rstubs/arch/int/lapic.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
//! Abstractions for the local APIC for timers, IPI and internal interrupt
use core::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
use bitfield_struct::bitfield;
use crate::arch::int;
use crate::arch::io::{IOMem, VolatileUpdate};
use crate::arch::pit::Timer;
use crate::interrupts::Vector;
/// Abstracts the local APICs (which is integrated into every CPU core)
///
/// In modern (x86) PCs, every CPU core has its own Local APIC (LAPIC).
/// The LAPIC is the link between the local CPU core and the I/O APIC
/// (that takes care about external interrupt sources.
/// Interrupt messages received by the LAPIC will be passed to the
/// corresponding CPU core and trigger the interrupt handler on this core.
///
/// See <https://wiki.osdev.org/APIC>
#[derive(Debug)]
pub struct LApic {
/// Base of the memory mapped lapic registers
pub base: AtomicPtr<u32>,
/// The number of ticks the timer does per millisecond.
///
/// This is measured an set when the first timer is created.
timer_ticks: AtomicUsize,
}
/// The LAPIC instance, that is different for each cpu core.
pub static LAPIC: LApic = LApic::new();
impl LApic {
/// Default base address for the memory-mapped registers.
pub const BASE: usize = 0xfee0_0000;
/// Creates a new instance that has to be initialized with [Self::init].
pub const fn new() -> Self {
Self {
base: AtomicPtr::new(Self::BASE as _),
timer_ticks: AtomicUsize::new(0),
}
}
/// Initialize the LAPIC fo the given cpu_id.
pub fn init(&self, cpu_id: u8) {
serial!(
"lapic: v={:#x} @ {:?}",
self.version(),
self.base.load(Ordering::Acquire)
);
// use 255 as spurious vector, enable APIC and disable focus processor
self.update(|v: SpuriousInt| {
v.with_spurious_vector(0xff)
.with_apic_enable(true)
.with_focus_processor_checking(true)
});
// set flat delivery mode
self.update(|v: DestFormat| v.with_model(DFR_MODEL_FLAT));
// set task priority to 0 -> accept all interrupts
self.update(|v: TaskPrio| v.with_task_prio(0).with_task_prio_sub(0));
// reset logical destination ID
assert!(cpu_id < 8, "LAPIC only supports 8 logical ids");
self.update(|v: LogicalDst| v.with_lapic_id(1 << cpu_id));
// Measure the timer frequency
if self.timer_ticks.load(Ordering::Relaxed) == 0 {
let ticks = self.measure_timer_ticks();
self.timer_ticks.store(ticks, Ordering::Release);
serial!("lapic: ticks {ticks}");
}
}
/// Signalizes the LAPIC that the handling of the current interrupt
/// finished. This function must be called at the end of interrupt
/// handling before ireting.
pub fn eoi(&self) {
// dummy read
self.read::<SpuriousInt>();
// signal end of interrupt
self.write(EndOfInt(0));
}
/// Get version number of local APIC.
pub fn version(&self) -> u8 {
self.read::<Version>().version() as _
}
/// Get the ID of the current core's LAPIC.
pub fn id(&self) -> u8 {
self.read::<Identification>().lapic_id() as _
}
/// Setup the LAPIC timer.
pub fn timer(&self, us: usize, vector: u8, periodic: bool, masked: bool) {
assert!(us != 0);
let mut ticks = self.timer_ticks.load(Ordering::Acquire);
assert!(ticks != 0, "LAPIC timer not measured yet");
// Calculate the counter and divider
let l_counter = (ticks as u64 * us as u64) / 1000;
// Number of bits exceeding the 32 bit boundary
let overlap = 32u32.saturating_sub(l_counter.leading_zeros());
let divider = 1u8 << overlap;
// convert to 32 bit
let counter = (l_counter / divider as u64) as u32;
self.raw_timer(counter, divider, vector, periodic, masked);
}
/// Setup the LAPIC timer with a raw counter and divider.
fn raw_timer(&self, counter: u32, divider: u8, vector: u8, periodic: bool, masked: bool) {
use TimerMode::*;
// stop timer
self.write(TimerInitCount(0));
// set control register
self.update(|v: TimerCtrl| {
v.with_vector(vector)
.with_timer_mode(if periodic { Periodic } else { OneShot })
.with_masked(masked)
});
// set divider
self.write(TimerDiv::new(divider));
// start timer
self.write(TimerInitCount(counter));
}
/// Enable or disable the LAPIC timer.
pub fn timer_enable(&self, enable: bool) {
// set control register
self.update(|v: TimerCtrl| v.with_masked(!enable));
}
/// Determines the LAPIC timer frequency.
