StuBS
|
Ziel dieses Crashkurses ist es, einen Überblick über die Assembler-Programmierung zu geben, insbesondere für die Teilnehmer von BS, die noch keine Assemblerkenntnisse besitzen.
Wir bilden uns nicht ein, dass ihr am Ende komplexe Assemblerprogramme schreiben könnt, aber das braucht ihr schließlich auch nicht. Wir hoffen aber, dass ihr auf diese Weise zumindest eine gewisse Vorstellung davon erhaltet, wie ein Hochsprachenprogramm in Assembler aussieht und bei entsprechender Hilfestellungen auch selbst ganz kleine Assemblerfunktionen schreiben könnt.
Die verschiedenen Konzepte werden am Beispiel des x86-Prozessors erläutert. Diese Prozessorreihe stammt von der Firma Intel und steckt direkt oder als Nachbau u. a. in jedem PC. Die verwendete Notation entspricht dem Netwide Assembler NASM, der auch bei der Entwicklung den Übungsbetriebssystems OOStuBS Verwendung findet.
Den "Rahmen" eines Assemblerprogramms erklären wir hier nicht, den schaut ihr euch am besten an einer Assemblerdatei ab.
Ein Assembler ist genaugenommen ein Compiler, der den Code eines "Assemblerprogramms" in Maschinensprache, d. h. Nullen und Einsen übersetzt. Anders als ein C-Compiler hat es der Assembler jedoch sehr einfach, da (fast immer) einer Assembleranweisung genau eine Maschinensprachenanweisung entspricht. Das Assemblerprogramm ist also nur eine für Menschen (etwas) komfortablere Darstellung des Maschinenprogramms:
Statt
000001011110100000000011
schreiben zu müssen, kann der Programmierer die Assembleranweisung
add ax,1000
verwenden, die (bei den x86-Prozessoren) genau dasselbe bedeutet:
symbolische Bezeichnung | Maschinencode |
---|---|
add ax | 00000101 |
1000 (dez.) | 0000001111101000 |
Zusätzlich vertauscht der Assembler noch die Reihenfolge der Bytes des Offsets:
add ax | low-Byte | high-Byte |
---|---|---|
00000101 | 11101000 | 00000011 |
Im üblichen Sprachgebrauch wird unter "Assembler" jedoch weniger der Compiler verstanden, als die symbolische Notation der Maschinensprache. add eax,1000
ist dann also eine Assembleranweisung.
Wir verwenden NASM als Assembler und übernehmen dazu auch dessen Syntax. Man schreibt dazu (wie in einer Hochsprache) Befehle untereinander. Jede Zeile ist ein neuer Befehl, es gibt kein Trennzeichen. Einzelne Befehle haben das Format (je nach Anzahl der Parameter):
OP
steht dabei für Operator, den konkreten Befehl. Operatoren können verschieden viele Argumente haben, die hinter dem Operator aufgelistet werden.
Z.B. führt die schon erwähnte Zeile
dazu, dass die Zahl 1000 auf das Register ax
(weiter unten wird erklärt, was ein Register ist) addiert wird. Üblich ist außerdem der mov
-Befehl:
In diesem Fall würde der Inhalt aus ebx
in eax
kopiert werden.
Ein Assembler kann eigentlich sehr wenig, nämlich nur das, was der Prozessor direkt versteht. Die ganzen schönen Konstrukte höherer Programmiersprachen, die dem Programmierer erlauben, seine Algorithmen in verständliche, (ziemlich) fehlerfreie Programme zu übertragen, fehlen:
for
-, while
-, repeat-until
-Schleifen, sondern fast nur goto
sBeispiele:
summe = a + b + c + d;ist für einen Assembler zu kompliziert und muss daher in mehrere Anweisungen aufgeteilt werden. Der x86-Assembler kann immer nur zwei Zahlen addieren und das Ergebnis in einer der beiden verwendeten "Variablen" (Akkumulatorregister) speichern. Das folgende C-Programm entspricht daher eher einem Assemblerprogramm:
summe = a; summe = summe + b; summe = summe + c; summe = summe + d;und würde beim x86-Assembler so aussehen:
mov eax,[a] add eax,[b] add eax,[c] add eax,[d] mov [summe], eax
if-then-else
-Konstrukte sind für Assembler auch schon zu schwierig: if (a == 4711) { ... } else { ... }und müssen daher mit Hilfe von
goto
s ausgedrückt werden: if (a != 4711) goto ungleich gleich: ... goto weiter: ungleich: ... weiter: ...Im x86-Assembler sieht das dann so aus:
cmp eax,4711 jne ungleich gleich: ... jmp weiter ungleich: ... weiter: ...
