1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
//! Abstracts the ACPI standard that provides interfaces for hardware detection,
//! device configuration, and energy management.
use core::mem::{self, size_of};
use core::{ops::Range, slice, str};
/// This (usually!) contains the base address of the EBDA (Extended Bios Data Area), shifted right by 4
const EBDA_START_PTR: usize = 0x40e;
/// The earliest (lowest) memory address an EBDA (Extended Bios Data Area) can start
const EBDA_EARLIEST_START: usize = 0x80000;
/// The end of the EBDA (Extended Bios Data Area)
const EBDA_END: usize = 0x9ffff;
/// The start of the main BIOS area below 1mb in which to search for the RSDP (Root System Description Pointer)
const RSDP_BIOS_AREA_START: usize = 0xe0000;
/// The end of the main BIOS area below 1mb in which to search for the RSDP (Root System Description Pointer)
const RSDP_BIOS_AREA_END: usize = 0xfffff;
/// The RSDP (Root System Description Pointer)'s signature (trailing space!)
const RSDP_SIGNATURE: &[u8; 8] = b"RSD PTR ";
/// Error indicating why the ACPI tables could not be loaded correctly.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum ApicError {
NoValidRsdp,
IncorrectSignature,
InvalidOemId,
InvalidChecksum,
}
/// ACPI is the successor to APM (Advanced Power Management), aiming to give
/// the operating system more control over the hardware.
///
/// This extended control, for instance, enables the operating system to assign
/// a particular amount of energy to every device
/// (e.g., by disabling a device or changing to standby mode).
/// For this purpose, BIOS and chipset provide a set of tables that describe
/// the system and its components and provide routines the OS can call.
/// These tables contain details about the system, such as the number of CPU
/// cores and the LAPIC/IOAPIC, which are determined during system boot.
#[derive(Debug, Clone, Copy)]
pub struct Acpi {
root: &'static SysDescTable,
entry_size: usize,
}
impl Acpi {
/// Load the ACPI tables by searching through the BIOS memory area.
pub fn load() -> Result<Acpi, ApicError> {
let rsdp = unsafe { Rsdp::search_for_on_bios() }?;
serial!(
"found rsdp oem='{}' @ {:?}",
rsdp.oem_id(),
rsdp as *const _
);
let acpi = if rsdp.revision != 0 && rsdp.length >= 36 {
// If the XSDT is present we must use it; see:
// ACPI Specification Revision 4.0a:
// "An ACPI-compatible OS must use the XSDT if present."
let root = unsafe { &*(rsdp.xsdt_address as *const SysDescTable) };
serial!("xsdt 0x{:?} valid={}", root as *const _, root.valid());
Self {
root,
entry_size: 8,
}
} else {
let root = unsafe { &*(rsdp.rsdt_address as *const SysDescTable) };
serial!("rsdt 0x{:?} valid={}", root as *const _, root.valid());
Self {
root,
entry_size: 4,
}
};
if acpi.root.valid() {
for i in 0..acpi.len() {
if let Some(entry) = acpi.entry(i) {
serial!("{i}: {}", entry.signature());
}
}
Ok(acpi)
} else {
Err(ApicError::InvalidChecksum)
}
}
pub fn len(&self) -> usize {
(self.root.length as usize - size_of::<SysDescTable>()) / self.entry_size
}
/// Get the i-th entry
pub fn entry(&self, i: usize) -> Option<&'static SysDescTable> {
if i >= self.len() {
return None;
}
let offset = size_of::<SysDescTable>() + i * self.entry_size;
let entry_ptr = unsafe { (self.root as *const SysDescTable).cast::<u8>().add(offset) };
let table = unsafe { &*entry_ptr.cast::<*const SysDescTable>().read_unaligned() };
if table.valid() {
Some(table)
} else {
serial!("Invalid table: {i}");
None
}
}
/// Find the given system descriptor table
pub fn find(&self, signature: [u8; 4]) -> Option<&'static SysDescTable> {
for i in 0..self.len() {
if let Some(table) = self.entry(i) && table.signature == signature {
return Some(table);
}
}
None
}
}
/// Simple marker trait for the other ACPI table types
pub trait AcpiTable {}
/// Header of an ACPI table
#[derive(Clone, Copy, Debug)]
#[repr(C, packed)]
pub struct SysDescTable {
signature: [u8; 4],
pub length: u32,
revision: u8,
checksum: u8,
oemid: [u8; 6],
oem_table_id: [u8; 8],
oem_revision: u32,
creator_id: u32,
creator_revision: u32,
}
const _: () = assert!(size_of::<SysDescTable>() == 36);
impl SysDescTable {
pub fn valid(&self) -> bool {
let mem = unsafe { slice::from_raw_parts((self as *const Self).cast(), self.length as _) };
let mut sum = 0u8;
for &b in mem {
sum = sum.wrapping_add(b);
}
sum == 0
}
pub fn signature(&self) -> &str {
unsafe { str::from_utf8_unchecked(&self.signature) }
}
pub fn cast<T: AcpiTable>(&self) -> &T {
unsafe { mem::transmute(self) }
}
}
/// The first structure found in ACPI. It just tells us where the RSDT is.
