1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
//! This modules contains the pieces for parsing and creating Multiboot information structures.
//!
//! If you don't know where to start, take a look at [`Multiboot`].
//!
//! [`Multiboot`]: struct.Multiboot.html
use core::cmp;
use core::convert::TryInto;
use core::fmt;
use core::fmt::Debug;
use core::mem::{size_of, transmute};
use core::slice;
use core::str;
/// Value found in %eax after multiboot jumps to our entry point.
pub const SIGNATURE_EAX: u32 = 0x2BADB002;
pub type PAddr = u64;
/// Implement this trait to be able to get or set fields containing a pointer.
///
/// Memory translation, allocation and deallocation happens here.
pub trait MemoryManagement {
/// Translates physical addr + size into a kernel accessible slice.
///
/// The simplest paddr_to_slice function would for example be just the
/// identity function. But this may vary depending on how your page table
/// layout looks like.
///
/// If you only want to set fields, this can just always return `None`.
///
/// # Safety
/// Pretty unsafe. Translate a physical buffer in multiboot into something
/// accessible in the current address space. Probably involves
/// querying/knowledge about page-table setup. Also might want to verify
/// that multiboot information is actually valid.
unsafe fn paddr_to_slice(&self, addr: PAddr, length: usize) -> Option<&'static [u8]>;
/// Allocates `length` bytes.
///
/// The returned tuple consists of the physical address (that goes into the struct)
/// and the slice which to use to write to.
///
/// If you only want to read fields, this can just always return `None`.
///
/// # Safety
/// Lifetime of buffer should be >= self.
unsafe fn allocate(&mut self, length: usize) -> Option<(PAddr, &mut [u8])>;
/// Free the previously allocated memory.
///
/// This should handle null pointers by doing nothing.
///
/// If you only want to read fields, this can just always panic.
///
/// # Safety
/// TBD.
unsafe fn deallocate(&mut self, addr: PAddr);
}
/// Multiboot struct clients mainly interact with
///
/// To create this use [`Multiboot::from_ptr`] or [`Multiboot::from_ref`].
///
/// [`Multiboot::from_ptr`]: struct.Multiboot.html#method.from_ptr
/// [`Multiboot::from_ref`]: struct.Multiboot.html#method.from_ref
pub struct Multiboot<'a, 'b> {
header: &'a mut MultibootInfo,
memory_management: &'b mut dyn MemoryManagement,
}
/// Representation of Multiboot Information according to specification.
///
///<rawtext>
/// +-------------------+
/// 0 | flags | (required)
/// +-------------------+
/// 4 | mem_lower | (present if flags[0] is set)
/// 8 | mem_upper | (present if flags[0] is set)
/// +-------------------+
/// 12 | boot_device | (present if flags[1] is set)
/// +-------------------+
/// 16 | cmdline | (present if flags[2] is set)
/// +-------------------+
/// 20 | mods_count | (present if flags[3] is set)
/// 24 | mods_addr | (present if flags[3] is set)
/// +-------------------+
/// 28 - 40 | syms | (present if flags[4] or
/// | | flags[5] is set)
/// +-------------------+
/// 44 | mmap_length | (present if flags[6] is set)
/// 48 | mmap_addr | (present if flags[6] is set)
/// +-------------------+
/// 52 | drives_length | (present if flags[7] is set)
/// 56 | drives_addr | (present if flags[7] is set)
/// +-------------------+
/// 60 | config_table | (present if flags[8] is set)
/// +-------------------+
/// 64 | boot_loader_name | (present if flags[9] is set)
/// +-------------------+
/// 68 | apm_table | (present if flags[10] is set)
/// +-------------------+
/// 72 | vbe_control_info | (present if flags[11] is set)
/// 76 | vbe_mode_info |
/// 80 | vbe_mode |
/// 82 | vbe_interface_seg |
/// 84 | vbe_interface_off |
/// 86 | vbe_interface_len |
/// +-------------------+
/// 88 | framebuffer_addr | (present if flags[12] is set)
/// 96 | framebuffer_pitch |
/// 100 | framebuffer_width |
/// 104 | framebuffer_height|
/// 108 | framebuffer_bpp |
/// 109 | framebuffer_type |
/// 110-115 | color_info |
/// +-------------------+
///</rawtext>
///
#[repr(C)]
#[derive(Default)]
pub struct MultibootInfo {
flags: u32,
mem_lower: u32,
mem_upper: u32,
boot_device: BootDevice,
/// The command line is a normal C-style zero-terminated string.