for (i=0; i<100; i++) { summe = summe + a; }sieht im x86-Assembler etwa so aus:
mov ecx,100 schleife: add eax,[a] loop schleifeDer Loop-Befehl dekrementiert implizit das
ecx
-Register (ecx
ist das **e**xtended **c**ounter register) und führt den Sprung nur aus, wenn der Inhalt des ecx
-Registers anschließend nicht 0 ist.In den bisher genannten Beispielen wurden anstelle der Variablennamen des C-Programms stets die Namen von Registern verwendet. Ein Register ist ein winziges Stückchen Hardware innerhalb des Prozessors, das beim x86 und höher bis zu 32 Bits, also 32 Ziffern im Bereich 0 und 1 speichern kann.
Der x86 besitzt folgende Register, die sich noch in verschiedene Gruppen einteilen lassen, je nachdem welche Funktion sie in der Maschiene übernehmen.
Name | Bemerkung |
---|---|
Allgemein verwendbare Register | |
eax | allgemein verwendbar, spezielle Bedeutung bei Arithmetikbefehlen |
ebx | allgemein verwendbar |
ecx | allgemein verwendbar, spezielle Bedeutung bei Schleifen |
edx | allgemein verwendbar |
ebp | Basepointer |
esi | Quelle (eng: source) für Stringoperationen |
edi | Ziel (eng: destination) für Stringoperationen |
esp | Stackpointer |
Segmentregister | |
cs | Codesegment |
ds | Datensegment |
ss | Stacksegment |
es | beliebiges Segment |
fs | beliebiges Segment |
gs | beliebiges Segment |
Spezialregister | |
eip | Instruction Pointer |
eflags | Flags register |
Da der x86 Prozessor abwärtskompatibel zu vielen früheren Versionen der Architektur sind, kann man bei einigen Registern über spezielle Namen nur auf Teile der Register zugreifen. Die unteren beiden Bytes der Register eax
, ebx
, ecx
und edx
haben eigene Namen, beim eax
-Register sieht das so aus:
Meistens reichen die Register nicht aus, um ein Problem zu lösen. In diesem Fall muss auf den Hauptspeicher des Computers zugegriffen werden, der erheblich mehr Information speichern kann. Für den Assemblerpogrammierer sieht der Hauptspeicher wie ein riesiges Array von Registern aus, die je nach Wunsch 8, 16 oder 32 Bits "breit" sind. Die kleinste adressierbare Einheit ist also ein Byte (= 8 Bits). Daher wird auch die Größe des Speichers in Bytes gemessen. Um auf einen bestimmten Eintrag des Arrays "Hauptspeicher" zugreifen zu können, muss der Programmierer den Index, d. h. die Adresse des Eintrages kennen. Das erste Byte des Hauptspeichers bekommt dabei die Adresse 0, das zweite die Adresse 1 usw.
In einem Assemblerprogramm können Variablen angelegt werden, indem einer Speicheradresse ein Label zugeordnet und dabei Speicherplatz in der gewünschten Größe reserviert wird.