///
/// This function will calculate the number of LAPIC-timer ticks passing
/// in the course of one millisecond. To do so, this function will rely
/// on PIT timer functionality and measure the tick delta between start
/// and end of waiting for a predefined period.
///
/// For measurement, the LAPIC-timer single-shot mode (without interrupts)
/// is used; after measurement, the timer is disabled again.
///
/// Steps taken for precise measurement of LAPIC-timer ticks per ms:
/// 1. Disable Interrupts to ensure measurement is not disturbed
/// 2. Configure a timeout of 50 ms (nearly PIT's maximum possible delay)
/// Using a "large" value decreases the overhead induced by measurement and thereby increases the accuracy.
/// 3. Now measure the number of passed LAPIC-timer ticks while waiting for the PIT
/// Note that configuring the PIT takes quite some time and therefore should be done prior to starting
/// LAPIC-timer measurement.
/// 4. Restore previous state (disable PIT, LAPIC timer, restore interrupts)
/// 5. Derive the ticks per millisecond (take care, the counter is counting towards zero)
fn measure_timer_ticks(&self) -> usize {
const MS: u16 = 50;
const DIV: u8 = 1;
// suppress interrupts until end of this function
int::suppress(|| {
// Configure pit
let pit = Timer::new(MS * 1000);
// Configure the timer to count every tick
self.raw_timer(u32::MAX, DIV, 0, false, true);
let TimerCount(start) = self.read();
pit.wait(); // Wait 50ms
let TimerCount(end) = self.read();
// Disable timer
self.raw_timer(0, DIV, 0, false, true);
(start - end) as usize / MS as usize
})
}
/// Check if the previously sent IPI has reached its destination.
pub fn delivered(&self) -> bool {
!self.read::<InterruptCmdL>().delivery_status()
}
/// Send an Inter-Processor Interrupt (IPI).
pub fn send(&self, destination: Destination, vector: Vector) {
let (dst, dst_type, dst_mode) = destination.raw();
self.update(|h: InterruptCmdH| h.with_destination(dst));
self.update(|l: InterruptCmdL| {
l.with_vector(vector as _)
.with_delivery_mode(DeliveryMode::Fixed)
.with_destination_mode(dst_mode)
.with_destination_type(dst_type)
.with_level(true)
.with_trigger_mode(false)
});
}
/// Send an Init request IPI to another processor.
pub fn send_init(&self, destination: Destination) {
let (dst, dst_type, dst_mode) = destination.raw();
self.update(|h: InterruptCmdH| h.with_destination(dst));
self.update(|l: InterruptCmdL| {
l.with_vector(0)
.with_delivery_mode(DeliveryMode::Init)
.with_destination_mode(dst_mode)
.with_destination_type(dst_type)
.with_level(true)
.with_trigger_mode(false)
});
}
/// Send a Startup IPI to another processor.
pub fn send_startup(&self, destination: Destination, vector: u8) {
let (dst, dst_type, dst_mode) = destination.raw();
self.update(|h: InterruptCmdH| h.with_destination(dst));
self.update(|l: InterruptCmdL| {
l.with_vector(vector)
.with_delivery_mode(DeliveryMode::Startup)
.with_destination_mode(dst_mode)
.with_destination_type(dst_type)
.with_level(true)
.with_trigger_mode(false)
});
}
/// Read-modify-write a memory mapped register.
fn update<T: IOMem>(&self, f: impl FnOnce(T) -> T) {
unsafe {
self.base
.load(Ordering::Acquire)
.add(T::OFFSET / 4)
.cast::<T>()
.update_volatile(f);
}
}
/// Write a memory mapped register.
fn write<T: IOMem>(&self, value: T) {
unsafe {
self.base
.load(Ordering::Acquire)
.add(T::OFFSET / 4)
.cast::<T>()
.write_volatile(value);
};
}
/// Read a memory mapped register.
