurations and would complicate the algorithm
significantly. If the slice cannot be offlined due to one of these reasons, it is permanently marked as
poisoned in its flags. This signalizes for the future price calculations that the slice is unreclaimable,
making it a destination—rather than source—candidate.

Free page isolation
After determining that the operation is viable for the given slice, the function disables (line 6) two
caches: (1) the global LRU cache designed to speed up the addition of pages to the page-frame
reclamation algorithm (PFRA), and (2) the per-CPU caches of the buddy allocator in the zone. This

25



3 Architecture

ensures that a consistent view of both buddy lists and LRU lists is maintained even with concurrent
allocations and frees.

The next step (lines 7 – 10), implemented in start_isolate_page_range, is to isolate all the free page
frames in the slice from the buddy allocator. As with memory hotplugging, this is done by iterating
over the pageblocks and setting their migrate type to MIGRATE_ISOLATE. As a reminder, each of the
migrate types has its own free-block lists in the allocator’s state. MIGRATE_ISOLATE is a special type
that is never used to satisfy allocations—the pages residing on it are effectively removed from the
allocator. Thus, setting the migration type to MIGRATE_ISOLATE results in future deallocations being
automatically directed into the isolated lists. The page frames that are already free, however, need
to be manually moved into these lists (line 10).

Movable page migration
At this point, all the free page frames reside on the isolated lists and therefore cannot be allocated
anymore. The only active page frames still remaining in the slice range are the allocated ones. To
remove them from the range, they have to be migrated somewhere else. For this, the algorithm
iterates (lines 12 – 17) over all the pages in the range, skipping unallocated page frames. For each
page, the following distinction is made. If the page belongs to the page cache and is neither used
by any process nor contains unwritten changes, it is directly freed. The implications of this are
discussed in Section 3.3. The second case applies if the page cannot be freed directly but resides on
the LRU lists of the PFRA. All userspace pages normally reside on these lists and they are movable:
the page is removed from the respective LRU list and stored on the local movable list. Otherwise, the
page must be immovable and the offlining is aborted. This is different from hotplugging, where the
mechanism repeatedly tries to migrate the pages in hope that immovable pages get deallocated.

While it is not strictly required to isolate the page from the PFRA while migrating it, it frees the
list head contained in the page descriptor (struct page). The list head within the page descriptor is
reused for many purposes: buddy-block lists, LRU lists, per-CPU cache lists, and more. Removing
the page from LRU and using the list head to store the page on the local list is a repeating pattern
in the Linux kernel code. Here, it is used to store the page on the local movable list.

Finally, all the movable pages are accumulated on the movable list. The algorithm passes (lines 18
– 21) the movable list to the migrate_pages function as the list of source pages. Along with the source
pages, the interface of the migration function accepts a callback that will be used to allocate the
destination page frames. It then copies the contents of the source page over, adjusts the userspace
mappings to point to the new target page frame, and frees the source page. The passed allocation
callback is where the crucial difference from memory hotplugging lies. For memory hotplugging
the destination is irrelevant, so the migration function is passed a generic page-frame allocation
callback. Instead, Ramslice passes its own callback that allocates the target page frames from ex-
pensive slices, implementing the optimal compaction algorithm described at the beginning of the
chapter.

3.2.3 Migration Target Search

The second part of the offlining mechanism shown in Algorithm 3.2 implements the callback used
to allocate target page frames for Algorithm 3.1. The algorithm has an internal state that persists
between invocations. This state holds (1) the location where the last invocation of the algorithm
stopped (PFN for page-frame number, initially zero) and (2) a reserve of free pages (free list, initially
empty). On each call, if there are pages in the free list, the fast path (line 27) simply returns one.
Otherwise, the algorithm starts the search for free page frames (lines 2 – 26).
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Inputs: (variable: Description)
zone: Allocator state; LRU: PFRA state; slice reserve: Slices ordered by price;
amount: Amount of movable pages isolated by Algorithm 3.1

Persistent state:
PFN ← 0: Cached scan location; free list ← ∅: Reserve of isolated free page frames

Outputs: a single free page frame
1 if free list = ∅: Scan if no pages in reserve
2 cache-page list ← ∅, buddy-block list ← ∅
3 slice ← most expensive slice in slice reserve Fetch good migration target
4 if PFN is not in slice:
5 PFN ← lowest PFN of slice Iterate over page frames in the slice
6 with lock on zone Lock against concurrent allocs and frees
7 while PFN is in slice:
8 break if amount pages are accumulated
9 break if zone lock is contended Release the lock for some time

10 if page frame at PFN is allocated:
11 page ← get page at PFN
12 if page is unmapped, clean, and belongs to a file: Save cache page for later free
13 move page from LRU lists to cache-page list
14 PFN ← PFN + 1
15 else: Page frame belongs to a free block
16 buddy block ← get buddy block at PFN
17 move buddy block from zone list to buddy-block list
18 PFN ← PFN + size of buddy block Skip the whole buddy block
19 if PFN is not in slice: Slice is fully scanned
20 remove slice from slice reserve Next call will get a new slice
21 for each page in cache-page list:
22 evict page from page cache Prevent further usage as cache
23 page frame ← reset page Reset page descriptor and zero page contents
24 add page frame to free list
25 for each buddy block in buddy-block list:
26 add each page frame in buddy block to free list Split into 2order page frames
27 free page frame ← pop from free list

Algorithm 3.2 – The free page scan corresponding to ramslice_scan function in the source code. The
algorithm iterates over expensive destination slices and accumulates free page frames as migration
targets. Red snippets are relevant to page-cache freeing and blue snippets to buddy-block isolation.

Destination slice scan
The search begins by retrieving (line 3) the slice that requires the most reclamation effort from the
slice reserve tree. If the saved PFN lies within the slice, then the last invocation ended prematurely
(i.e., before reaching the end of the slice) and the scan is continued from that position. Otherwise,
the PFN is reset (line 5) to the slice’s beginning. There are two potential reasons for an early return
from the scan. Firstly, the scan finishes if enough pages have been accumulated to satisfy all future
allocations for the movable list in Algorithm 3.1. Secondly, the scan is periodically interrupted to
alleviate the contention on the zone lock, which is required to remove free blocks from the buddy
allocator. With per-CPU pages disabled (Algorithm 3.1, line 6), all allocations and frees in the zone

27



3 Architecture

attempt to acquire this lock, making it highly contended. To allow these operations to proceed, the
free page scan terminates after iterating over 128 page frames.

The scan iterates towards higher addresses and checks the state of the page frame at the current
address PFN. If it is allocated, then the algorithm checks whether it is freeable with the already
familiar check for unmapped and clean file pages. If the check is positive (lines 11 – 13), the page is
removed from the LRU lists and stored on the local cache-page list. Otherwise, not freeable allocated
pages are skipped. Free buddy blocks (lines 16 – 17) are another target for the algorithm: they are
likewise removed from their buddy lists in zone and stored in the local buddy-block list. Eventually
the scan terminates. If the reason for termination is that the PFN cursor has left the slice, the slice has
been fully scanned and is removed (line 20) from the slice reserve. Next invocation of the algorithm
will fetch a new slice.

Page-frame preparation
Finally, the algorithm consumes both the cache-page list (lines 21 – 24) and the buddy-block list
(lines 25 – 26) by converting their members into free page frames for the free list. The file pages are
invalidated in the page cache, ensuring that they will not be used for future file accesses. The page is
then reset to the pristine state: its page descriptor is reinitialized and the contents are zeroed. The
resulting clean page frame is put on the free list. The free blocks from the buddy-block list require
splitting, as they likely consist of multiple page frames. Their individual page frames are iterated
and added to the free list.

The buddy blocks are split in full, which can mean overprovisioning of the target page frames.
In the worst case, the Algorithm 3.1 isolates a single movable page on the movable list and the
Algorithm 3.2 encounters a single order 10 free block, resulting in 1024 page frames on the free
list. Since the destination slices are expensive to reclaim and thus almost full, such an extreme case
is unlikely. Moreover, this overprovisioning is part of the design: a single compaction procedure
will offline multiple slices, invoking Algorithm 3.1 repeatedly. The movable pages of the subsequent
slices are not yet on the movable list, but the contents of the free list will be used to satisfy these
migrations as well. Nonetheless, after the compaction finishes, the page frames on the free list must
be released back to the allocator. This step also resets the persistent PFN cursor.

