rstubs/arch/int/ioapic.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
//! Abstraction of the I/O APIC that is used for management of external interrupts.
use core::mem::size_of;
use core::sync::atomic::{AtomicPtr, AtomicU8, Ordering};
use bitfield_struct::bitfield;
use crate::arch::io::VolatileUpdate;
/// The different devices that can send interrupts
#[derive(Debug, Copy, Clone)]
#[allow(unused)]
pub enum Device {
/// Programmable Interrupt Timer
Timer = 0,
/// Keyboard
Keyboard = 1,
/// First serial interface
Com1 = 4,
/// Second serial interface
Com2 = 3,
/// Floppy device
Floppy = 6,
/// Printer
LPT1 = 7,
/// Real time clock
RealTimeClock = 8,
/// Mouse
PS2Mouse = 12,
/// First hard disk
IDE1 = 14,
/// Second hard disk
IDE2 = 15,
}
/// The I/O APIC's Core component is the IO-redirection table.
/// This table is used to configure a flexible mapping between
/// the interrupt number and the external interruption.
/// Entries within this table have a width of 64 bit.
pub struct IoApic {
/// Base address of the IOAPIC registers.
///
/// It contains two memory-mapped registers: `IOREGSEL` at `base` and
/// `IOWIN` at `base + 0x10`.
pub base: AtomicPtr<u32>,
overrides: [AtomicU8; 16],
}
/// The shared IOAPIC instance.
pub static IOAPIC: IoApic = IoApic::new();
impl IoApic {
pub const DEFAULT_BASE: usize = 0xfec0_0000;
pub const SLOT_MAX: u8 = 24;
/// Create a new instance that has to be initialize with [Self::init].
pub const fn new() -> Self {
// Identity mapping (no redirections)
let mut i = 0;
let mut overrides = [const { AtomicU8::new(0) }; 16];
while i < 16 {
overrides[i] = AtomicU8::new(i as _);
i += 1;
}
Self {
base: AtomicPtr::new(Self::DEFAULT_BASE as _),
overrides,
}
}
/// Override a slot id, redirecting it
pub fn set_override(&self, source: usize, global: u8) {
if source < self.overrides.len() {
self.overrides[source].store(global, Ordering::Relaxed);
}
}
/// Initializes the I/O APIC.
///
/// This function will initialize the I/O APIC by initializing the
/// IO-redirection table with sane default values.
/// The default interrupt-vector number is chosen such that,
/// in case the interrupt is issued, the panic handler is executed.
/// In the beginning, all external interrupts are disabled within the I/O APIC.
/// Apart from the redirection table, the `id`
/// (read from the system description tables during boot) needs to be passed in.
pub fn init(&self, id: u8, panic_vector: u8) {
// Set io apic id
self.update(Identification::ADDR, |v: Identification| v.with_id(id));
let reg = self.read::<Version>(Version::ADDR);
serial!(
"ioapic version: {:#x}, mre: {}",
reg.version(),
reg.max_redirection_entry()
);
for i in 0..Self::SLOT_MAX {
self.config_raw(i, panic_vector, false);
}
}
/// Creates a mapping between an interrupt vector and an external interrupt.
pub fn config(&self, device: Device, vector: u8, trigger_level: bool) {
let slot = self.slot(device);
self.config_raw(slot, vector, trigger_level);
}
/// Configures the redirection slots with:
/// - lowest priority delivery to all cores
/// - high polarity
/// - masked (you can enable the keyboard later)
/// - tigger level and vector based on the arguments
///
/// > Note: Do not overwrite any reserved bits of the registers (read-modify-write).
fn config_raw(&self, slot: u8, vector: u8, trigger_level: bool) {
let reg_l = self
.read::<SlotL>(red_l(slot))
.with_vector(vector)
.with_delivery_mode(1) // lowest pri
.with_destination_mode(true) // logical
.with_polarity(false) // high
.with_trigger_mode(trigger_level) // edge or level triggered
.with_mask(true);
let reg_h = self.read::<SlotH>(red_h(slot)).with_destination(0b1);
self.write(red_l(slot), reg_l);
self.write(red_h(slot), reg_h);
}
/// Enables or disables interrupts for the given `device`.
pub fn enable(&self, device: Device, enabled: bool) {
let slot = self.slot(device);
self.update(red_l(slot), |v: SlotL| v.with_mask(!enabled));
}
/// Returns whether interrupts for the `device` are active.
pub fn enabled(&self, device: Device) -> bool {
let slot = self.slot(device);
!self.read::<SlotL>(red_l(slot)).mask()
}
/// Get the slot for the device (respecting redirections from the ACPI Tables).
fn slot(&self, device: Device) -> u8 {
if let Some(o) = self.overrides.get(device as usize) {
o.load(Ordering::Relaxed)
} else {
device as _
}
}
/// Write a value to a register.
