rstubs/multiboot.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
//! Multiboot data structures
//!
//! The [`Header`] is compiled into the kernel and tells Multiboot how to load it.
//!
//! During boot, Multiboot creates a [`Info`] structure for the loaded kernel.
#![allow(unused)]
use core::ffi::CStr;
use core::fmt::{self, Debug};
use core::marker::PhantomData;
use core::{cmp, slice};
use bitfield_struct::bitfield;
use crate::util::RefStr;
/// Multiboot header which tells the bootloader how to load our kernel
///
/// | Offset | Field Name | Note |
/// | ------ | ------------- | ----------------- |
/// | 0 | magic | required |
/// | 4 | flags | required |
/// | 8 | checksum | required |
/// | 12 | header_addr | if flag 16 is set |
/// | 16 | load_addr | if flag 16 is set |
/// | 20 | load_end_addr | if flag 16 is set |
/// | 24 | bss_end_addr | if flag 16 is set |
/// | 28 | entry_addr | if flag 16 is set |
/// | 32 | mode_type | if flag 2 is set |
/// | 36 | width | if flag 2 is set |
/// | 40 | height | if flag 2 is set |
/// | 44 | depth | if flag 2 is set |
#[repr(C)]
pub struct Header {
magic: u32,
/// 0: page align, 1: mem info, 2: video mode
flags: u32,
checksum: u32,
_unused: [u32; 5],
/// 0: graphic, 1: text
video_mode: u32,
video_width: u32,
video_height: u32,
video_depth: u32,
}
impl Header {
pub const fn new(flags: u32, video_width: u32, video_height: u32, video_depth: u32) -> Self {
Self {
magic: Self::MAGIC,
flags,
checksum: -(Self::MAGIC as i32 + flags as i32) as u32,
_unused: [0; 5],
video_mode: 0,
video_width,
video_height,
video_depth,
}
}
}
impl Header {
pub const MAGIC: u32 = 0x1badb002;
/// Enforce page alignment for our kernel
pub const PAGE_ALIGN: u32 = 0b1;
/// Request info about the physical memory map ([`Info::mem`])
pub const MEM_INFO: u32 = 0b10;
/// Enable video mode
pub const VIDEO_MODE: u32 = 0b100;
}
/// Representation of Multiboot Information according to specification.
#[repr(C)]
pub struct Info {
pub flags: Flags,
mem: Memory,
boot_device: BootDevice,
cmdline: RefStr,
mods_count: u32,
mods_addr: *const Module,
symbols: SymbolsUnion,
mmap_length: u32,
mmap_addr: *const MemoryEntry,
drives_length: u32,
drives_addr: u32,
_config_table: u32,
boot_loader_name: RefStr,
_apm_table: u32,
vbe: VBETable,
framebuffer: FramebufferTable,
}
#[bitfield(u32)]
pub struct Flags {
pub memory: bool,
pub bootdev: bool,
pub cmdline: bool,
pub mods: bool,
pub aout_syms: bool,
pub elf_shdr: bool,
pub memory_map: bool,
pub drive_info: bool,
pub config_table: bool,
pub boot_loader_name: bool,
pub apm_table: bool,
pub vbe: bool,
pub framebuffer: bool,
#[bits(19)]
__: (),
}
impl Info {
/// Parses the Multiboot information structures
pub unsafe fn from_ptr(ptr: *const u8) -> &'static Self {
&*ptr.cast()
}
/// Returns the memory sizes
pub fn memory(&self) -> Option<&Memory> {
self.flags.memory().then_some(&self.mem)
}
/// Indicates which bios disk device the boot loader loaded the OS image from.
pub fn boot_device(&self) -> Option<&BootDevice> {
self.flags.bootdev().then_some(&self.boot_device)
}
/// Command line to be passed to the kernel.
pub fn cmdline(&self) -> Option<&str> {
self.flags.cmdline().then_some(self.cmdline.as_str())
}
/// Get the name of the bootloader.
pub fn boot_loader_name(&self) -> Option<&str> {
self.flags
.boot_loader_name()
.then_some(self.boot_loader_name.as_str())
}
/// Discover all additional modules in multiboot.
pub fn modules(&self) -> Option<&[Module]> {
if self.flags.mods() {
Some(unsafe { slice::from_raw_parts(self.mods_addr as _, self.mods_count as _) })
} else {
None
}
}
/// Get the symbols.
pub fn symbols(&self) -> Option<Symbols> {
unsafe {
match (self.flags.aout_syms(), self.flags.elf_shdr()) {
(true, false) => Some(Symbols::Elf(self.symbols.elf)),
(false, true) => Some(Symbols::AOut(self.symbols.aout)),
_ => None,
}
}
}
/// Discover all memory regions in the multiboot memory map.
pub fn memory_map(&self) -> Option<MemoryMapIter> {
if self.flags.memory_map() {
Some(MemoryMapIter {
addr: self.mmap_addr,
end: (self.mmap_addr as u32 + self.mmap_length) as _,
__: PhantomData,
})
} else {
None
}
}
/// Return end address of multiboot image.
