rstubs/threading/scheduler.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
//! The scheduler that coordinates the execution of threads
use core::cell::UnsafeCell;
use core::ptr;
use core::sync::atomic::AtomicUsize;
use core::sync::atomic::Ordering::Relaxed;
use arraydeque::ArrayDeque;
use super::Thread;
use crate::arch::int::lapic::{Destination, LAPIC};
use crate::arch::{cpu, int};
use crate::interrupts::guard::GUARD;
use crate::interrupts::Vector;
use crate::{INIT_STACKS, MAX_CPUS};
pub const APPS: usize = 10;
static mut THREAD_STACKS: [[u32; 0x4000]; APPS] = [[0; 0x4000]; APPS];
/// The scheduler plans the threads' execution order and, from this,
/// selects the next thread to be running.
///
/// The scheduler manages the ready queue,
/// that is the list of threads that are ready to execute. The scheduler
/// arranges threads in a FIFO order, that is, when a thread is set ready, it
/// will be appended to the end of the queue, while threads to be executed are
/// taken from the front of the queue.
pub struct Scheduler {
/// Ready queue
ready: ArrayDeque<usize, APPS>,
/// Contains all threads
///
/// Note: the idle threads have the id and index of their corresponding CPU
threads: [Option<Thread>; MAX_CPUS + APPS],
/// Next thread id
next_id: AtomicUsize,
/// Per-CPU data
local: UnsafeCell<[Local; MAX_CPUS]>,
}
/// Private, CPU-local data
#[repr(align(64))]
struct Local {
/// Active thread (per core)
active: Option<usize>,
/// Thread to be removed after dispatch
exited: Option<usize>,
}
impl Scheduler {
/// Construct the scheduler.
pub const fn new() -> Self {
Self {
ready: ArrayDeque::new(),
threads: [const { None }; MAX_CPUS + APPS],
next_id: AtomicUsize::new(MAX_CPUS),
local: UnsafeCell::new(
[const {
Local {
active: None,
exited: None,
}
}; MAX_CPUS],
),
}
}
/// Access local data for the current CPU.
fn local(&self) -> &mut Local {
assert!(
!int::enabled() || GUARD.active(),
"Possible Race Condition!"
);
&mut (unsafe { &mut *self.local.get() })[cpu::id()]
}
/// Add and ready a new thread to the scheduler.
pub fn add(&mut self, mut thread: Thread) -> usize {
let id = self.next_id.fetch_add(1, Relaxed);
thread.id = id;
thread.init(unsafe { &mut THREAD_STACKS[id - MAX_CPUS] });
self.threads[id] = Some(thread);
self.ready(id);
id
}
pub const fn is_idle(thread: usize) -> bool {
thread < MAX_CPUS
}
/// Include a thread in scheduling decisions.
///
/// This method will register a thread for scheduling. It will be appended
/// to the ready queue and dispatched once its time has come.
///
/// Note: New threads have to be added first with [Scheduler::add].
pub fn ready(&mut self, thread: usize) {
assert!(self.threads[thread].is_some());
if let Some(active) = self.active()
&& Self::is_idle(active)
{
// If the CPU is idle, we need to wake other CPUs up
LAPIC.send(Destination::Others, Vector::WakeUp);
}
self.ready.push_back(thread).unwrap();
}
/// Returns the thread that currently runs on this CPU.
pub fn active(&self) -> Option<usize> {
self.local().active
}
/// Returns the CPU where the thread is currently running.
pub fn is_active(&self, thread: usize) -> Option<usize> {
let locals = unsafe { &*self.local.get() };
cpu::iter().find(|&cpu| locals[cpu].active == Some(thread))
}
/// Returns a reference to the thread with the given id.
pub fn thread(&self, thread: usize) -> Option<&Thread> {
self.threads[thread].as_ref()
}
/// Returns a reference to the thread with the given id.
pub fn thread_mut(&mut self, thread: usize) -> Option<&mut Thread> {
self.threads[thread].as_mut()
}
/// Start the scheduling.
/// This function does not return.
pub fn schedule(&mut self) -> ! {
// Initialize own idle thread
let idle_id = cpu::id();
let mut idle = Thread::new(Self::idle_action);
idle.id = idle_id;
idle.init(unsafe { &mut INIT_STACKS[idle_id] });
self.threads[idle_id] = Some(idle);
let next = self.next();
self.dispatch(next);
unreachable!();
}
/// Initiates a thread switch.
/// This function returns then in the context of the next thread.
///
/// If `ready`, the currently running thread is added back to the ready list.
pub fn resume(&mut self, ready: bool) {
if let Some(active) = self.active().and_then(|t| self.thread(t)) {
if active.exited {
if let Some(exited) = self.local().exited.replace(active.id) {
// If there is already a dead thread
assert_ne!(exited, active.id, "Cannot exit while active");
self.threads[exited] = None;
}
} else if !Self::is_idle(active.id) && ready {
// Do not schedule idle threads!
self.ready.push_back(active.id).unwrap();
}
}
let next = self.next();
self.dispatch(next);
if let Some(thread) = self.local().exited.take() {
self.threads[thread] = None;
}
}
/// Terminates the currently running thread, directly continue with the next one.
pub fn exit(&mut self) -> ! {
self.thread_mut(self.active().unwrap()).unwrap().exited = true;
self.resume(false);
unreachable!();
}
/// Terminates `t`, which might be running on another CPU.
pub fn kill(&mut self, thread: usize) -> bool {
if Self::is_idle(thread) || self.threads[thread].is_none() {
return false;
}
debug!("kill {thread}");
if self.local().active == Some(thread) {
self.exit();
} else {
if let Some(thread) = &mut self.threads[thread] {
// will be removed from ready list automatically
thread.exited = true;
} else {
return true;
}
// interrupt the running thread
if let Some(cpu) = self.is_active(thread) {
// interrupt the running thread
LAPIC.send(Destination::Physical(cpu as _), Vector::Assassin);
}
}
true
}
/// Updates the life pointer to next and issues a thread change from
/// the old to the new life pointer.
fn dispatch(&mut self, next: usize) {
let previous = if let Some(previous) = self.local().active.replace(next) {
// Usually we cannot have two mutable references, but I'm sure its ok here
// -> Lifetime hack: cast it into a pointer and dereference it again
Some(unsafe { &mut *ptr::from_mut(self.thread_mut(previous).unwrap()) })
} else {
None
};
let next = self.thread(next).unwrap();
if let Some(last) = previous {
last.resume(next);
} else {
next.go();
}
}
/// Helper to retrieve next Thread.
fn next(&mut self) -> usize {
while let Some(thread_id) = self.ready.pop_front() {
if let Some(thread) = &mut self.threads[thread_id] {
if thread.exited {
// remove exited threads
self.threads[thread_id] = None;
} else {
return thread.id;
}
}
}
// idle thread
cpu::id()
}
/// Action of the idle thread.
pub extern "C" fn idle_action() -> ! {
loop {
int::enable(false);
if unsafe { GUARD.read().scheduler.ready.is_empty() } {
let no_timer = cpu::id() != 0 && unsafe { GUARD.read().bell_ringer.is_empty() };
if no_timer {
LAPIC.timer_enable(false);
}
// enable int and wait
int::idle();
if no_timer {
LAPIC.timer_enable(true);
}
} else {
int::enable(true);
let mut guarded = GUARD.enter();
guarded.scheduler.resume(false);
}
}
}
}