3.2.4 Slice Onlining

When offlining aggressively with a high budget, the algorithm eventually achieves the optimal case:
all used page frames are condensed into few slices and the rest are isolated from the allocator. If the
memory utilization rises, the allocator has no reserve to satisfy these new allocations. To accommo-
date this case, Ramslice must online slices on time by releasing the isolated page frames back to the
allocator and setting the respective pageblocks to MIGRATE_MOVABLE: the reverse of free page isolation
in Algorithm 3.1 (lines 7 – 10). The onlining can be either requested manually (Section 3.2.6) or
happens automatically on memory pressure. For the latter, Ramslice hooks the entry functions of
the PFRA: out_of_memory and shrink_node. These hooks check if any slices are offline, online one of
them, and return from the PFRA before any userspace pages are freed.

3.2.5 Price Model

Constructing the slice reserve tree requires scoring each slice based on its reclamation effort called
the price. Ramslice employs a simple linear regression model that uses the per-slice statistic items
from Table 3.1 to predict the expected run time (in CPU cycles) of the offlining operation. The
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model uses eight parameters listed in Table 3.2 to calculate the expected effort. The methodology
used to determine the relevant parameters and their default values is described in Chapter 4.

Symbol Name Reflects duration of Lines Alg. Value
𝑝slice isolate_slice Empty slice isolation (size-independent part) 1 – 6 3.1 695
𝑝page isolate_page Empty slice isolation per 1024 page frames 7 – 10 3.1 303

𝑝drop drop_page Freeing single freeable file page 13 – 14 3.1 39
𝑝move migrate_page Copying page contents to the new page frame 21 3.1 100
𝑝map migrate_mapping Adjusting one mapping during migration 21 3.1 29

𝑝a,free alloc_buddy Isolating a free page frame as a migration target 25 – 26 3.2 1
𝑝a,cache alloc_cache Converting a cache page into a migration target 21 – 24 3.2 25
𝑝∞ unreclaimable Constant offset added to unreclaimable slices n/a n/a 109

Table 3.2 – Parameters of the price model. The third and fourth columns indicate the algorithm and
the relevant lines for which the parameter approximates the duration. The last column indicates
the default value in dimensionless units.

The first two parameters 𝑝slice and 𝑝page do not depend on the slice contents and are merely used
to approximate the cost of isolating an empty slice, corresponding to lines 1 – 10 in Algorithm 3.1.
The first parameter is taken as constant and the second parameter is used to scale the slice size 
𝑁pages. Together, they form the proportion of the price 𝑝0 independent on the content of the slice:

𝑝0 = 𝑝slice + 𝑝page ⋅
𝑁pages

1024
(3.1)

The next three parameters depend on the slice contents. To be precise, they map three values to the
duration incurred by them: the amount of (1) freeable pages, (2) movable pages, and (3) the total
mappings of the slice’s pages. Except for the amount of mappings, these values are not directly pre-
sent in the statistics (Table 3.1) but can be calculated from them. The count of freeable file pages is
the amount of total file pages with the mapped file pages subtracted. The amount of movable pages
is just the sum of anonymous and mapped file pages. Thus, the slice-dependent price proportion 
𝑝1(𝒔) for slice 𝒔 is:

𝑁drop(𝒔) = 𝑁fileall(𝒔) − 𝑁filemap(𝒔)
𝑁move(𝒔) = 𝑁filemap(𝒔) + 𝑁anon(𝒔)

𝑝1(𝒔) = 𝑝drop𝑁drop(𝒔) + 𝑝move𝑁move(𝒔) + 𝑝maps𝑁maps(𝒔)
(3.2)

Lastly, the unreclaimable offset 𝑝∞ is added to the price if it contains unmovable pages (i.e., the
amount of allocated pages exceeds userspace pages in LRU lists) or is marked as poisoned. This
ensures that the slices which cannot be offlined are always selected by Algorithm 3.2 as migration
target slices. The full price 𝑝(𝒔) used to order the slices in the reserve tree is:

𝑝(𝒔) = {
𝑝0 + 𝑝1(𝒔) + 𝑝∞ if 𝑁pages − 𝑁free(𝒔) > 𝑁lru(𝒔) ∨ 𝒔 ∈ 𝒫
𝑝0 + 𝑝1(𝒔) otherwise

where 𝒫 is the set of poisoned slices.

(3.3)
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However, during slice isolation, the price is adjusted one more time (Algorithm 3.1, line 2). Having
already constructed the slice reserve 𝑹, it is possible to determine the amount of free page frames 
𝑁a,free(𝒔, 𝑹) and unmapped cache pages 𝑁a,cache(𝒔, 𝑹) in the target slices that will be isolated for of-
flining as part of the Algorithm 3.2. These values are then scaled with 𝑝a,free and 𝑝a,cache, respectively.
This yields the final slice- and reserve-dependent price of the operation 𝑝′(𝒔, 𝑹) that is compared
with the allowed budget before proceeding or aborting:

𝑝′(𝒔, 𝑹) = 𝑝(𝒔) + 𝑝a,free𝑁a,free(𝒔, 𝑹) + 𝑝a,cache𝑁a,cache(𝒔, 𝑹) (3.4)

3.2.6 User Interface

Like many Linux kernel subsystems, Ramslice exposes its functionality in the sysfs filesystem tree.
The kernel/debug/ramslice directory hosts a directory tree representing all memory nodes and their
zones (e.g., ramslice/node0/Normal for ZONE_NORMAL on the first node) in the system. The zone directory
contains the files listed in Table 3.3. Most of these files reveal the statistics maintained by Ramslice,
either per slice or globally.

File name Purpose Read/ Write
nr_slices/nr_empty/nr_offline Amount of total/empty/offline slices in the zone ✓
all Snapshot of statistics counters for all slices ✓
reserve Snapshot of the slice reserve tree ✓
summary Per-slice statistics summed over all slices in the zone ✓
stats Statistics of performed operations (write resets) ✓ ✓
cmd Interface for operation requests ✓
result Result of the last cmd operation ✓

Table 3.3 – Per-zone files exposing the Ramslice functionality in sysfs.

The cmd file facilitates requests for compaction by allowing users to write commands into it. Its in-
terface resembles the usage of a command-line program: the first word is the requested command,
followed by its arguments. The most useful operation, offline_batch, performs batch compaction un-
til the budget runs out or memory is fully compacted. It accepts two arguments: (1) the maximum
offlining budget and (2) the limit of slices offlined per call. Both of these arguments accept inf value
to indicate unlimited budget or amount of slices. By default, the budget is cumulative: the price
of the offlined slice is subtracted from the budget for the next slice. The optional --per-slice flag
causes the budget to remain constant for each slice. For example, writing offline_batch --per-slice
50000 inf into cmd offlines all slices whose price does not exceed 50 000.

The other commands are mostly useful for development purposes. For instance, offline_index and
online_index work on the slice with the specific index (obtained by reading from all). Unlike batch
compaction, these commands do not automatically construct the slice reserve and release the free
list (Algorithm 3.2). For this reason, reinit and release commands with no arguments are provided.
Finally, offline_free accepts no arguments and offlines all empty slices. Similarly, online_all onlines
all slices that are offline, restoring the default system state. Another debugging and profiling fea-
ture is enabled by writing into dummy_mode file in the root ramslice directory. This mode essentially
disables the price system: the offlined slices are always migrated into another randomly selected
empty slice. This mode will be useful for profiling the mechanism in the next chapter.
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3.3 Discussion
Skipping ahead, Chapter 4 demonstrates that the implemented mechanism provides efficient com-
paction and fulfills its design goals. However, the practical implementation has some limitations in
the three aspects covered below.

Slice size and contiguity limitations
Conceptually, the optimal compaction algorithm described in the beginning of the chapter does not
limit the slice size or their contiguity in any way. However, the Ramslice implementation in the
Linux kernel does have constraints in these aspects. Building upon memory hotplugging, Ramslice
uses pageblock infrastructure to isolate free pages in slices from the page-frame allocator during
offlining (Algorithm 3.1). As a mechanism with the primary purpose of supporting huge pages,
pageblocks are fixed to 2 MiB in size.