cmdline: u32,
mods_count: u32,
mods_addr: u32,
symbols: Symbols,
mmap_length: u32,
mmap_addr: u32,
drives_length: u32,
drives_addr: u32,
_config_table: u32,
boot_loader_name: u32,
_apm_table: u32,
_vbe_control_info: u32,
_vbe_mode_info: u32,
_vbe_mode: u16,
_vbe_interface_seg: u16,
_vbe_interface_off: u16,
_vbe_interface_len: u16,
framebuffer_table: FramebufferTable,
}
/// Multiboot structure.
impl<'a, 'b> Multiboot<'a, 'b> {
/// Initializes the multiboot structure from a passed address.
///
/// This is the way to go, if you're writing a kernel.
///
/// # Arguments
///
/// * `mboot_ptr` - The physical address of the multiboot header. On qemu for example
/// this is typically at 0x9500.
/// * `memory_management` - Translation of the physical addresses into kernel addresses,
/// allocation and deallocation of memory.
/// See the [`MemoryManagement`] description for more details.
///
/// # Safety
/// The user must ensure that mboot_ptr holds the physical address of a valid
/// Multiboot1 structure and that memory management provides correct translations.
///
/// [`MemoryManagement`]: trait.MemoryManagement.html
pub unsafe fn from_ptr(
mboot_ptr: PAddr,
memory_management: &'b mut dyn MemoryManagement,
) -> Option<Multiboot<'a, 'b>> {
memory_management
.paddr_to_slice(mboot_ptr, size_of::<MultibootInfo>())
.map(move |inner| {
let info = &mut *(inner.as_ptr() as *mut MultibootInfo);
Multiboot {
header: info,
memory_management,
}
})
}
/// Initializes this struct from an already existing [`MultibootInfo`] reference.
///
/// In combination with [`MultibootInfo::default`] this is useful for writing a bootloader.
///
/// # Arguments
///
/// * `info` - The (mutable) reference to a [`MultibootInfo`] struct.
/// * `memory_management` - Translation of the physical addresses into kernel addresses,
/// allocation and deallocation of memory.
/// See the [`MemoryManagement`] description for more details.
///
/// # Safety
/// The user must ensure that the memory management can allocate memory.
///
/// [`MultibootInfo`]: struct.MultibootInfo.html
/// [`MultibootInfo::default`]: struct.MultibootInfo.html#impl-Default
pub fn from_ref(
info: &'a mut MultibootInfo,
memory_management: &'b mut dyn MemoryManagement,
) -> Self {
Self {
header: info,
memory_management,
}
}
unsafe fn cast<T>(&self, addr: PAddr) -> Option<&T> {
self.memory_management
.paddr_to_slice(addr, size_of::<T>())
.map(|inner| &*(inner.as_ptr() as *const T))
}
/// Convert a C string into a u8 slice and from there into a &str.
/// This unsafe block builds on assumption that multiboot strings are sane.
unsafe fn convert_c_string(&self, string: PAddr) -> Option<&'a str> {
if string == 0 {
return None;
}
let mut len = 0;
let mut ptr = string;
while let Some(byte) = self.memory_management.paddr_to_slice(ptr, 1) {
if byte == [0] {
break;
}
ptr += 1;
len += 1;
}
self.memory_management
.paddr_to_slice(string, len)
.map(|slice| str::from_utf8_unchecked(slice))
}
/// Convert a &str into a u8 slice and from there into a C string.
///
/// This unsafe block requires the possibility to allocate memory
/// (and assumes that this memory can be addresses using an u32).