///
/// This function can be used to figure out a (hopefully) safe offset
/// in the first region of memory to start using as free memory.
pub fn find_highest_address(&self) -> u32 {
self.cmdline()
.map_or(0, |f| f.as_ptr() as u32 + f.len() as u32)
.max(
self.boot_loader_name()
.map_or(0, |f| f.as_ptr() as u32 + f.len() as u32),
)
.max(match self.symbols() {
Some(Symbols::Elf(e)) => e.addr + e.num * e.size,
Some(Symbols::AOut(a)) => {
a.addr + a.tabsize + a.strsize + 2 * core::mem::size_of::<u32>() as u32
}
None => 0,
})
.max(self.mmap_addr as u32 + self.mmap_length)
.max(self.drives_addr + self.drives_length)
.max(self.mods_addr as u32 + self.mods_count * core::mem::size_of::<Module>() as u32)
.max(
self.modules()
.into_iter()
.flatten()
.map(|m| m.end)
.max()
.unwrap_or(0),
)
.next_multiple_of(4096)
}
/// Contains the VESA BIOS extensions
pub fn vbe(&self) -> Option<&VBETable> {
self.flags.vbe().then_some(&self.vbe)
}
/// Contains the information about the framebuffer
pub fn framebuffer(&self) -> Option<&FramebufferTable> {
self.flags.framebuffer().then_some(&self.framebuffer)
}
}
impl fmt::Debug for Info {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Information")
.field("flags", &self.flags)
.field("mem", &self.memory())
.field("boot_device", &self.boot_device())
.field("cmdline", &self.cmdline())
.field("mods_count", &self.mods_count)
.field("mods_addr", &self.mods_addr)
.field("symbols", &self.symbols())
.field("mmap_length", &self.mmap_length)
.field("mmap_addr", &self.mmap_addr)
.field("drives_length", &self.drives_length)
.field("drives_addr", &self.drives_addr)
.field("config_table", &self._config_table)
.field("boot_loader_name", &self.boot_loader_name())
.field("apm_table", &self._apm_table)
.field("vbe", &self.vbe())
.field("framebuffer", &self.framebuffer())
.finish()
}
}
/// ‘mem_lower’ and ‘mem_upper’ indicate the amount of lower and upper memory, respectively, in kilobytes.
#[repr(C)]
#[derive(Debug)]
pub struct Memory {
/// Lower memory starts at address 0, and upper memory starts at address 1 megabyte. The maximum possible value for lower memory is 640 kilobytes.
pub lower: u32,
/// The value returned for upper memory is maximally the address of the first upper memory hole minus 1 megabyte. It is not guaranteed to be this value.
pub upper: u32,
}
#[derive(Debug, Clone)]
#[repr(C)]
pub struct BootDevice {
/// Contains the bios drive number as understood by
/// the bios INT 0x13 low-level disk interface: e.g. 0x00 for the
/// first floppy disk or 0x80 for the first hard disk.
pub drive: u8,
/// Specifies the top-level partition number.
pub partition1: u8,
/// Specifies a sub-partition in the top-level partition
pub partition2: u8,
/// Specifies a sub-partition in the 2nd-level partition
pub partition3: u8,
}
/// Multiboot format to information about module
#[repr(C)]
#[derive(Debug)]
pub struct Module {
/// Start address of module in memory.
pub start: u32,
/// End address of module in memory.
pub end: u32,
/// The `string` field provides an arbitrary string to be associated
/// with that particular boot module.
///
/// It is a zero-terminated ASCII string, just like the kernel command line.
/// The `string` field may be 0 if there is no string associated with the module.