Thus, the slice size in Linux is limited to multiples of 2 MiB. Similarly, noncontiguous slices can be
supported as long as they consist of contiguous 2 MiB blocks. Removing the dependency on page-
blocks might overcome these limitations at the cost of additional complexity. On the other hand,
it is reasonable to expect that if future systems support slice offlining in hardware, the address
translation will map them onto contiguous regions.

Cost of page cache removal
Currently, the Ramslice mechanism frees every unused file-cache page that it encounters (both in
Algorithm 3.1 and in Algorithm 3.2) without considering the delayed cost of this decision. This be-
havior is indeed suboptimal and its negative consequence can be observed in one of the benchmarks
of Chapter 4. Ideally, the compaction mechanism should predict whether a page will be needed in
the near future. If the future usage is likely, the page should be migrated rather than freed.

However, Linux lacks infrastructure for such decisions. At the first glance, the page-frame recla-
mation algorithm seems to fulfill the exact purpose: classify pages based on their usefulness to
remove less useful ones on memory pressure. In practice, two reasons make the Linux PFRA un-
suitable. Firstly, it only executes when the memory pressure is high. In the idle case, the LRU lists
are not maintained and the page states (Figure 2.6) are outdated. Moreover, if the PFRA were to
run without memory pressure (e.g., manually triggered by Ramslice), it would instantly categorize
unmapped file pages as inactive, leading to their eviction. The PFRA is designed to free as much
memory as quickly as possible and the unused file pages are the natural candidates for “quick and
dirty” results.

However, there might be an efficient way to implement a new mechanism to predict usage of
unmapped file pages. The classical approach to prediction used to implement all sorts of caches is
examining the past and extrapolating it into the future. Tracking page accesses like done by PFRA
for this purpose does not scale well: it requires sampling the accessed bit from the applications’ page
tables using the reverse mappings. However, this is not strictly necessary in the Ramslice scenario.
As the cache pages in question are unmapped, the only way they have been accessed in the recent
past is via the regular system calls: open, read, write, and close. If they became unmapped recently,
this change happened via either munmap or exit system calls. All these system calls transfer the control
flow to the kernel anyway, which could be used to implement tracking of regularly used pages with
minimal overhead.

Huge-page support
In their current state, neither Algorithm 3.1 nor Algorithm 3.2 support huge pages adequately. If
offlining encounters an allocated transparent huge page (THP) within the slice, it is split into reg-
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ular page frames. The same is impossible for explicitly-requested hugetlbfs pages, so the page is
migrated into an arbitrary huge page frame returned by the page-frame allocator as a fallback. The
allocator’s placement strategy for the migrated huge page is bound to be suboptimal.

Supporting huge pages properly would require finding a suitable locations in the destination
slices to host them. If the destination slices on the expensive end of the price spectrum do not con-
tain free huge frames, Ramslice should not attempt to offline the slice containing the huge page.
Making this decision could be facilitated by introducing counters for (1) allocated huge pages and
(2) free huge frames into the slice statistics.

Furthermore, the huge-page support uncovers the general problem of competing defragmenta-
tion granularities. Supporting multiple target block sizes introduces another level of trade-offs into
the compaction mechanism. For example, Linux attempts to use huge pages to improve application
performance transparently, but the presence of huge pages obstructs the efforts of Ramslice to cre-
ate contiguous blocks of bigger size. In this case, Ramslice has to decide between abandoning the
slice or splitting the huge page and potentially hurting the application performance.
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A NA LY S I S 4
This chapter presents the analysis of the Ramslice mechanism described in the previous chapter. It
starts with a description of the system setup and developed tools in Section 4.1. Then, the mecha-
nism is profiled to develop a comprehensive cost model in Section 4.2. Finally, Ramslice is applied
to real-world workloads to examine potential energy benefits and its effect on the latency of server
applications in Sections 4.3 and 4.4.

4.1 Setup and Methodology
All measurements presented in this chapter are performed on a Lenovo ThinkCentre M75t Gen 2
machine. It is equipped with an AMD Ryzen 7 PRO 5750G CPU with a base frequency of 3.8 GHz.
When running demanding tasks, the AMD Turbo Core feature can temporarily increase the fre-
quency up to 4.7 GHz. The CPU features eight cores, and each core comprises two logical threads.
For the operating system, the machine is running Debian 12 with the custom Linux 6.1 kernel that
includes Ramslice modifications described in Chapter 3.

On the memory side, the system has two DRAM channels, each featuring a single two-rank 16 GiB
DDR4 DIMM running at 3200 MT/s. This configuration provides 32 GiB of main memory in total.
To increase the offlining success, the Linux memory subsystem is configured to provide separate
allocator zones for movable (ZONE_MOVABLE) and immovable (ZONE_NORMAL) memory. While the movable
zone still contains unmovable pages that host its page descriptors, they are static and concentrated
at the end of the zone. Linux reserves the lower 4 GiB for DMA and immovable allocations. Conse-
quently, the movable zone occupies the remaining 28 GiB of the physical memory.

4.1.1 Artificial Fragmentation

Some measurements rely on consistent behavior across runs. The key to reproducibility when pro-
filing the mechanism is a deterministic workload. Listing 4.1 shows the Python program used to
create an artificial fragmentation pattern in the physical memory that represents a consistent work-
load for the compaction mechanism.

The program creates three memory mappings of a specified size. One mapping (vmafile) is backed
by a large temporary file and the two other mappings are anonymous (vmafree, vmaanon). Due to
Linux’s demand paging, the memory for these new mappings is not allocated immediately. To force
the allocations, the program proceeds with a loop that iterates through each page of all three map-
pings. For each page, a random boolean with a mapping-specific bias decides whether to access
the page, causing its allocation, or to skip it and leave it unallocated. From the perspective of the
page-frame allocator, this loop translates to a random sequence of allocations for vmafile, vmaanon,
and vmafree. This results in an interleaved arrangement of the pages belonging to three different
mappings within the physical memory. Although the exact sequence of page allocations is random,
the workload maintains a consistent distribution of mappings at the slice level.
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1  def fragment_memory(size, free_probability, anon_probability, file_probability, anon_mapcount=1):
2      vmafree = mmap(size, flags=MAP_PRIVATE | MAP_ANONYMOUS)        # Create first anon. mapping
3      vmaanon = mmap(size, flags=MAP_PRIVATE | MAP_ANONYMOUS)        # Create second anon. mapping
4      vmafile = mmap(size, flags=MAP_PRIVATE, file=mktempfile(size)) # Create file mapping
5
6      for i in range(0, file.size(), PAGE_SIZE):
7          if random() < file_probability:
8              _ = vmafile[i] # access page to load file into cache
9          if random() < free_probability:
10              vmafree[i] = 1 # access page to have it allocated
11          if random() < anon_probability:
12              vmaanon[i] = 1
13
14      munmap(vmafile) # Unmap file pages      -> they remain in memory as freeable
15      munmap(vmafree) # Unmap anonymous pages -> their page frames become free
16
17      # Reach required amount of mappings for the anonymous part
18      for i in range(anon_mapcount-1):
19          if fork() == 0:
20              break
21
22      # The physical memory contains a mix of free, movable, and freeable pages of required size
23      while True: sleep(1)

Listing 4.1 – The Python program used to create the consistent artificial workload for profiling.
The result of its execution is an mix of free, freeable, and movable pages in the physical memory.

Finally, the pages of each mapping are converted to their respective target types. The first anony-
mous mapping (vmafree) is freed, freeing up the page frames where its pages previously resided.
Likewise, the file mapping mapping is freed as well. Unlike with anonymous memory, the underly-
ing pages stay in memory as page cache in anticipation of future accesses. The other anonymous
mapping vmaanon remains mapped, but its mapping count is subsequently elevated to anon_mapcount.
To achieve this, the program calls the fork system call anon_mapcount-1 times. As the final step, the
program and all its children enter indefinite sleep to ensure that anonymous pages stay in memory
until they are explicitly terminated.

The result of running this program is a mixture of free, freeable, and movable pages in the mem-
ory. While the exact sequence of the page types in the memory is random, it maintains a consistent
proportion of free, freeable, and movable pages on average when inspected at the granularity of
slices. The exact proportions can be controlled by specifying the probabilities for each mapping.
For instance, setting anon_probability to zero and the other two to 100 percent yields an equal mix
of freeable and free pages and no anonymous pages.