unsafe fn convert_to_c_string(&mut self, string: Option<&str>) -> u32 {
match string {
Some(s) => {
let bytes = s.bytes();
let len = bytes.len();
let (addr, slice) = self.memory_management.allocate(len + 1).unwrap();
for (src, dst) in bytes.chain(core::iter::once(0)).zip(slice.iter_mut()) {
*dst = src;
}
addr.try_into().unwrap()
}
None => 0,
}
}
flag!(
doc = "If true, then the `mem_upper` and `mem_lower` fields are valid.",
has_memory_bounds,
0
);
flag!(
doc = "If true, then the `boot_device` field is valid.",
has_boot_device,
1
);
flag!(
doc = "If true, then the `cmdline` field is valid.",
has_cmdline,
2
);
flag!(
doc = "If true, then the `mods_addr` and `mods_count` fields are valid.",
has_modules,
3
);
flag!(
doc = "If true, then the `syms` field is valid and contains AOut symbols.",
has_aout_symbols,
4
);
flag!(
doc = "If true, then the `syms` field is valid and containts ELF symbols.",
has_elf_symbols,
5
);
flag!(
doc = "If true, then the `mmap_addr` and `mmap_length` fields are valid.",
has_memory_map,
6
);
flag!(
doc = "If true, then the `drives_addr` and `drives_length` fields are valid.",
has_drives,
7
);
flag!(
doc = "If true, then the `config_table` field is valid.",
has_config_table,
8
);
flag!(
doc = "If true, then the `boot_loader_name` field is valid.",
has_boot_loader_name,
9
);
flag!(
doc = "If true, then the `apm_table` field is valid.",
has_apm_table,
10
);
flag!(
doc = "If true, then the `vbe_*` fields are valid.",
has_vbe,
11
);
flag!(
doc = "If true, then the framebuffer table is valid.",
has_framebuffer_table,
12
);
/// Indicate the amount of lower memory in kilobytes.
///
/// Lower memory starts at address 0. The maximum possible value for
/// lower memory is 640 kilobytes.
pub fn lower_memory_bound(&self) -> Option<u32> {
match self.has_memory_bounds() {
true => Some(self.header.mem_lower),
false => None,
}
}
/// Indicate the amount of upper memory in kilobytes.
///
/// Upper memory starts at address 1 megabyte.
/// The value returned for upper memory is maximally the address of
/// the first upper memory hole minus 1 megabyte. It is not guaranteed
/// to be this value.
pub fn upper_memory_bound(&self) -> Option<u32> {
match self.has_memory_bounds() {
true => Some(self.header.mem_upper),
false => None,
}
}
/// Sets the memory bounds (lower, upper).
///
/// This is one call because Multiboot requires both or none to be set.
pub fn set_memory_bounds(&mut self, bounds: Option<(u32, u32)>) {
self.set_has_memory_bounds(bounds.is_some());
if let Some((lower, upper)) = bounds {
self.header.mem_lower = lower;
self.header.mem_upper = upper;
}
}
/// Indicates which bios disk device the boot loader loaded the OS image from.
///
/// If the OS image was not loaded from a bios disk, then this
/// returns None.
/// The operating system may use this field as a hint for determining its
/// own root device, but is not required to.
pub fn boot_device(&self) -> Option<BootDevice> {
match self.has_boot_device() {
true => Some(self.header.boot_device.clone()),
false => None,
}
}
/// Command line passed to the kernel.
pub fn command_line(&self) -> Option<&'a str> {
if self.has_cmdline() {
unsafe { self.convert_c_string(self.header.cmdline as PAddr) }
} else {
None
}
}
/// Command line to be passed to the kernel.
///
/// The given string will be copied to newly allocated memory.
pub fn set_command_line(&mut self, cmdline: Option<&str>) {
// free the old string if it exists
if self.has_cmdline() {
unsafe {
self.memory_management
.deallocate(self.header.cmdline.into())
};
}
self.set_has_cmdline(cmdline.is_some());
self.header.cmdline = unsafe { self.convert_to_c_string(cmdline) };
}
/// Get the name of the bootloader.
pub fn boot_loader_name(&self) -> Option<&'a str> {
if self.has_boot_loader_name() {
unsafe { self.convert_c_string(self.header.boot_loader_name as PAddr) }
} else {
None
}
}
/// Set the name of the bootloader.
///
/// The given string will be copied to newly allocated memory.
pub fn set_boot_loader_name(&mut self, name: Option<&str>) {
// free the old string if it exists
if self.has_boot_loader_name() {
unsafe {
self.memory_management
.deallocate(self.header.boot_loader_name.into())
};
}
self.set_has_boot_loader_name(name.is_some());
self.header.boot_loader_name = unsafe { self.convert_to_c_string(name) };
}
/// Discover all additional modules in multiboot.
pub fn modules(&'a self) -> Option<ModuleIter<'a, 'b>> {
if self.has_modules() {
unsafe {
self.memory_management
.paddr_to_slice(
self.header.mods_addr as PAddr,
self.header.mods_count as usize * size_of::<MBModule>(),
)
.map(|slice| {
let ptr = transmute(slice.as_ptr());
let mods = slice::from_raw_parts(ptr, self.header.mods_count as usize);
ModuleIter { mb: self, mods }
})
}
} else {
None
}
}
/// Publish modules to the kernel.