fn read<T: IOMem>(&self) -> T {
unsafe {
self.base
.load(Ordering::Acquire)
.add(T::OFFSET / 4)
.cast::<T>()
.read_volatile()
}
}
}
/// Destination for an inter-processor interrupt
pub enum Destination {
/// Physical ID
Physical(u8),
/// Logical ID bit mask
Group(u8),
/// Including self
All,
/// Excluding self
Others,
}
impl Destination {
/// Returns a tuple with (destination, destination_type, destination_mode)
const fn raw(self) -> (u8, u8, bool) {
match self {
Self::Physical(dst) => (dst, 0, false),
Self::Group(dst) => (dst, 0, true),
Self::All => (0, 2, false),
Self::Others => (0, 3, false),
}
}
}
/// Register for reconfiguring the base address
#[bitfield(u64)]
struct APICBaseAddr {
__: u8,
/// Indicates if the processor is the bootstrap processor.
bootstrap_cpu: bool,
#[bits(2)]
__: (),
/// Enable the local APIC.
enable: bool,
#[bits(40)]
/// Specifies the base address of the APIC registers.
base_addr: u64,
#[bits(12)]
__: (),
}
/// Local APIC ID Register.
#[bitfield(u32)]
struct Identification {
#[bits(24)]
__: (),
/// At power up, system hardware assigns a unique APIC ID to each local APIC.
/// In MP systems, the local APIC ID is also used as a processor ID.
///
/// Note: This ID is hierarchically structured and might not be consecutive.
lapic_id: u8,
}
impl IOMem for Identification {
const OFFSET: usize = 0x020;
}
/// Local APIC Version Register, RO
#[bitfield(u32)]
struct Version {
/// The version numbers of the local APIC:
/// - 0x00-0x10: 82489DX discrete APIC
/// - 0x10-0x15: Integrated APIC
version: u8,
__: u8,
/// The number LVT entries minus 1.
max_lvt_entry: u8,
/// Indicates whether software can inhibit the broadcast of EOI message
suppress_eoi_broadcast: bool,
#[bits(7)]
__: (),
}
impl IOMem for Version {
const OFFSET: usize = 0x030;
}
/// Task Priority Register, R/W
#[bitfield(u32)]
struct TaskPrio {
#[bits(4)]
task_prio_sub: u8,
#[bits(4)]
task_prio: u8,
#[bits(24)]
__: (),
}
impl IOMem for TaskPrio {
const OFFSET: usize = 0x080;
}
/// EOI Register, WO
#[repr(transparent)]
struct EndOfInt(u32);
impl IOMem for EndOfInt {
const OFFSET: usize = 0x0b0;
}
/// Logical Destination Register.
#[bitfield(u32)]
struct LogicalDst {
#[bits(24)]
__: u32,
/// Configures on which logical id this LAPIC will listen.
lapic_id: u8,
}
impl IOMem for LogicalDst {
const OFFSET: usize = 0x0d0;
}
const DFR_MODEL_CLUSTER: u8 = 0x0;
const DFR_MODEL_FLAT: u8 = 0xf;
/// Destination Format Register.
#[bitfield(u32)]
struct DestFormat {
#[bits(28)]
__: (),
/// Model (Flat vs. Cluster)
#[bits(4)]
model: u8,
}
impl IOMem for DestFormat {
const OFFSET: usize = 0x0e0;
}
/// Spurious Interrupt Vector Register.
#[bitfield(u32)]
struct SpuriousInt {
/// Determines the vector number to be delivered to the processor when
/// the local APIC generates a spurious vector.
spurious_vector: u8,
/// Allows software to temporarily enable/disable the local APIC.
apic_enable: bool,
/// Determines if focus processor checking is enabled when using the
/// lowest-priority delivery mode.
focus_processor_checking: bool,
#[bits(22)]
__: (),
}
impl IOMem for SpuriousInt {
const OFFSET: usize = 0x0f0;
}
/// Interrupt Command Register 1, R/W
#[bitfield(u32)]
struct InterruptCmdL {
/// Interrupt vector in the IDT will be activated when
/// the corresponding external interrupt triggers.
pub vector: u8,
/// The delivery mode denotes the way the interrupts will be delivered
/// to the local CPU cores, respectively to their local APICs.
#[bits(3)]
pub delivery_mode: DeliveryMode,
/// The destination mode.
///
/// Clear for a physical destination, or set for a logical destination.
pub destination_mode: bool,
/// Delivery status.
///
/// Cleared when the interrupt has been accepted by the target.
/// You should usually wait until this bit clears after sending an interrupt.
pub delivery_status: bool,
__: bool,
/// The polarity denotes when an interrupt should be issued.
///
/// Clear for INIT level de-assert, otherwise set.
pub level: bool,
/// The trigger mode states whether the interrupt signaling is level or edge triggered.
///
/// Set for INIT level de-assert, otherwise clear.
pub trigger_mode: bool,
#[bits(2)]
__: (),
/// Destination type.