[SECTION .data] gruss: db 'hello, world' unglueck: dw 13 million: dd 1000000 [SECTION .text] mov ax,[million] ... |
Nicht immer will man sich ein neues Label ausdenken, nur um kurzfristig den Wert eines Registers zu speichern; beispielsweise, weil man das Register für eine bestimmte Anweisung benötigt, den alten Wert aber nicht verlieren möchte. In diesem Fall wünscht man sich etwas wie einen Schmierzettel. Den bekommt man mit dem Stack. Der Stack ist eigentlich nichts weiter als ein Stück des Hauptspeichers, nur dass dort nicht mit festen Adressen gearbeitet wird, sondern die zu sichernden Daten einfach immer oben drauf geschrieben (push
) bzw. von oben heruntergeholt werden (pop
). Der Zugriff ist also ganz einfach, vorausgesetzt man erinnert sich daran, in welcher Reihenfolge die Daten auf den Stapel gelegt wurden. Ein spezielles Register, der Stackpointer esp
, zeigt stets auf das oberste Element des Stacks. Da push
und pop
immer nur 32 Bits auf einmal transferieren können, ist der Stack in der folgenden Abbildung als vier Bytes breit dargestellt.
Die meisten Befehle des x86 können ihre Operanden wahlweise aus Registern, aus dem Speicher oder unmittelbar einer Konstante entnehmen. Beim mov
-Befehl sind (u. a.) folgende Formen möglich, wobei der erste Operand stets das Ziel und der zweite stets die Quelle der Kopieraktion angeben:
mov ebx,edi
mov ebx,1000
mov ebx,[1000]
mov ebx,[eax]
mov eax,[10+esi]
Anmerkung: Wenn der x86-Prozessor im Real-Mode betrieben wird (z. B. bei der Arbeit mit dem Betriebssystem MS-DOS), werden Speicheradressen durch ein Segmentregister und einen Offset angegeben. Bei der Veranstaltung Betriebssysteme ist das nicht nötig (sondern sogar falsch), weil OOStuBS im Protected-Mode läuft und die Segmentregister von uns bereits für euch initialisiert wurden.
Aus den höheren Programmiersprachen ist das Konzept der Funktion oder Prozedur bekannt. Der Vorteil dieses Konzeptes gegenüber einem goto
besteht darin, dass die Prozedur von jeder beliebigen Stelle im Programm aufgerufen werden kann und das Programm anschließend an genau der Stelle fortgesetzt wird, die nach dem Prozeduraufruf folgt. Die Prozedur selbst muss nicht wissen, von wo sie aufgerufen wurde und wo es hinterher weiter geht. Das geschieht irgendwie automatisch. Aber wie?
Die Lösung besteht darin, dass nicht nur die Daten des Programms, sondern auch das Programm selbst im Hauptspeicher liegt und somit zu jeder Maschinencodeanweisung eine eigene Adresse gehört. Damit der Prozessor ein Programm ausführt, muss sein Befehlszeiger auf den Anfang des Programms zeigen, also die Adresse der ersten Maschinencodeanweisung in das spezielle Register des Befehlszeigers (instruction pointer eip
) geladen werden. Der Prozessor wird dann den auf diese Weise bezeichneten Befehl ausführen und im Normalfall anschließend den Inhalt des Befehlszeigers um die Länge des Befehls im Speicher erhöhen, so dass er auf die nächste Maschinenanweisung zeigt. Bei einem Sprungbefehl wird der Befehlszeiger nicht um die Länge des Befehls, sondern um die angegebene relative Zieladresse erhöht oder erniedrigt.
Um nun eine Prozedur oder Funktion (in Assembler dasselbe) aufzurufen, wird zunächst einmal wie beim Sprungbefehl verfahren, nur dass der alte Wert des Befehlszeigers (+ Länge des Befehls) zuvor auf den Stack geschrieben wird. Am Ende der Funktion genügt dann ein Sprung an die auf dem Stack gespeicherte Adresse, um zu dem aufrufenden Programm zurückzukehren.
Beim x86 erfolgt das Speichern der Rücksprungadresse auf dem Stack implizit mit Hilfe des call
-Befehls. Genauso führt der ret
-Befehl auch implizit einen Sprung an die auf dem Stack liegende Adresse durch:
; ----- Hauptprogramm ----- ; main: ... call f1 xy: ... ; ----- Funktion f1 f1: ... ret
Wenn die Funktion Parameter erhalten soll, werden diese üblicherweise ebenfalls auf den Stack geschrieben, natürlich vor dem call
-Befehl. Hinterher müssen sie natürlich wieder entfernt werden, entweder mit pop
, oder durch direktes Umsetzen des Stackpointers:
push eax ; zweiter Parameter fuer f1 push ebx ; erster Parameter fuer f1 call f1 add esp,8 ; Parameter vom Stack entfernen
Um innerhalb der Funktion auf die Parameter zugreifen zu können, wird üblicherweise der Basepointer ebp
zu Hilfe genommen. Wenn er gleich zu Anfang der Funktion gesichert und dann mit dem Wert des Stackpointers belegt wird, kann der erste Parameter immer über [ebp+8]
und der zweite Parameter über [ebp+12]
erreicht werden, unabhängig davon, wieviele push
- und pop
-Operationen seit Beginn der Funktion verwendet wurden.