///
/// This copies the given metadata into newly allocated memory.
///
/// Note that the addresses in each [`Module`] must be and stay valid.
///
/// [`Module`]: struct.Module.html
pub fn set_modules(&mut self, modules: Option<&[Module]>) {
// free the existing modules
if self.has_modules() {
unsafe {
if let Some(mods) = self.memory_management.paddr_to_slice(
self.header.mods_addr.into(),
self.header.mods_count as usize * core::mem::size_of::<MBModule>(),
) {
let mods = slice::from_raw_parts(
mods.as_ptr().cast::<MBModule>(),
self.header.mods_count as usize,
);
for module in mods {
self.memory_management.deallocate(module.string.into());
}
self.memory_management
.deallocate(self.header.mods_addr.into());
}
}
}
self.set_has_modules(modules.is_some());
if let Some(mods) = modules {
let len = mods.len();
self.header.mods_count = mods.len().try_into().unwrap();
self.header.mods_addr = unsafe {
let (addr, slice) = self
.memory_management
.allocate(len * core::mem::size_of::<MBModule>())
.unwrap();
// change type
let slice = slice::from_raw_parts_mut(slice.as_mut_ptr().cast::<MBModule>(), len);
for (src, dst) in mods.iter().zip(slice.iter_mut()) {
*dst = MBModule {
start: src.start.try_into().unwrap(),
end: src.end.try_into().unwrap(),
string: self.convert_to_c_string(src.string),
reserved: 0,
}
}
addr.try_into().unwrap()
};
}
}
/// Get the symbols.
pub fn symbols(&self) -> Option<SymbolType> {
if self.has_elf_symbols() & self.has_aout_symbols() {
// this is not supported
return None;
}
if self.has_elf_symbols() {
return Some(SymbolType::Elf(unsafe { self.header.symbols.elf }));
}
if self.has_aout_symbols() {
return Some(SymbolType::AOut(unsafe { self.header.symbols.aout }));
}
None
}
/// Set the symbols.
///
/// Note that the address in either [`AOutSymbols`] or [`ElfSymbols`] must stay valid.
///
/// [`AOutSymbols`]: struct.AOutSymbols.html
/// [`ElfSymbols`]: struct.ElfSymbols.html
pub fn set_symbols(&mut self, symbols: Option<SymbolType>) {
match symbols {
None => {
self.set_has_aout_symbols(false);
self.set_has_elf_symbols(false);
}
Some(SymbolType::AOut(a)) => {
self.set_has_aout_symbols(true);
self.set_has_elf_symbols(false);
self.header.symbols.aout = a;
}
Some(SymbolType::Elf(e)) => {
self.set_has_aout_symbols(false);
self.set_has_elf_symbols(true);
self.header.symbols.elf = e;
}
}
}
/// Discover all memory regions in the multiboot memory map.
pub fn memory_regions(&'a self) -> Option<MemoryMapIter<'a, 'b>> {
match self.has_memory_map() {
true => {
let start = self.header.mmap_addr;
let end = self.header.mmap_addr + self.header.mmap_length;
Some(MemoryMapIter {
current: start,
end,
mb: self,
})
}
false => None,
}
}
/// Publish the memory regions to the kernel.
///
/// The parameter is a pair of address and number of [`MemoryEntry`]s.
///
/// Note that the underlying memory has to stay intact.
///
/// [`MemoryEntry`]: struct.MemoryEntry.html
pub fn set_memory_regions(&mut self, regions: Option<(PAddr, usize)>) {
self.set_has_memory_map(regions.is_some());
if let Some((addr, count)) = regions {
self.header.mmap_addr = addr.try_into().unwrap();
self.header.mmap_length = (count * core::mem::size_of::<MemoryEntry>())
.try_into()
.unwrap();
}
}
/// Return end address of multiboot image.