4.2 Mechanism Profiling
Before applying the mechanism to real-world workloads to reveal its effectiveness, it is necessary
to derive a comprehensive price model that enables the cost-benefit assessment. The approach pur-
sued by this thesis is to analyze the runtime behavior of the algorithm and derive a mathematical
model that approximates the time or the energy required for the compaction.
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4.2.1 Identifying the Variables

The first step to create a model from measurements is to identify the independent variables. The al-
gorithm is traced using the Linux perf [94] tool to examine in which parts the most of the execution
time is spent. The tool samples the execution of the compaction with a frequency of 4000 Hz and
writes the call stack of each sample into a file. The recorded call stacks are then visualized using
the FlameGraph [95] tool. In the flame graph, each rectangle represents a function, where functions
on top of each other represent nested functions calls. The width of each rectangle represents the
amount of samples and thus the relative time spent in the function.

Page migration Mapping adjustment Cache freeing Alloc. Other
34.18% 25.5% 20.44% 10.04% 9.84%

Figure 4.1 – Flame graph of 2 MiB slice offlining (ramslice_offline, Algorithm 3.1) with the equal
amount of free, freeable, and movable pages. The relevant parts of the algorithm handling page mi-
gration, mapping adjustment, cache freeing, and allocation are highlighted, illustrating how much
they contribute to the total runtime.

Figure 4.1 shows the flame graph for the offlining of 11 496 slices. The slice size is set to the
minimal size of 2 MiB and the slices contain equal amount of free, freeable, and movable pages
on average. This distribution is accomplished using the artificial fragmentation workload described
earlier. In the graph, parts of the algorithm are highlighted as follows: blue for freeing freeable
pages, red for migrating movable pages, and amber for adjusting their mappings. Additionally, the
search for migration target page frames (Algorithm 3.2) is shown in green.

As expected, handling of the movable pages consumes the most time. Along with mapping ad-
justments and searches for migration targets, which are necessary for every movable page, this
accounts for 69.72 percent of the total time. In contrast, freeing unused page cache takes only
about 20.44 percent of the total time, or roughly a third of the time spent on movable pages. All
movable pages in this measurement have the mapping count of one, meaning the amber portion of
the algorithm would increase with a higher mapping count. Finally, about 10 percent of the time
is spent in functions that cannot be attributed to any specific page type. The time spent in these
functions is either constant (disabling the per-core LRU and allocator caches) or depends on the
slice size (like free page-frame isolation).

Figure 4.2 zooms into the green portion of the first flame graph, showing the runtime behavior of
the migration target search in Algorithm 3.2. The number of free and freeable pages in the destina-
tion slices is equal, which facilitates comparison of their respective contributions to the total run-
time. The Algorithm 3.2 frees every freeable page it encounters. In this measurement, this process
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Freeable Other/Free
86.34% 13.66%

Figure 4.2 – Flame graph of the migration target search (ramslice_alloc, Algorithm 3.2) with the
equal amount of free and freeable pages in the scanned slices. The portion of responsible for acqui-
sition of freeable pages dominates the total runtime and is highlighted in blue.

accounts for over 86 percent of the total runtime. This emphasizes the importance of considering
the cost of page cache deallocation, especially when searching for migration targets, as isolating a
free buddy block is significantly faster.

4.2.2 Determining the Parameters

The flame graphs indicate that the runtime of the compaction process is primarily influenced by
three factors: the number of freeable and movable pages, and the total number of mappings for
these movable pages. To gain better understanding of how these factors impact the final runtime,
the artificial fragmentation workload program was enhanced with a new feature. This feature allows
specifying a probability range, rather than a fixed probability, for accessing specific mappings in the
allocation loop. The probability is varied as the program iterates over the pages of the mappings,
creating a fragmentation gradient in memory. This means that the slices in the resulting workload
vary in their contents. For example, the slices in the gradient can range from containing no movable
pages to consisting solely of movable pages, and the states in between.

For the following experiments, the slice size is increased to 64 MiB. The larger size ensures more
consistent results; the random irregularities in the artificial fragmentation workload disappear
when zooming out by increasing the slice size. To take page allocation costs out of the equation, the
dummy mode (Section 3.2.6) was used: the target page frames are preallocated before the offlining
begins. Using the new fragmentation gradient feature, five different workloads are generated. The
first one contains slices that range from empty to full and consist only of freeable page cache. Tech-
nically, each page in this workload has zero mappings. The remaining four workloads include only
movable pages, with the mapping count doubling for each subsequent workload.

Figure 4.3 (left) shows the scatter plot of compaction time against the fill level of the slice for
each of these experiments. It reveals a clear linear relationship between the number of pages in a
slice and the total compaction duration. By calculating the slope for each workload, it is possible
to determine the duration incurred per single page. Figure 4.3 (right) plots this per-page duration
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Figure 4.3 – Duration of the compaction depending on the amount of pages in it and their mapping
counts. The experiment with mapping count set to zero contains only freeable pages. The plot on
the right illustrates the slope of each line on the left.

for each experiment. On average, it takes 3900 clock cycles to free a single freeable page. For the
movable pages, it takes 12 074, 14 661, 19 855, and 30 342 clock cycles for 1, 2, 4, and 8 mappings,
respectively. Also these numbers demonstrate a clear linear dependency of the migration duration
on the amount of mappings, with an increase of 2610 clock cycles per each additional mapping.
The crossing of this line with the y-axis at 9443 clock cycles yields the duration of the migration
without the mapping-induced part.

Figure 4.4 – Duration of offlining an empty slice depending on the slice size. The dots indicate the
average and the error bars represent the standard deviation. The average offlining duration scales
linearly with the slice size.

The similar approach is used to determine the parameters that depend on the size of the slice,
but not on its contents. In this experiment, the system is rebooted with eight different slice sizes
ranging from 512 to 4096 page frames in increments of 512. Then, all the empty slices in the freshly
booted system are offlined (i.e., isolated from the buddy allocator). Figure 4.4 depicts the duration
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of offlining an empty slice as a function of its size. Although the measurements show a considerable
spread, the average durations still form a straight line. The function’s slope is 29 clock cycles per
page frame and the extrapolated constant duration is 69 469 clock cycles.

²Although splitting a zero-order block is not necessary in theory, the splitting function adjusts the page-frame
descriptor to indicate that the page-frame does not belong to a buddy block.

Benchmark Algorithm / Lines 𝝁 𝝈
Isolating a buddy block Alg. 3.2 / 15 – 17 55.3 27.2
Splitting an order 0 buddy block² Alg. 3.2 / 25 – 26 67.5 159.8
Splitting an order 1 buddy block Alg. 3.2 / 25 – 26 87.1 34.0
Splitting an order 2 buddy block Alg. 3.2 / 25 – 26 147.8 40.8
Isolating cache page from LRU Alg. 3.2 / 10 – 13 805.0 890.6
Evicting page from page cache Alg. 3.2 / 21 – 24 2409.8 2699.4

Table 4.1 – Results of microbenchmarks in the migration target search in clock cycles.

The final missing piece needed to construct a comprehensive model of compaction duration is
the time required for target allocation. Profiling this aspect externally is challenging without signif-
icantly modifying the algorithm, as it always prefers the most expensive slice. Instead, the relevant
parts of the algorithm were instrumented with time measurements. The results in Table 4.1 indi-
cate that acquiring a free page frame from the buddy allocator takes around 55 + 67.5 = 122.5
clock cycles in the worst case of a zero-order block. As the order of the buddy block increases, the
respective time to acquire a single page frame decreases. For example, splitting a second-order
block yields four page frames in 147.8 clock cycles, or 36.95 clock cycles per page frame. Isolating
a freeable page from the LRU lists requires 805 clock cycles on average, while evicting it from the
page cache to use it as the migration target takes approximately 2409.8 clock cycles, totaling to
3214.8 cycles per single freeable page.

4.2.3 Developing the Model

The results from profiling the mechanism yield sufficient information to model the compaction cost.
In the context of power management, the price unit represents the energy needed to perform the
compaction. However, this work adopts the simplified assumption that CPU time equates to energy.
As such, the price unit is defined as 100 clock cycles, denoted with a symbol “¤”³ for convenience.