f1: push ebp mov ebp,esp ... mov ebx,[ebp+8] ; 1. Parameter in ebx laden mov eax,[ebp+12] ; 2. Parameter in eax laden ... pop ebp ret
Damit Funktionen von verschiedenen Stellen des Assemblerprogramms heraus aufgerufen werden können, ist es wichtig, festzulegen, welche Registerinhalte von der Funktion verändert werden dürfen und welche beim Verlassen der Funktion noch (oder wieder) den alten Wert besitzen müssen. Am sichersten ist es natürlich, grundsätzlich alle Register, welche die Funktion zur Erfüllung ihrer Aufgabe benötigt, zu Beginn der Funktion auf dem Stack zu speichern und unmittelbar vor Verlassen der Funktion wieder zu laden.
Die Assemblerprogramme, die der GNU-C-Compiler erzeugt, verfolgen jedoch eine etwas andere Strategie: Sie gehen davon aus, dass viele Register sowieso nur kurzfristig verwendet werden, zum Beispiel als Zählvariable von kleinen Schleifen, oder um die Parameter für eine Funktion auf den Stack zu schreiben. Hier wäre es reine Verschwendung, die ohnehin längst veralteten Werte zu Beginn einer Funktion mühsam zu sichern und am Ende wiederherzustellen. Da man einem Register nicht ansieht, ob sein Inhalt wertvoll ist oder nicht, haben die Entwickler des GNU-C-Compilers einfach festgelegt, dass die Register eax
, ecx
und edx
grundsätzlich als flüchtige Register zu betrachten sind, deren Inhalt einfach überschrieben werden darf. Das Register eax
hat dabei noch eine besondere Rolle: Es liefert den Rückgabewert der Funktion (soweit erforderlich). Die Werte der übrigen Register müssen dagegen gerettet werden, bevor sie von einer Funktion überschrieben werden dürfen. Sie werden deshalb nicht-flüchtige Register genannt.
This introduction's goal is to give youe a concise overview to assembler programming. It is aimed at students of the lecture 'Operating Systems' that do not have any experience in assembly programming yet.
At the end of this introduction you will not be able to write complex programmes using assembly, but you will not have to do something like that during the lecture's exercises anyway. We hope, however, that you learn how programmes written in a high level language such as C look like, after having been transformed to assembly. Additionally, you should be able to write simple functions in assembly after finishing this introduction.
All concepts explained below will contain examples based on the x64 processor family, which is the (downwards compatible) successor to the x86 architecture. These processors were originally developed by Intel and are part of basically every modern PC. The assembly syntax used here is the one used by the Netwide Assembler (NASM). It is the same one you will be using during development of your operating system OOStuBS or MPStuBS.
An assembler basically is just another compiler that translates code of a programme written in assembly into machine code, that is, zeros and ones. The main difference between an assembler and a compiler for higher level languages, like C for example, is the fact that most of the time each assembly instruction corresponds to exactly one instruction of the respective processor's machine code. You can think of the assembly being a human-readable version of machine code.
So instead of writing
000001011110100000000011
you can use the assembly instruction
add ax,1000
. On x64 processors, both encode the same instruction.
Symbolic Name | Machine Code |
---|---|
add ax | 00000101 |
1000 (decimal) | 0000001111101000 |
Addionally, the assembler exchanges the offset's bytes order.
add ax | low-Byte | high-Byte |
---|---|---|
00000101 | 11101000 | 00000011 |
Most of the time when we talk about "the Assembler" we actually do not talk about the compiler itself, but its respective symbolic notation for instructions. So add eax,1000
is an assembler instruction.