///
/// This function can be used to figure out a (hopefully) safe offset
/// in the first region of memory to start using as free memory.
pub fn find_highest_address(&self) -> PAddr {
let end = cmp::max(
self.header.cmdline as u64 + self.command_line().map_or(0, |f| f.len()) as u64,
self.header.boot_loader_name as u64
+ self.boot_loader_name().map_or(0, |f| f.len()) as u64,
)
.max(match self.symbols() {
Some(SymbolType::Elf(e)) => (e.addr + e.num * e.size) as u64,
Some(SymbolType::AOut(a)) => {
(a.addr + a.tabsize + a.strsize + 2 * core::mem::size_of::<u32>() as u32) as u64
}
None => 0,
})
.max((self.header.mmap_addr + self.header.mmap_length) as u64)
.max((self.header.drives_addr + self.header.drives_length) as u64)
.max(
self.header.mods_addr as u64
+ self.header.mods_count as u64 * core::mem::size_of::<MBModule>() as u64,
)
.max(
self.modules()
.into_iter()
.flatten()
.map(|m| m.end)
.max()
.unwrap_or(0),
);
round_up!(end, 4096)
}
/// Return the framebuffer table, if it exists.
pub fn framebuffer_table(&self) -> Option<&FramebufferTable> {
if self.has_framebuffer_table() {
Some(&self.header.framebuffer_table)
} else {
None
}
}
/// Set the framebuffer table, if it exists.
pub fn set_framebuffer_table(&mut self, table: Option<FramebufferTable>) {
self.set_has_framebuffer_table(table.is_some());
self.header.framebuffer_table = match table {
Some(t) => t,
None => FramebufferTable::default(),
};
}
}
/// The ‘boot_device’ field.
///
/// Partition numbers always start from zero. Unused partition
/// bytes must be set to 0xFF. For example, if the disk is partitioned
/// using a simple one-level DOS partitioning scheme, then
/// ‘part’ contains the DOS partition number, and ‘part2’ and ‘part3’
/// are both 0xFF. As another example, if a disk is partitioned first into
/// DOS partitions, and then one of those DOS partitions is subdivided
/// into several BSD partitions using BSD's disklabel strategy, then ‘part1’
/// contains the DOS partition number, ‘part2’ contains the BSD sub-partition
/// within that DOS partition, and ‘part3’ is 0xFF.
///
#[derive(Debug, Clone)]
#[repr(C)]
pub struct BootDevice {
/// Contains the bios drive number as understood by
/// the bios INT 0x13 low-level disk interface: e.g. 0x00 for the
/// first floppy disk or 0x80 for the first hard disk.
pub drive: u8,
/// Specifies the top-level partition number.
pub partition1: u8,
/// Specifies a sub-partition in the top-level partition
pub partition2: u8,
/// Specifies a sub-partition in the 2nd-level partition
pub partition3: u8,
}
impl BootDevice {
/// Is partition1 a valid partition?
pub fn partition1_is_valid(&self) -> bool {
self.partition1 != 0xff
}
/// Is partition2 a valid partition?
pub fn partition2_is_valid(&self) -> bool {
self.partition2 != 0xff
}
/// Is partition3 a valid partition?
pub fn partition3_is_valid(&self) -> bool {
self.partition3 != 0xff
}
}
impl Default for BootDevice {
fn default() -> Self {
Self {
drive: 0xff,
partition1: 0xff,
partition2: 0xff,
partition3: 0xff,
}
}
}
/// Types that define if the memory is usable or not.
#[derive(Debug, PartialEq, Eq)]
pub enum MemoryType {
/// memory, available to OS
Available = 1,
/// reserved, not available (rom, mem map dev)
Reserved = 2,
/// ACPI Reclaim Memory
ACPI = 3,
/// ACPI NVS Memory
NVS = 4,
/// defective RAM modules
Defect = 5,
}
/// Multiboot format of the MMAP buffer.
///
/// Note that size is defined to be at -4 bytes in multiboot.
#[derive(Clone, Copy)]
#[repr(C, packed)]
pub struct MemoryEntry {
size: u32,
base_addr: u64,
length: u64,
mtype: u32,
}
impl Debug for MemoryEntry {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let size = self.size;
let base_addr = self.base_addr;
let length = self.length;
let mtype = self.mtype;
write!(
f,
"MemoryEntry {{ size: {}, base_addr: {}, length: {}, mtype: {} }}",
size, base_addr, length, mtype
)
}
}
impl Default for MemoryEntry {
/// Get the "default" memory entry. (It's 0 bytes and reserved.)
fn default() -> Self {
Self::new(0, 0, MemoryType::Reserved)
}
}
impl MemoryEntry {
/// Create a new entry from the given data.