³¤ is a generic currency sign introduced as the placeholder for national currencies in the first attempts to interna-
tionalize the ASCII standard [96].

Converting the results of the measurements in the previous sections from clock cycles to budget
units in ¤ yields the parameters in the column A of Table 4.2. The model’s accuracy is assessed using
a random artificial workload featuring a gradient of free, movable, and freeable pages with various
mapping counts. The duration of offlining each slice is recorded along with relevant variables. The
slice size is constant for all recorded samples and equals to 64 MiB.

Figure 4.5 (A) presents the results for the first model. The top diagram plots the estimated price
of each sample against the actual price. The darker spots represent a higher concentration of sam-
ples for those specific combinations. The closer the samples are to the diagonal red line, the more
precise the model is. The bottom plot is as a histogram of deviations from the actual duration, as
seen when looking along the diagonal red line of the top plot. In summary, the model shows a mean
squared error (MSE) value of 528 M¤2 and 99 percent of deviations are under 92 K¤ (9.2 million
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Model parameters [¤]
Sym. Description Experiment

A B C
𝑝slice Empty slice isolation (size-independent part) Fig. 4.4 695 695 6092
𝑝page Empty slice isolation per 1024 page frames Fig. 4.4 303 303 0
𝑝drop Freeing single freeable file page Fig. 4.3 39 39 39
𝑝move Copying page contents to the new page frame Fig. 4.3 94 100 5791
𝑝map Adjusting one mapping during migration Fig. 4.3 26 29 27
𝑝a,free Converting free frame into migration target Tab. 4.1 1 1 −5694
𝑝a,cache Converting a cache page into a migration target Tab. 4.1 32 25 −5659
Mean squared error [𝐌¤𝟐] 528 263 210
99th percentile of deviations [ms] 2.37 1.79 1.68

Table 4.2 – The parameters for each of the three analyzed price models. Model A is based on raw
measurements from mechanism profiling. Model B is the model A with manually tweaked parame-
ters to achieve better accuracy. The final model C is derived using the linear least squares method.

clock cycles or 2.37 ms @ 3.8 GHz, which is 7.6 percent of the maximal duration of 31.1 ms in the
analyzed dataset). The overwhelming majority of estimations are lower than the actual duration.

Next, the first model is manually tweaked by examining the outliers and varying the parameters
to achieve better results. Specifically, 𝑝move is increased from 94 to 100 ¤, 𝑝map is increased to 29 ¤,
and 𝑝a,cache is reduced to 25 ¤. The adjustments result in the second model B, whose accuracy is
depicted in Figure 4.5 (B). It exhibits improved accuracy with no significant bias towards under-
or overestimation and halves the initial MSE to 263 M¤2. The 99 percent of estimation errors fall
under 68.6 K¤ or 1.79 ms. This model is used for all further experiments in this chapter.

The third approach completely eliminates the need for direct measurements by relying on a
purely statistical method to calculate the coefficients. This approach involves formulating a mini-
mization problem that allows the construction of an equation, the solution of which provides the
optimal coefficients. Model C uses the linear least squares method [97] to derive these parameters.
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To begin with, the price model can be expressed using the linear equation (4.1). 𝑨 is the matrix
containing the values of independent variables for each slice and ⃗⃗𝒃 is the vector of the respective
offlining durations. Then, ⃗⃗𝒙 contains the model’s coefficients. Both 𝑨 and ⃗⃗𝒃 are easy to obtain
without instrumenting the kernel code. While the equation may not have an exact solution, it can
be solved approximately using minimization techniques. With linear least squares, the value of ⃗⃗𝒙
that minimizes the squared error ‖𝑨⃗⃗𝒙 − ⃗⃗𝒃‖2 is determined by solving 𝑨T𝑨⃗⃗𝒙 = 𝑨T ⃗⃗𝒃. The resulting
coefficients of ⃗⃗𝒙 are presented in column C of Table 4.2. This model yields the best accuracy with
the MSE of 210 M¤2 or 1.68 ms deviation on the 99th percentile.
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(A) Raw measurements (B) Tweaked measurements (C) Linear least squares
Figure 4.5 – The accuracy of each price model as a two-dimensional density plot of estimations vs.
the actual price and the histogram of deviations. The estimations falling along the red dashed line
match the actual value.

However, there are several important considerations when using this approach. Firstly, it does
not yield the 𝑝page coefficient as the dataset used when minimizing included only 64 MiB slices. As
a result, 𝑝slice encompasses both the constant and size-dependent components of runtime for this
specific slice size. Constructing a dataset that includes multiple slice sizes would require multiple
reboots. Also, with large slices and limited memory, it becomes challenging to provide a versatile
workload. For instance, with 1 GiB slices, there are only 28 slices in total in the movable zone,
thereby necessitating many iterations to comprehensively cover all scenarios.

Secondly, while the parameters are intended to reflect the runtime durations of specific parts
of the algorithm, some values exhibit anomalies. Notably, the value of 𝑝move is exorbitantly high
and 𝑝a,cache and 𝑝a,free are negative, which is nonsensical in terms of time durations. This can be ex-
plained by the fact that these variables are not fully independent: each move requires an allocation
(cache or free) and these terms compensate each other during price calculations. For the model to
be even more effective, it requires a more careful selection and consideration of truly independent
variables.

40



4 Analysis

4.2.4 Discussion

The costs of freeing freeable unmapped page-cache pages are considerably lower than migrating
a movable page; 𝑝drop = 39 ¤ is less than a third of 𝑝move + 𝑝map = 129 ¤. Additionally, freeing the
page cache enhances the compaction effectiveness by reducing the overall memory that needs to be
accommodated and thus decreasing the number of online slices after compaction. However, there
are severe downsides to freeing all freeable pages during the migration target search, as the dis-
crepancy between freeing the page cache and isolating an already free page frame is even more
pronounced, exceeding a factor of 20. Implementing a heuristic to skip useful cache pages during
the search could optimize this process. However, this requires a mechanism to identify such pages
(discussed in Section 3.3), which is currently absent in Linux. Moreover, the second price function
could be introduced to select target slices based not only on offlining effort, but also on target ac-
quisition effort.

Model derivation on new systems
When deploying Ramslice on a new system in the end-user setting, it is unrealistic to perform the
kernel profiling described in Section 4.2.2. Moreover, each system might behave differently and ex-
hibit a different relationship between parameters. Ideally, the process of deriving the model should
be automated. This could be achieved by either adjusting the parameters on the fly or by providing
a program that manages this task during deployment. The user would execute the training program
to transparently develop and install the model into the system’s configuration. The model deriva-
tion process could utilize artificial fragmentation workloads and statistical methods, such as least
squares, to determine the appropriate parameters.

4.3 Case Studies
With the price model established, the mechanism can now be applied to real-world workloads to
explore potential energy savings. As the memory controller of the Ryzen 7 PRO 5750G CPU does
not expose any DRAM power-saving mechanisms, this section simulates a hypothetical scenario as-
suming presence of the novel PARC feature (Table 2.3). The hypothetical memory system comprises
two channels, each hosting two ranks of eight parallel 8 Gib LPDDR5 devices. This arrangement
results in 8 Gib × 8 (chips) × 2 (ranks) × 2 (channels) = 32 GiB of memory in total with PARC
applicable at the granularity of 1 GiB. Thus, the slice size is set to 1 GiB.

Three different workloads are selected to analyze energy savings in case refresh of unused regions
is disabled via PARC. For each of the workloads, the following experiments were conducted:

baseline The run without any compaction
period 30s drop cache All unused page cache is freed⁴ every 30 seconds
period 30s budget ∞ Ramslice compaction with unlimited budget every 30 seconds
period 30s budget 𝑥 Ramslice compaction with budget 𝑥 every seconds

⁴echo 1 > /proc/sys/vm/drop_caches [77]

Before each experiment, the main memory is fully defragmented and thereby restored to a consis-
tent clean state by invoking Ramslice compaction with unlimited budget. These case studies focus
solely on energy savings and do not consider the total durations of the workloads. The workloads
are highly dynamic and last between 30 to 60 minutes. Any potential fluctuations in their duration
that are within the magnitude of several seconds are essentially random.