/// Typically the string might be a command line (e.g. if the operating system
/// treats boot modules as executable programs), or a pathname
/// (e.g. if the operating system treats boot modules as files in a file system),
/// but its exact use is specific to the operating system.
pub string: RefStr,
/// Must be zero.
reserved: u32,
}
/// Multiboot format for Symbols
#[repr(C)]
union SymbolsUnion {
aout: AOutSymbols,
elf: ElfSymbols,
_align: [u32; 4usize],
}
#[derive(Debug)]
pub enum Symbols {
AOut(AOutSymbols),
Elf(ElfSymbols),
}
/// Multiboot format for AOut Symbols
#[repr(C)]
#[derive(Default, Copy, Clone, Debug)]
pub struct AOutSymbols {
pub tabsize: u32,
pub strsize: u32,
pub addr: u32,
pub reserved: u32,
}
/// Multiboot format for ELF Symbols
#[repr(C)]
#[derive(Default, Copy, Clone, Debug)]
pub struct ElfSymbols {
pub num: u32,
pub size: u32,
pub addr: u32,
pub shndx: u32,
}
/// Types that define if the memory is usable or not.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[allow(clippy::upper_case_acronyms)]
#[repr(u32)]
pub enum MemoryType {
/// memory, available to OS
Available = 1,
/// reserved, not available (rom, mem map dev)
Reserved = 2,
/// ACPI Reclaim Memory
ACPI = 3,
/// ACPI NVS Memory
NVS = 4,
/// defective RAM modules
Defect = 5,
}
/// Multiboot format of the MMAP buffer.
///
/// Note that size is defined to be at -4 bytes in multiboot.
#[derive(Debug, Clone)]
#[repr(C, packed)]
pub struct MemoryEntry {
size: u32,
pub base_addr: u64,
pub length: u64,
pub ty: MemoryType,
}
pub struct MemoryMapIter<'a> {
addr: *const MemoryEntry,
end: *const MemoryEntry,
__: PhantomData<&'a ()>,
}
impl<'a> Iterator for MemoryMapIter<'a> {
type Item = &'a MemoryEntry;
fn next(&mut self) -> Option<Self::Item> {
if self.addr < self.end {
assert!(!self.addr.is_null());
let entry = unsafe { &*self.addr };
assert!(entry.size >= 20);
self.addr = (self.addr as u32 + entry.size + size_of::<u32>() as u32) as _;
Some(entry)
} else {
None
}
}
}
/// Contains information about the VESA BIOS extension
#[derive(Debug)]
pub struct VBETable {
pub control_info: u32,
pub mode_info: u32,
pub mode: u16,
pub interface_seg: u16,
pub interface_off: u16,
pub interface_len: u16,
}
/// Contains the information about the framebuffer
#[derive(Clone)]
#[repr(C)]
pub struct FramebufferTable {
pub addr: u64,
pub pitch: u32,
pub width: u32,
pub height: u32,
pub bpp: u8,
ty: u8,
color_info: ColorInfoUnion,
}
impl FramebufferTable {
pub fn new(
addr: u64,
pitch: u32,
width: u32,
height: u32,
bpp: u8,
color_info: Option<ColorInfo>,
) -> Self {
let (ty, color_info) = match color_info {
Some(ColorInfo::Palette(palette)) => (0, ColorInfoUnion { palette }),
Some(ColorInfo::Rgb(rgb)) => (1, ColorInfoUnion { rgb }),
Some(ColorInfo::Text) => (2, ColorInfoUnion { _align: [0; 2] }),
None => todo!(),
};
Self {
addr,
pitch,
width,
height,
bpp,
ty,
color_info,
}
}
pub fn color_info(&self) -> Option<ColorInfo> {
unsafe {
match self.ty {
0 => Some(ColorInfo::Palette(self.color_info.palette)),
1 => Some(ColorInfo::Rgb(self.color_info.rgb)),
2 => Some(ColorInfo::Text),
_ => None,
}
}
}
}
impl fmt::Debug for FramebufferTable {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("FramebufferTable")
.field("addr", &self.addr)
.field("pitch", &self.pitch)
.field("width", &self.width)
.field("height", &self.height)
.field("bpp", &self.bpp)
.field("color_info", &self.color_info())
.finish()
}
}
#[derive(Debug)]
pub enum ColorInfo {
Palette(ColorInfoPalette),
Rgb(ColorInfoRgb),
Text,
}
/// Multiboot format for the framebuffer color info
#[repr(C)]
#[derive(Clone, Copy)]
union ColorInfoUnion {
palette: ColorInfoPalette,
rgb: ColorInfoRgb,
_align: [u32; 2usize],
}
/// Information for indexed color mode
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct ColorInfoPalette {
pub palette_addr: u32,
pub palette_num_colors: u16,
}
/// Information for direct RGB color mode
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct ColorInfoRgb {
pub red_offset: u8,
pub red_bits: u8,
pub green_offset: u8,
pub green_bits: u8,
pub blue_offset: u8,
pub blue_bits: u8,
}