///
/// Note that this will always create a struct that has a size of 20 bytes.
pub fn new(base_addr: PAddr, length: PAddr, ty: MemoryType) -> Self {
// the size field itself doesn't count
let size = (core::mem::size_of::<MemoryEntry>() - core::mem::size_of::<u32>())
.try_into()
.unwrap();
assert_eq!(size, 20);
Self {
size,
base_addr,
length,
mtype: ty as u32,
}
}
/// Get base of memory region.
pub fn base_address(&self) -> PAddr {
self.base_addr as PAddr
}
/// Get size of the memory region.
pub fn length(&self) -> u64 {
self.length
}
/// Is the region type valid RAM?
pub fn memory_type(&self) -> MemoryType {
match self.mtype {
1 => MemoryType::Available,
3 => MemoryType::ACPI,
4 => MemoryType::NVS,
5 => MemoryType::Defect,
_ => MemoryType::Reserved,
}
}
}
/// Used to iterate over all memory regions provided by multiboot.
pub struct MemoryMapIter<'a, 'b> {
mb: &'a Multiboot<'a, 'b>,
current: u32,
end: u32,
}
impl<'a, 'b> Iterator for MemoryMapIter<'a, 'b> {
type Item = &'a MemoryEntry;
#[inline]
fn next(&mut self) -> Option<&'a MemoryEntry> {
if self.current < self.end {
unsafe {
self.mb
.cast(self.current as PAddr)
.map(|region: &'a MemoryEntry| {
self.current += region.size + 4;
region
})
}
} else {
None
}
}
}
/// Multiboot format to information about module
#[repr(C)]
struct MBModule {
/// Start address of module in memory.
start: u32,
/// End address of module in memory.
end: u32,
/// The `string` field provides an arbitrary string to be associated
/// with that particular boot module.
///
/// It is a zero-terminated ASCII string, just like the kernel command line.
/// The `string` field may be 0 if there is no string associated with the module.
/// Typically the string might be a command line (e.g. if the operating system
/// treats boot modules as executable programs), or a pathname
/// (e.g. if the operating system treats boot modules as files in a file system),
/// but its exact use is specific to the operating system.
string: u32,
/// Must be zero.
reserved: u32,
}
impl Debug for MBModule {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"MBModule {{ start: {}, end: {}, string: {}, reserved: {} }}",
self.start, self.end, self.string, self.reserved
)
}
}
/// Information about a module in multiboot.
#[derive(Debug)]
pub struct Module<'a> {
/// Start address of module in physical memory.
pub start: PAddr,
/// End address of module in physic memory.
pub end: PAddr,
/// Name of the module.
pub string: Option<&'a str>,
}
impl<'a> Module<'a> {
pub fn new(start: PAddr, end: PAddr, name: Option<&'a str>) -> Module {
Module {
start,
end,
string: name,
}
}
}
/// Used to iterate over all modules in multiboot.
pub struct ModuleIter<'a, 'b> {
mb: &'a Multiboot<'a, 'b>,
mods: &'a [MBModule],
}
impl<'a, 'b> Iterator for ModuleIter<'a, 'b> {
type Item = Module<'a>;
#[inline]
fn next(&mut self) -> Option<Module<'a>> {
self.mods.split_first().map(|(first, rest)| {
self.mods = rest;
unsafe {
Module::new(
first.start as PAddr,
first.end as PAddr,
self.mb.convert_c_string(first.string as PAddr),
)
}
})
}
}
/// Multiboot format for Symbols
#[repr(C)]
union Symbols {
aout: AOutSymbols,
elf: ElfSymbols,
_bindgen_union_align: [u32; 4usize],
}
/// Safe wrapper for either [`AOutSymbols`] or [`ElfSymbols`]
///
/// [`AOutSymbols`]: struct.AOutSymbols.html
/// [`ElfSymbols`]: struct.ElfSymbols.html
#[derive(Debug, Copy, Clone)]
pub enum SymbolType {
AOut(AOutSymbols),
Elf(ElfSymbols),
}
impl Default for Symbols {
fn default() -> Self {
Self {
elf: ElfSymbols::default(),
}
}
}
/// Multiboot format for AOut Symbols
#[repr(C)]
#[derive(Default, Copy, Clone)]
pub struct AOutSymbols {
tabsize: u32,
strsize: u32,
addr: u32,
reserved: u32,
}
impl Debug for AOutSymbols {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"AOutSymbols {{ tabsize: {}, strsize: {}, addr: {} }}",
self.tabsize, self.strsize, self.addr
)
}
}
/// Multiboot format for ELF Symbols
#[repr(C)]
#[derive(Default, Copy, Clone)]
pub struct ElfSymbols {
num: u32,
size: u32,
addr: u32,
shndx: u32,
}
impl Debug for ElfSymbols {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"ElfSymbols {{ num: {}, size: {}, addr: {}, shndx: {} }}",
self.num, self.size, self.addr, self.shndx
)
}
}
impl ElfSymbols {
/// Uses a passed address for the symbols.