41



4 Analysis

Figure 4.6 – Memory utilization over time during LLVM compilation for each of the experiments.
The blue and red areas represent the amount of movable and freeable pages, respectively. The gray
area indicates the amount of 1 GiB slices containing allocated pages.
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4.3.1 LLVM Compilation

A suitable workload for analyzing Ramslice requires dynamic memory usage. Compilation is a good
candidate, as it involves spawning numerous parallel processes, each consuming varying amounts
of memory and exhibiting different lifetimes. Additionally, compilation performs many file accesses
and thus uses page cache extensively. These factors combined result in quick fragmentation. Con-
sequently, the first analyzed workload is the compilation of the LLVM toolchain [98]. On the used
machine, LLVM compilation with 16 parallel processes takes approximately 40 minutes to complete.
During this process, the memory usage peaks at 14.9 GiB and the compilation loads 6.2 GiB of files
into the page cache.

The memory usage during the baseline run without any compaction is shown in the top diagram
of Figure 4.6. In this figure, the red and blue areas indicate the amount of movable and freeable
pages in the memory at each point in time. The gray background illustrates the amount of slices
that contain at least one allocated page. These slices contain used memory, and therefore cannot
be offlined for energy savings. The course of this curve highlights the fragmentation issue very
vividly. Each time the memory utilization reaches a new peak, that portion of memory remains
unavailable for offlining until the end of the experiment. This occurs due to long-lived pages being
allocated within the respective slices, causing them to persist there for extensive amounts of time.
For instance, all 16 previously used slices still contain allocated pages after the compilation has
successfully terminated in the baseline run.

Dropping the cache periodically barely improves this situation. While the amount of fragmented
slices reduces to 14, the general tendency remains: once a slice is used, it remains populated. This
is different in the third graph that demonstrates the advantage of the Ramslice approach. When
compacting with unlimited budget, the page cache is dropped just as aggressively as in the drop
cache experiment. However, this time, the amount of nonempty slices closely follows the memory
utilization. This is because the long-living pages are either freed or migrated into other slices when
the memory utilization sinks.

To determine the optimal budget for offlining, it is essential to consider energy consumption
across the workload for each experiment. The net energy is composed of two opposing components.
On the one hand, energy can be saved by employing PARC. To calculate the respective savings, the
amount of empty slices in each experiment is integrated over time, yielding a GiB⋅s figure. This
value is then multiplied by the estimated normalized PARC savings of 9.19 mW/GiB from Table 2.3
to calculate the potentially saved energy in joules.

On the other hand, power is consumed while reclaiming the slices for offlining, either via Ram-
slice or by dropping the cache. For this system, the power usage is around 10 W when idle and
increases to 20 W during the compaction process. These values are measured using the built-in
power measurement capabilities of the Emerson MPH2 [99] power distribution unit that powers the
machine. To estimate the energy invested into slice reclamation, the total accumulated duration of
the Ramslice invocations across the workload is calculated. Then, this value is multiplied by 10 W
to approximate for the additional power consumption due to compaction.

Figure 4.7 (top) displays the two energy components for each experiment accumulated over its
whole duration. The orange bars represent the energy invested in compaction and the green bars
reflect the energy saved by offlining slices using PARC. The gray portions of the savings bars illus-
trate the theoretical limit of energy savings, achieved by maintaining fully compact memory with
no freeable pages. It is worth noting that the baseline figure for energy savings with no reclama-
tion measures presents an optimistic best-case scenario. This is because the memory is fully com-
pacted before each experiment, essentially yielding a system state equivalent to fresh boot. In a
real-world system with realistic uptime, the whole memory would likely be fragmented, resulting
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Figure 4.7 – Energy balance for LLVM compilation in each of the experiments. The top plot shows
the energy savings and their theoretical limit due to PARC and the invested energy to reclaim slices.
The bottom plots illustrate the net energy after subtracting investment from savings and the energy
investment per single invocation of Ramslice.

in minimal amount of slices available for offlining right at the start. In general, the results demon-
strate that—apart from the drop cache scenario—additional investments into compaction result
in higher energy savings. However, the dependency is not linear: while the increase from 8 M¤ to
16 M¤ almost quadruples the invested energy, the increase in savings remains minor.

The net energy gain due to compaction is revealed when subtracting the energy investment from
the energy savings. Figure 4.7 (bottom left) illustrates the net energy balance over the whole ex-
periment as a function of the compaction budget. The point with zero budget represents the base-
line run with no compaction. For all experiments in this case, the energy balance is positive. The
effectiveness of the approach is revealed by comparing it with the optimistic baseline case. With
budgets ranging from 2 to 8 M¤, energy savings exceed those of the baseline case, indicating that it
is beneficial to invest energy in compaction. That is, the invested energy is not only recovered, but
also provides for additional net energy gains. Specifically, with the budget of 4 M¤, a total of 40.8 J
is saved for the compilation run. Averaged across the whole workload, this amounts to 19.1 mW. As
illustrated in the bottom right plot of Figure 4.7, when using 4 M¤, 0.4 J are consumed per single
compaction invocation. This quantity shows high variation, as many compaction procedures are
interrupted early with remaining budget if the next cheapest slice in the reserve has a high cost.

The memory usage of the experiment with 4 M¤ compaction budget is shown in the bottom plot
of Figure 4.6. The curve delimiting the gray area illustrates why this budget is effective: apart from
the peak at around 1000 second mark, the amount of nonempty slices remains mostly constant.
Thus, low amount of redundant offlining operations are performed with this budget. In contrast,
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excessive budgets lead to offlining too many slices, necessitating the reactivation of other slices
when new memory allocations occur—without the chance of recovering the invested costs.

4.3.2 TPC-H Queries

Figure 4.8 – Energy balance for the TPC-H benchmark in each of the experiments.

The second workload is the business-decision support benchmark TPC-H [100] integrated into an
in-process SQL database DuckDB [101]. The TPC-H data set with the scaling factor of 100 is 26 GB
in size and contains sample customer data. The benchmark defines 22 complex queries that can be
performed on this data set. These queries are used to answer hypothetical business questions, like
shipping priority, revenue forecast, etc. Each query shows a different memory utilization pattern,
which makes them interesting for Ramslice analysis. To simulate a real-world scenario, the work-
load consists of 100 randomly selected queries with 30 second pauses in between.

Figure 4.8 and Figure 4.9 show the energy and memory usage for the experiments with this
workload. In contrast to LLVM compilation, the memory utilization is higher: it reaches 28 GiB at
its peak, with 8.4 GiB of total page cache being allocated. Just like in the LLVM case, the baseline
run and the run with periodic page-cache dropping show the tendency to develop fragmentation
quickly. In both runs, over 25 slices remain populated until the experiment concludes after a short
memory utilization peak of 28 GiB at the 100th second. Using compaction with unlimited budget,
the amount of online slices quickly falls after the peaks and follows the memory utilization. Limiting
the budget to 16 M¤, which is the optimal budget for this workload, adds some inertia to the course
of the gray curve. For instance, after the peak at the 300 second mark, six invocations of offlining
are required before the amount of online slices stabilizes at 21.
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Figure 4.9 – Memory utilization over time during the TPC-H benchmark for each of the exper-
iments.
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On the energy side, there are differences to the previous LLVM workload. The saved energy across
all approaches is lower, explained by the fact that the memory utilization is closer to the total zone
size of 28 GiB. In the baseline case with no active slice reclamation, only 28 J can be saved. When
compacting with unlimited budget, this figure reaches 320 J, with a high investment of approxi-
mately 350 J. The theoretical savings maximum when maintaining fully compact memory without
freeable pages fluctuates across experiments, ranging from 360 to 400 J. These fluctuations can be
attributed to different experiment durations and the general dynamic nature of the workload.

The best net energy gains are achieved when compacting with a budget within the 8 – 16 M¤
range. They reach 39 J or 12.4 mW across the workload. Overall, this workload is particularly suited
for Ramslice, as the net energy exceeds the baseline for all budgets over 2 M¤. Only when compact-
ing with a low budget of 2 M¤, the gains are lower than the baseline. The average energy investment
per Ramslice invocation is similar to the LLVM case across all budgets.

4.3.3 OpenStreetMap Import

Figure 4.10 – Energy balance for importing OpenStreetMap data into a PostgreSQL database.