An assembler can actually do very little, namely only what the respective processor directly understands. Especially most of the language constructs used in higher level languages in order to express algorithms in an understandable manner are missing. This includes:
for
, while
and repeat-until
loops (assembly almost exclusively uses goto
s)Here are some examples:
The C Statement
sum = a + b + c + d;
is too complicated for a single assembly instruction and is, therefore, split into several instructions. x64 processors can only add two values at the same time, the result is then stored in one of the two "variables". The following C programme is closer to a programme written in assembly:
sum = a; sum = sum + b; sum = sum + c; sum = sum + d;
One possible translation to x64 assembler would look like this:
mov rax,[a] add rax,[b] add rax,[c] add rax,[d] mov [sum], rax
if-then-else
statements are also too complex for an assembler: if (a == 4711) { ... } else { ... }and, therefore, have to be expressed by using
goto
s: if (a != 4711) goto not_equal equal: ... goto out: not_equal: ... out: ...This is how you would express that using x64 assembly:
cmp rax,4711 jne not_equal equal: ... jmp out not_equal: ... out: ...
for
-loops, however, x64-based processors have better support. The following C programme for (i=0; i<100; i++) { sum = sum + a; }looks like this in x64 assembly:
mov rcx,100 forloop: add rax,[a] loop forloopThe
loop
instruction implicitly decrements the value stored in rcx
(rcx
is the **c**counter register). It does only jump back to the label forloop
, if the value stored in ecx
is not equal to zero after decrementing it.The assembler examples above used register names rather then the variable names used in the C examples. A register is a tiny piece of hardware located on the processor used to store values. On x64-based processors, each register may store values of up to 64 bits in size.
Processors of the x64 family have the following registers. They can be divided into sub categories based on their purpose.
Name | Function |
---|---|
General Purpose Registers | |
rax | general purpose, has special meaning for some arithmetic instructions |
rbx | general purpose |
rcx | generap purpose, has special meaning for loops |
rdx | general purpose |
rbp | base pointer |
rsi | general purpose, source register for string operations |
rdi | general purpose, destination register for string operations |
rsp | stack pointer |
r8 | general purpose |
r9 | general purpose |
r10 | general purpose |
r11 | general purpose |
r12 | general purpose |
r13 | general purpose |
r14 | general purpose |
r15 | general purpose |
Segment registers | |
cs | code segment |
ds | data segment |
ss | stack segment |
es | arbitrary segment |
fs | arbitrary segment |
gs | arbitrary segment |
Special registers | |
rip | instruction pointer |
rflags | flags register |
As we have already pointed out, the x64 processor is downwards compatible to its predecessor, the x86 processor. Furthermore, it is also downwards compatible to the x86's predecessors. Therefore, it is possible to access subsets of the bits stored in the registers rax
, rbx
, rcx
and rdx
by using special register names. The following graphic illustrates this for the older register eax
and its aliases for smaller parts of it.
Most of the time the limited amount of registers is not enough to solve more complex problems. In that case we have to access the computer's main memory, which can hold much more information than the processor's registers. From an assembly programmer's point of view, the main memory looks like an incredibly large array of registers. Where each of these "registers" may have a size of 8, 16, 32 or 64 bits. The smallest addressable unit is one byte (i.e. 8 bits). Therefore, the memory's size is usually measured in bytes. In order to address a certain entry in main memory, the programmer has to know the index, that is, the address of that entry. The memory's first byte has address 0, the second address 1 and so forth.
We can create variables in assembly programmes by assigning a label to a memory location and allocating the desired amount of space:
[SECTION .data] greeting: db 'hello, world' badluck: dw 13 million: dd 1000000 [SECTION .text] mov ax,[million] ... |
If we temporarily need to store a register's value in main memory, we do not always want to come up with a new label for it. Sometimes we might need that specific register for another computation, but will use its current value at a later point in time for example. In that case we would like to have something similar to a scratch pad. That is exactly what a stack is used for. Actually, the stack is just a piece of main memory, but instead of working with addresses we simply push
values onto it or remove (pop
) the topmost value from it. Accessing it is that simple as long as you remember the order in which you pushed the values. The special register rsp
(stack pointer) holds the address of the stack's topmost element on x64 processors. The stack's values in the picture below are shown as being 8 bytes large, since the push
and pop
instructions may at most transfer 64 bits at once.