///
/// Access to the actual IOAPIC registers can be obtained by performing
/// the following steps:
///
/// 1. Write the number of the IOAPIC register to the address stored in `IOREGSEL`
/// 2. Read the value from / write the value to the address referred to by `IOWIN`.
fn write<T: Register>(&self, addr: u32, reg: T) {
debug_assert!(size_of::<T>() == 4);
let base = self.base.load(Ordering::Acquire);
unsafe {
base.write_volatile(addr);
base.add(0x10 / size_of::<u32>()).write_volatile(reg.into());
}
}
/// Read a value from a register.
fn read<T: Register>(&self, addr: u32) -> T {
debug_assert!(size_of::<T>() == 4);
let base = self.base.load(Ordering::Acquire);
unsafe {
base.write_volatile(addr);
base.add(0x10 / size_of::<u32>()).read_volatile().into()
}
}
/// Read-modify-update the value of a register.
fn update<T: Register>(&self, addr: u32, f: impl FnOnce(T) -> T) {
debug_assert!(size_of::<T>() == 4);
let base = self.base.load(Ordering::Acquire);
unsafe {
base.write_volatile(addr);
base.add(0x10 / size_of::<u32>())
.update_volatile(|v| f(v.into()).into());
}
}
}
/// Returns the redirection table entry address for the `slot` (lower half).
const fn red_l(slot: u8) -> u32 {
2 * (slot as u32) + 0x10
}
/// Returns the redirection table entry address for the `slot` (upper half).
const fn red_h(slot: u8) -> u32 {
2 * (slot as u32) + 0x11
}
/// An APIC register that can be read/written to IOWIN.
trait Register: From<u32> + Into<u32> {}
/// I/O APIC identification
#[bitfield(u32)]
struct Identification {
#[bits(24)]
_p: (),
#[bits(4)]
id: u8,
#[bits(4)]
_p: (),
}
impl Identification {
const ADDR: u32 = 0;
}
impl Register for Identification {}
/// I/O APIC version information
#[bitfield(u32)]
struct Version {
/// Version number
version: u8,
_p: u8,
/// Maximum number of supported redirection entries
max_redirection_entry: u8,
_p: u8,
}
impl Version {
const ADDR: u32 = 1;
}
impl Register for Version {}
/// Entry in the redirection table.
/// Lower Half.
#[bitfield(u32)]
struct SlotL {
/// Interrupt vector in the "Interrupt Descriptor Table (IDT)" will be
/// activated when the corresponding external interrupt triggers.
vector: u8,
/// The delivery mode denotes the way the interrupts will be delivered
/// to the local CPU cores, respectively to their local APICs.
/// - 0: Fixed (send to all cores from the destination mask)
/// - 1: Lowest priority (send to the lowest priority core from destination mask)
/// - 2-7: System management / initialization / external interrupts...
#[bits(3)]
delivery_mode: u8,
/// The destination mode defines how the value stored in destination will be interpreted.
/// Local (true) or physical destination.
destination_mode: bool,
/// Delivery status holds whether the interrupt delivery is pending (true) or idle.
delivery_pending: bool,
/// The polarity denotes when an interrupt should be issued. This can be low (true) or high.
polarity: bool,
/// The remote IRR bit indicates whether the local APIC(s) accept the level interrupt.
/// The LAPIC EOI sets this read-only flag to zero.
remote_irr: bool,
/// The trigger mode states whether the interrupt signaling is level (true) or edge triggered.
trigger_mode: bool,
/// Mask (disables) or unmask interrupts for a particular, external source.
mask: bool,
#[bits(15)]
_p: (),
}
impl Register for SlotL {}
/// Entry in the redirection table.
/// Higher Half.
#[bitfield(u32)]
struct SlotH {
#[bits(24)]
_p: (),
/// Interrupt destination.
///
/// The meaning of destination depends on the destination mode:
/// For the logical destination mode, destination holds a bit mask made up
/// of the cores that are candidates for receiving the interrupt.
/// In the single-core case, this value is `1`, in the multi-core case,
/// the `n` low-order bits needs to be set (with `n` being the number of
/// CPU cores).
/// Setting the `n` low-order bits marks all available cores as candidates
/// for receiving interrupts and thereby balancing the number of interrupts
/// between the cores.
destination: u8,
}
impl Register for SlotH {}