The final workload is importing the OpenStreetMap data [102, 103] for North America into an
PostgreSQL [104] relational database. The import is done using an open source OSM2PGSQL tool,
which also processes geometries of geographical objects. This process is both CPU and memory
intensive, and uses page cache extensively. The dump of the geographical data for North America
is 15 GB in size. This is the biggest region that can be successfully imported without OSM2PGSQL
running out of memory and crashing. The total page cache volume loaded by the import is 25 GiB
and the maximum amount of movable memory reaches 18 GiB.
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This workload reveals a pathological case for Ramslice. As seen in Figure 4.10 (bottom left),
none of the budgets manage to achieve better energy efficiency than the baseline case, which itself
saves only 36.2 J. Furthermore, increasing the budget leads only to minimal increases in cumula-
tive offline slices. Setting the budget to infinity results in an energy investment of over 1.7 kJ. The
resulting savings are only 273 J out of theoretically possible 403.9 J.

Figure 4.11 sheds some light on the reason for the failure to achieve energy gains. When com-
pacting with a limited budget of 8 M¤, the memory utilization is similar to the baseline experiment.
Essentially, no slices are offlined, which could mean that the budget is either insufficient to offline
even the cheapest slice or that slices are reactivated simultaneously with offlining. The former
scenario is unlikely, as the investment per invocation is consistent with the two previous studies,
suggesting that significant work is indeed being carried out.

The memory utilization when compacting with unlimited budget supports the latter explanation.
Every time a substantial portion of the page cache is freed, an equivalent amount is promptly re-
loaded into the memory. These fluctuations reach the extreme extent between the 1700th and the
2500th seconds of the experiment, where the volume of the file cache oscillates rapidly between 5
and 25 GiB. The same oscillations can be observed when periodically dropping the cache without
migration. This behavior suggests that the page cache evicted during compaction is soon required
again, leading to its reloading into memory. In this way, the energy investment results in even more
energy being wasted on loading file contents into the memory again.

4.3.4 Discussion

The results of applying Ramslice vary across the three workloads. Both LLVM and TPC-H benefit
from the additional energy investment to compact the memory. The energy expenditure not only
pays itself off, but also results in about 40 J of net energy gain, translating to an average power
reduction of over 12 mW. Projected over eight hours, this amounts to more than 340 J—the energy
required to melt 1 g of ice. When scaled to numerous server machines, which often have memory
overprovisioned for handling request bursts yet remain underutilized most of the time, the potential
savings in energy and electricity costs could be substantial.

Both TPC-H and LLVM generally profit from freeing the unused page cache, as it reduces the
overall memory utilization and consequently reduces the amount of online slices. However, the
OSM2PGSQL workload presents a scenario where freeing the page cache not only fails to offline
any slices, but potentially comes with additional performance penalty. As a result, this leads solely
to energy losses.

In general, for different workloads different budgets lead to the best energy gains. However, in
both successful cases they fall into the 4 – 16 M¤ range. The optimal budget may also depend on
the specific hardware and system configuration. For all three workloads, one compaction run with
8 M¤ budget translated into approximately 0.485 J of energy investment on average. As a rough
feeling for this budget, 52.8 GiB⋅s (calculated as 0.485 J

9.19 mW/GiB) have to be offlined with PARC to recover
this energy. In simpler terms, a single 1 GiB slice must remain in a power-down state for just under
one minute.
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Figure 4.11 – Memory utilization over time while importing OpenStreetMap data into a PostgreSQL
database.
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4.4 Effect on Latency
The final benchmark aims to examine the impact of the compaction process on other applications
running within the system. For instance, periodic compaction could affect server latency, potentially
resulting in degraded service and consequential financial costs. For this benchmark, Redis [105]
in-memory database has been selected.

The goal of the setup is to trigger the migration of the pages belonging to Redis while it is actively
serving requests and assess the impact of it on the client-side latency. To provoke the migration of
Redis’ pages, they have to be distributed throughout the memory in a fragmentation pattern. For
this purpose, the artificial fragmentation program from Section 4.1 is employed once again. This
time, it generates a workload comprising 10 GiB of free and 10 GiB of anonymous pages mixed
randomly. Subsequently, the Redis server is populated with 10 GiB of data. As a consequence, Linux
satisfies allocations coming from Redis using the free page frames that are intermixed with the
anonymous pages of the artificial fragmentation. After the key-value store population is complete,
the artificial fragmentation program is terminated and its anonymous pages are freed. This results
in a 50:50 mix of Redis’ anonymous pages and free page frames, which belonged to the fragmen-
tation program before its termination.

After populating the database and distributing its pages throughout the memory, the Memtier
benchmark [106] running on the same machine is used to perform and benchmark GET requests
to the Redis server. The benchmarking program is extended to output individual samples of all
requests into a file, enabling analysis of the latency over time. Simultaneously, compaction limited
to one slice with unlimited budget is triggered every five seconds. Thus, a each invocation migrates
approximately 512 MiB of pages belonging to Redis from one 1 GiB slice.

Figure 4.12 (top) demonstrates the running average, as well as the minimum and the maximum
of the recorded latency over time. The regions with red background along the x-axis highlight the
time during which Ramslice is active. The average latency curve indicates a moderate increase dur-
ing each compaction event, rising from approximately 3.7 to 4.5 ms or 21.6 percent. The maximum
latency shows the same tendency: during the first compaction run at the 2 second mark it rises by
20 percent, from 7.5 to 9 ms.

Causes of latency impact
There are multiple ways in which the application’s performance can be affected by compacting its
memory. As already established, if it performs file operations and the respective page cache gets
freed, additional latency incurred on the subsequent file accesses. However, Redis is an in-memory
database and does not perform any file operations to serve the requests, so this scenario is not
applicable.

Another potential cause of increased latency is page faults. During migration, the page-table en-
tries of the page in user application are temporarily replaced with placeholder migration entries. If
the application happens to access a page that is currently being migrated, the MMU fails to resolve
the translation and initiates a page fault, transferring the control flow to the OS. In Linux, the page
fault handler waits until the migration is completed before proceeding with program’s execution.
Also this is not the case in the Redis experiment. With a 10 GiB working set, the probability of Redis
accessing a page that is currently being migrated is extremely low. In fact, the tracing of the page
faults with perf [94] in this experiment records zero page faults during compaction.

Finally, the third potential reason for increased latency during Redis execution is the TLB flushing.
Performing page-table walks on each memory access is too costly, as it requires another four to five
memory accesses to traverse the page tables on modern architectures. To mitigate this overhead,
the MMU incorporates the translation lookaside buffer (TLB), a cache that contains recent transla-
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Figure 4.12 – Latencies of GET requests to a Redis in-memory database and the TLB flushing rates
on the CPU cores where Redis is running. The red vertical stripes indicates the time during which
the compaction process is active. The latency spikes at the beginning of each second correspond to
the residual 1 Hz tick interrupt in Linux [107].

tions. If the virtual address is present in the TLB on a memory access, the corresponding physical
address is used, eliminating the need for page-table walks.

Unlike the CPU caches, the TLB must be explicitly managed. If the OS modifies the translation
mapping or its access rights, the applications continue using the outdated cached translation as long
as it remains in the TLB. Consequently, to prevent the applications from accessing invalid memory,
entries containing old translations must be explicitly flushed from the TLB. Notably, the flushing
operation is local to the current CPU core. If the outdated entries also reside on a different CPU core,
the OS issues a software interrupt to it. The interrupt pauses the execution of the user application,
flushes the respective entries from the local TLBs, and notifies the OS about completion.

As shown in the bottom plot of Figure 4.12, this is precisely the cause of the latency increase
during compaction in the Redis experiment. The plot illustrates the amount of TLB flushes recorded
using perf on the CPU core where Redis is running. When migrating the pages, the TLB flushing
rate reaches over 200 ⋅ 106 flushes per second. The flushing begin aligns with the latency surge,
but does not start immediately with the compaction process. This can be explained by looking at
Algorithm 3.1: at first, it isolates free page frames from the buddy allocator, frees freeable pages,
and collects the movable pages in the movable list. Only after this step—which takes here about
one fourth of the total compaction time—the actual migration and the TLB flushing begins.