Most of the x64 processor's instructions may read their operands from registers, main memory or immediate (constant) values. The mov
instruction, for example, moves a value from its source (the second) operand to its destination (the first) operand. The following combinations are possible:
mov rbx,1000
mov rbx,[1000]
mov rbx,[rax]
mov rax,[10+rsi]
You probably are already familiar with the concept of functions or procedures from higher level programming languages. Unlike goto
s, functions may be called from arbitrary points of your programme and programme execution is continued at the statement below the function call, once the function returns. Futhermore, the function does not have to know from where it was called or where the execution continues after it has returned. How does this work?
The solution to this problem is that the programme's instructions are stored in main memory during its execution, just like its data is. Therefore, each machine code instruction has an address. In order for the processor to execute a programme, its instruction pointer has to contain the address of the first instruction of that programme. The processor will then load the instruction from main memory, execute it and increment the value of its instruction pointer by the size (in bytes) of the instruction, which yields the address of the next instruction. If the instruction is a jump instruction the instruction pointer is not incremented or decremented based on the insruction's size, but by the relative target address encoded in the instruction.
Function calls work similar to jumps, but the processor has to push the address of the instruction following the function call (i.e. the instruction pointer's current value plus the size of the call instruction) onto the stack, before updating the instruction pointer to point to the function's address. The address stored on top of the stack is called return address. The function may then return to the caller simply by moving the previously stored address from the stack in to the processor's instruction pointer.
On x64-based processors, the call
instruction implicitly pushes the return address onto the stack. Its counterpart, the ret
instruction implicitly removes the return address from the stack and stores it in the instruction pointer.
; ----- Main Programme ----- ; main: ... call f1 xy: ... ; ----- Function f1 f1: ... ret
Depending on the so-called calling convention, a function's arguments may be located in registers or pushed onto the stack or both. On x86 all arguments used to be stored on the stack, while on x64 the first six parameters are typically stored in registers and further parameters are pushed onto the stack.
When passing arguments on the stack, we have to push them before executing the call
instruction and remove them from the stack after the function returns. The latter is either done by using the pop
instruction or changing the stack pointer's value directly:
push rax ; f1's second parameter push rbx ; f1's first Parameter call f1 add esp,16 ; Remove parameters from stack ; (the stack grows from high to ; low addresses).
In order to easily access a function's arguments, we can make use of the base pointer rbp
. The base pointer points to the beginning of the stack frame of a function call. Usually, the first instruction executed by a function saves the base pointer's current value on top of the stack (push rbp
) and then moves the stack pointer's current value into the base pointer register (mov rbp,rsp
). This allows us, for example, to always access the first argument stored on the stack via the address [rbp+16]
and the second via [rbp+24]
, regardless of the number of push
and pop
operations executed during the function call.
f1: push rbp mov rbp,rsp ... mov rbx,[rbp+16] ; load first parameter on the stack into rbx mov rax,[rbp+24] ; load second parameter on the stack into rax ... pop rbp ret
It is important to lay down which registers' values a function is allowed to change during its execution and which registers' values it has to preserve, in order for the function to be callable at any given point during the execution of a programme. The safest approach would be to simply push the values of all registers onto the stack at the beginning of the function and restore them before returning to the caller.
However, the GNU-C-Compiler (gcc) uses a different strategy. It assumes that, most of the time, registers are used only briefly, as counter in a loop for example. Therefore, it would be pure waste of resources to save and restore these (proably already outdated) values during every function call. Therefore, the calling convention used by the GNU-C-Compiler specifies that the registers rax
, rdi
, rsi
, rdx
, rcx
, r8
, r9
, r10
and r11
are to be treated as volatile registers, that is, their values may be overwritten by a function. The register rax
has a special purpose: it contains the result of the function call, if the function returns any value. If a function uses any of the remaining registers not listed above, it must preserve their previous values and restore the value before returning to the caller. Therefore, these registers are called non-volatile.