///
/// If this is > 0 then the destination field is ignored.
/// 1 will always send the interrupt to itself,
/// 2 will send it to all processors,
/// and 3 will send it to all processors aside from the current one.
///
/// It is best to avoid using modes 1, 2 and 3, and stick with 0.
#[bits(2)]
pub destination_type: u8,
#[bits(12)]
__: (),
}
impl IOMem for InterruptCmdL {
const OFFSET: usize = 0x300;
}
/// Delivery mode specifies the type of interrupt sent to the CPU.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u32)]
enum DeliveryMode {
/// "ordinary" interrupt; send to ALL cores listed in the destination bit mask
Fixed = 0,
/// "ordinary" interrupt; send to the lowest priority core from destination mask
LowestPriority = 1,
/// System Management Interrupt; vector number required to be 0
SysManagement = 2,
/// Non-Maskable Interrupt, vector number ignored, only edge triggered
NonMaskable = 4,
/// Initialization interrupt (always treated as edge triggered)
Init = 5,
/// Dedicated Startup-Interrupt (SIPI)
Startup = 6,
}
impl DeliveryMode {
const fn from_bits(value: u32) -> Self {
match value {
1 => Self::LowestPriority,
2 => Self::SysManagement,
4 => Self::NonMaskable,
5 => Self::Init,
6 => Self::Startup,
_ => Self::Fixed,
}
}
const fn into_bits(self) -> u32 {
self as _
}
}
/// Interrupt Command Register 2, R/W
#[bitfield(u32)]
struct InterruptCmdH {
#[bits(24)]
__: (),
/// The meaning of destination depends on the destination mode:
/// For the logical destination mode, destination holds a bit mask made up
/// of the cores that are candidates for receiving the interrupt.
/// In the single-core case, this value is `1`, in the multi-core case,
/// the `n` low-order bits needs to be set (with `n` being the number of CPU cores).
/// Setting the `n` low-order bits marks all available cores as candidates for receiving
/// interrupts and thereby balancing the number of interrupts between the cores.
destination: u8,
}
impl IOMem for InterruptCmdH {
const OFFSET: usize = 0x310;
}
// ------------------- LAPIC Timer -------------------
/// LApic timer control register, R/W
#[bitfield(u32)]
struct TimerCtrl {
/// This vector in the IDT will be activated for the timer interrupt.
vector: u8,
#[bits(4)]
__: (),
/// Whether the interrupt delivery is pending (true) or idle.
delivery_status: bool,
#[bits(3)]
__: (),
/// Mask (disables) or unmask timer interrupts.
masked: bool,
/// Timer mode.
#[bits(2)]
timer_mode: TimerMode,
#[bits(13)]
__: (),
}
impl IOMem for TimerCtrl {
const OFFSET: usize = 0x320;
}
/// Timer mode.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
enum TimerMode {
/// Send a single interrupt after reaching 0.
OneShot = 0,
/// Send a periodic interrupt, restarting with the [TimerInitCount] value.
Periodic = 1,
/// Uses the TSC_DEADLINE MSR to program the timer instead of the [TimerInitCount] and [TimerCount].
Deadline = 2,
}
impl TimerMode {
const fn from_bits(value: u8) -> Self {
match value {
1 => Self::Periodic,
2 => Self::Deadline,
_ => Self::OneShot,
}
}
const fn into_bits(self) -> u8 {
self as _
}
}
/// LApic timer initial counter register, R/W
#[repr(transparent)]
struct TimerInitCount(u32);
impl IOMem for TimerInitCount {
const OFFSET: usize = 0x380;
}
/// LApic timer current counter register, RO
#[repr(transparent)]
struct TimerCount(u32);
impl IOMem for TimerCount {
const OFFSET: usize = 0x390;
}
/// LApic timer divide configuration register, RW
#[repr(transparent)]
struct TimerDiv(u32);
impl TimerDiv {
const fn new(div: u8) -> Self {
assert!(div != 0 && div.is_power_of_two());
let marks = [
0xb, // divides by 1
0x0, // divides by 2
0x1, // divides by 4
0x2, // divides by 8
0x3, // divides by 16
0x8, // divides by 32
0x9, // divides by 64
0xa, // divides by 128
];
let trail = div.trailing_zeros();
assert!(trail < marks.len() as u32);
Self(marks[trail as usize])
}
}
impl IOMem for TimerDiv {
const OFFSET: usize = 0x3e0;
}