4.4.1 Discussion

The compaction of memory in order to increase energy savings not only demands investing CPU
time but can also impact the performance of applications running within the system. The primary
and most probable cause of this is the TLB flushing: a process evicting the outdated translation
mappings from the MMU’s translation cache. This step is essential because migration cannot pro-
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ceed with copying the contents from the source page to the destination page until it is confirmed
that the application will not make any modifications to the source page.

Currently, this flushing occurs for each page separately, necessitating a separate interrupt for
each migration. The performance impact could be reduced by batching multiple migrations and
flushing multiple entries collectively in a single interrupt. The mechanism for this is already present
in Linux. However, it is not used by page the migration infrastructure as it would complicate the
logic for an operation that is rarely performed.

In addition to implementing batched TLB flushing, there are other potential improvements that
can be made to the migration infrastructure. Currently, the page table entries of the pages being
migrated are removed completely and cause page faults for any kind of accesses. However, concur-
rent reads from the migrated page are not inherently problematic; only concurrent writes pose a
risk of a race condition leading to inconsistent page contents. As an alternative to complete entry
removal, the entry could be set to read-only before migration and switched to point to the new page
after migration. In this way, the page-fault penalty would only happen for writes to the page under
migration. However, this optimization is only viable for read-only pages. If the page is writable, a
single migration would require two TLB flushes: one to degrade the access rights and another after
modifying the entry to point to the new page frame. Perhaps in combination with TLB batching
this optimization also becomes feasible for writable pages.
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C ONC LU SION 5
As outlined in Chapter 2, there are a number of technical possibilities to deactivate portions of
DRAM that do not contain any useful data, offering energy savings and even performance improve-
ments. However, effective utilization of these possibilities necessitates close cooperation between
hardware and software. On the hardware side, the SDRAM chips, whose functional scope is strictly
defined by the JEDEC standards, must provide an interface to their internal power management.
Furthermore, these interfaces must be passed through to the software by the intermediate layers in
between, particularly the memory controller and the CPU. There is a growing interest for these fea-
tures within the industry, likely motivated by the efforts to maximize battery life of mobile devices.
Notably, the latest LPDDR5 standard [34] introduces the Partial-Array Refresh Control (PARC) fea-
ture. With PARC, the granularity of the segments that can be deactivated is brought down to 1 GiB
for the first time since introduction of SDRAM. However, no CPUs on the market currently provide
software access to this feature.

This situation is unsurprising given that software support for DRAM power management is nearly
nonexistent. While the bare minimum OS support, entailing identification of the unused memory
regions, is trivial to implement, it would be quickly rendered futile by the outdated assumptions
underpinning the design of the contemporary operating systems. Specifically, with the way the
physical memory is managed today, it inevitably becomes (1) filled with unused file cache and (2)
cluttered by external fragmentation. Therefore, the adequate OS support for DRAM power man-
agement requires more than basic bookkeeping: it must also keep the file cache at bay and offer
a mechanism for active memory defragmentation via migration. Both facilities must be aware of
costs and benefits of their operation, enabling analysis of whether the invested energy or CPU time
is likely to be recovered.

As a response to these challenges, this thesis approaches the lack of DRAM power management
support from the perspective of system software. Its primary contribution is an algorithm for active
memory defragmentation that simultaneously reduces the amount of file cache during its operation.
The algorithm is cost-aware and is theoretically capable of achieving optimal defragmentation with
minimal effort. To test the concept in practice, it has been implemented in the Linux kernel 6.1
under the name Ramslice. The evaluation profiles the costs of the mechanism’s operations to de-
velop the price model and applies it to three real-world workload to assess the potential energy
savings. Finally, it investigates the impact of memory migration on the latency of a server applica-
tion, discusses the underlying causes, and proposes improvements to the Linux memory migration
infrastructure.

The three workloads used for the energy analysis simulate a hypothetical scenario in which con-
tiguous 1 GiB memory regions can be disabled using PARC to conserve energy. The experiments
demonstrate that the energy expended by Ramslice to reorganize the memory contents is not only
recuperated but also results in additional net energy savings. For instance, the energy consumption
of the LLVM compilation process is reduced by 40.8 J through periodic compaction with Ramslice.
This translates to a reduction in average power consumption of 19.1 mW. In another benchmark
involving business-related queries on a customer database, the average power consumption drops
by 12.4 mW.
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Ultimately, this work challenges the outdated assumptions that (1) unused memory is a wasted
resource and (2) all page frames are equal. It demonstrates that from the operating system’s per-
spective, it is worthwhile to invest effort in evicting the file cache and reorganizing the physical
memory to disable portions of DRAM. The invested energy is recovered even in highly dynamic
workloads such as the compilation of a large software project. These energy saving figures scale
quickly when applied to numerous server machines, which tend to be overprovisioned in their
memory resources [21]. The respective changes to the Linux kernel are nonintrusive and maintain
acceptable complexity. Hopefully, these findings will motivate manufacturers to accelerate the in-
troduction of novel DRAM power-saving features into general-purpose customer hardware.

5.1 Future Work
There is a significant potential for future improvements in the Ramslice implementation, highlight-
ing the extensiveness of this research area. One of its primary drawbacks is its rudimentary handling
of page cache. To maximize the effectiveness of the compaction, Ramslice evicts every unused cache
page that it encounters. While this strategy maximizes the amount of unused DRAM segments im-
mediately after compaction, it fails to consider the hidden costs of the page-cache eviction, which
occur when programs access the evicted files in the near future. These costs are evident in the
OSM2PGSQL benchmark, where Ramslice fails to achieve energy savings, as it consumes energy
and time evicting pages that are immediately reloaded into memory.

The Linux memory migration infrastructure offers opportunities for enhancement as well. Cur-
rently, it flushes the TLB of all CPU cores individually for each migrated page, significantly affecting
the performance of other applications within the system. In the Redis benchmark, this results in
an over 20 percent increase in latency. To alleviate this overhead, the migration mechanism can
be redesigned to batch migrations and TLB flushes, thereby reducing the amount of interrupts on
remote cores. Moreover, it can be enhanced to cleverly handle read-only pages, preventing unnec-
essary page faults when a page under migration is accessed.

While the underlying concept has no limitations regarding the size and contiguity of the man-
aged DRAM segments, the Linux implementation is constrained to contiguous memory blocks that
are integer multiples of 2 MiB. This limitation stems from usage of the pageblock infrastructure in
Linux that is used to implement memory isolation. Additionally, the slice size is determined at boot
time and remains fixed throughout the system’s runtime. An improved solution for DRAM power
management would allow for segments of arbitrary size and contiguity, with the potential to adjust
them dynamically at runtime. However, without the hardware support on the market, the feasibility
of the additional technical complexity to support this remains unclear.

The currently developed price model is derived from profiling the algorithm within the kernel.
To enable deployment of Ramslice in the end-user settings, a way to derive the price model trans-
parently without user interaction is necessary. As shown in Chapter 4, simple statistical methods
have proven effective in determining the model parameters, requiring minimal to no alterations to
the kernel. Further investigation into this direction can help identify the most effective strategy for
statistical modeling.

Finally, it is worthwhile to explore other suited problem areas where Ramslice compaction could
prove useful. For instance in Linux, allocating giant 1 GiB pages is typically only reliable during the
boot process; subsequent attempts are possible but often unsuccessful. Ramslice can facilitate the
acquisition of such pages by invoking its compaction process. Furthermore, devices such as video
camera on mobile systems may require large (>512 MiB [89]) contiguous chunks of memory for
DMA. Also here, Ramslice can be employed to efficiently obtain a free chunk of memory on demand.
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AR Auto-Refresh
COW Copy-On-Write
DDR double data rate
DIMM dual in-line memory module
DRAM dynamic random-access memory
HBM High-Bandwidth Memory
LRU least recently used
MMU Memory Management Unit
MPSM Maximum Power Saving Mode
MSE mean squared error
NUMA Non-Uniform Memory Access
ODT on-die termination
PARC Partial-Array Refresh Control
PASR Partial-Array Self-Refresh
PFN page-frame number
PFRA page-frame reclamation algorithm
SDRAM synchronous dynamic random-access memory
SR Self-Refresh
SRAM static random-access memory
SSD solid state drive
THP transparent huge page
TLB translation lookaside buffer
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