///
/// On BIOS systems, it is either found in the first 1KB of the Extended Bios Data Area, or between
/// 0x000E0000 and 0x000FFFFF. The signature is always on a 16 byte boundary. On (U)EFI, it may not
/// be located in these locations, and so an address should be found in the EFI configuration table
/// instead.
///
/// The recommended way of locating the RSDP is to let the bootloader do it - Multiboot2 can pass a
/// tag with the physical address of it. If this is not possible, a manual scan can be done.
///
/// If `revision > 0`, (the hardware ACPI version is Version 2.0 or greater), the RSDP contains
/// some new fields. For ACPI Version 1.0, these fields are not valid and should not be accessed.
/// For ACPI Version 2.0+, `xsdt_address` should be used (truncated to `u32` on x86) instead of
/// `rsdt_address`.
#[derive(Clone, Copy, Debug)]
#[repr(C, packed)]
struct Rsdp {
signature: [u8; 8],
checksum: u8,
/// Name of the vendor
oem_id: [u8; 6],
/// Version number
revision: u8,
/// Address of the Root System Description Table
rsdt_address: u32,
// These fields are only valid for ACPI Version 2.0 and greater
length: u32,
xsdt_address: u64,
ext_checksum: u8,
reserved: [u8; 3],
}
impl Rsdp {
/// This searches for a RSDP on BIOS systems.
unsafe fn search_for_on_bios() -> Result<&'static Rsdp, ApicError> {
for area in find_search_areas() {
serial!("search {:#x}..{:#x}", area.start, area.end);
for address in area.step_by(16) {
let rsdp = unsafe { &*(address as *const Rsdp) };
if rsdp.signature == *RSDP_SIGNATURE {
if let Err(err) = rsdp.validate() {
serial!("Invalid RSDP found at {address:#x}: {err:?}")
} else {
return Ok(rsdp);
}
}
}
}
Err(ApicError::NoValidRsdp)
}
/// Checks that:
/// 1) The signature is correct
/// 2) The checksum is correct
/// 3) For Version 2.0+, that the extension checksum is correct
fn validate(&self) -> Result<(), ApicError> {
const RSDP_V1_LENGTH: usize = 20;
// Check the signature
if &self.signature != RSDP_SIGNATURE {
return Err(ApicError::IncorrectSignature);
}
// Check the OEM id is valid UTF8 (allows use of unwrap)
if str::from_utf8(&self.oem_id).is_err() {
return Err(ApicError::InvalidOemId);
}
// `self.length` doesn't exist on ACPI version 1.0, so we mustn't rely on it.
// Instead, check for version 1.0 and use a hard-coded length.
let length = if self.revision > 0 {
self.length as usize
} else {
RSDP_V1_LENGTH
};
let bytes = unsafe { slice::from_raw_parts(self as *const Rsdp as *const u8, length) };
let sum = bytes.iter().fold(0u8, |sum, &byte| sum.wrapping_add(byte));
if sum != 0 {
Err(ApicError::InvalidChecksum)
} else {
Ok(())
}
}
fn oem_id(&self) -> &str {
str::from_utf8(&self.oem_id).unwrap()
}
}
/// Find the areas we should search for the RSDP in.
fn find_search_areas() -> [Range<usize>; 2] {
// Read the base address of the EBDA from its location in the BDA (BIOS Data Area).
// Not all BIOSs fill this out unfortunately, so we might not get a sensible result.
// We shift it left 4, as it's a segment address.
let ebda_start = (unsafe { *(EBDA_START_PTR as *const u16) } as usize) << 4;
[
// The main BIOS area below 1MiB. In practice, from my [Restioson's] testing,
// the RSDP seems more often here than the EBDA.
// We also don't want to search the entire possible EBDA range,
// if we've failed to find it from the BDA.
RSDP_BIOS_AREA_START..(RSDP_BIOS_AREA_END + 1),
// Check if base segment ptr is in valid range for EBDA base
if (EBDA_EARLIEST_START..EBDA_END).contains(&ebda_start) {
// First KiB of EBDA
ebda_start..ebda_start + 1024
} else {
// We don't know where the EBDA starts, so just search the largest possible EBDA
EBDA_EARLIEST_START..(EBDA_END + 1)
},
]
}