///
/// Note that the underlying memory has to stay intact.
///
/// Also, this doesn't check whether the supplied parameters are correct.
pub fn from_addr(num: u32, size: u32, addr: PAddr, shndx: u32) -> Self {
Self {
num,
size,
shndx,
addr: addr.try_into().unwrap(),
}
}
}
/// Contains the information about the framebuffer
#[repr(C)]
#[derive(Default)]
pub struct FramebufferTable {
pub addr: u64,
pub pitch: u32,
pub width: u32,
pub height: u32,
pub bpp: u8,
ty: u8,
color_info: ColorInfo,
}
impl fmt::Debug for FramebufferTable {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("FramebufferTable")
.field("addr", &self.addr)
.field("pitch", &self.pitch)
.field("width", &self.width)
.field("height", &self.height)
.field("bpp", &self.bpp)
.field("color_info", &self.color_info())
.finish()
}
}
impl FramebufferTable {
/// Create this table from a color info.
///
/// If the type is [`ColorInfoType::Text`], `bpp` has to be 16.
///
/// [`ColorInfoType::Text`]: enum.ColorInfoType.html#variant.Text
pub fn new(
addr: u64,
pitch: u32,
width: u32,
height: u32,
bpp: u8,
color_info_type: ColorInfoType,
) -> Self {
let (ty, color_info) = match color_info_type {
ColorInfoType::Palette(palette) => (0, ColorInfo { palette }),
ColorInfoType::Rgb(rgb) => (1, ColorInfo { rgb }),
ColorInfoType::Text => (2, ColorInfo::default()),
};
Self {
addr,
pitch,
width,
height,
bpp,
ty,
color_info,
}
}
/// Get the color info from this table.
pub fn color_info(&self) -> Option<ColorInfoType> {
unsafe {
match self.ty {
0 => Some(ColorInfoType::Palette(self.color_info.palette)),
1 => Some(ColorInfoType::Rgb(self.color_info.rgb)),
2 => Some(ColorInfoType::Text),
_ => None,
}
}
}
}
/// Safe wrapper for `ColorInfo`
#[derive(Debug)]
pub enum ColorInfoType {
Palette(ColorInfoPalette),
Rgb(ColorInfoRgb),
Text,
}
/// Multiboot format for the frambuffer color info
///
/// According to the spec, if type == 0, it's indexed color and
///<rawtext>
/// +----------------------------------+
/// 110 | framebuffer_palette_addr |
/// 114 | framebuffer_palette_num_colors |
/// +----------------------------------+
///</rawtext>
/// The address points to an array of `ColorDescriptor`s.
/// If type == 1, it's RGB and
///<rawtext>
/// +----------------------------------+
///110 | framebuffer_red_field_position |
///111 | framebuffer_red_mask_size |
///112 | framebuffer_green_field_position |
///113 | framebuffer_green_mask_size |
///114 | framebuffer_blue_field_position |
///115 | framebuffer_blue_mask_size |
/// +----------------------------------+
///</rawtext>
/// (If type == 2, it's just text.)
#[repr(C)]
union ColorInfo {
palette: ColorInfoPalette,
rgb: ColorInfoRgb,
_union_align: [u32; 2usize],
}
// default type is 0, so indexed color
impl Default for ColorInfo {
fn default() -> Self {
Self {
palette: ColorInfoPalette {
palette_addr: 0,
palette_num_colors: 0,
},
}
}
}
/// Information for indexed color mode
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct ColorInfoPalette {
palette_addr: u32,
palette_num_colors: u16,
}
/// Information for direct RGB color mode
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct ColorInfoRgb {
pub red_field_position: u8,
pub red_mask_size: u8,
pub green_field_position: u8,
pub green_mask_size: u8,
pub blue_field_position: u8,
pub blue_mask_size: u8,
}