1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
use crate::{
geometry::{Angle, Point, PointExt, Real, Trigonometry},
primitives::{common::LineSide, Line},
};
/// Scaling factor for unit length normal vectors.
pub const NORMAL_VECTOR_SCALE: i32 = 1 << 10;
/// Linear equation.
///
/// The equation is stored as a normal vector and the distance to the origin.
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
#[cfg_attr(feature = "defmt", derive(::defmt::Format))]
pub struct LinearEquation {
/// Normal vector, perpendicular to the line.
///
/// The unit vector is scaled up to increase the resolution.
pub normal_vector: Point,
/// Distance from the origin.
///
/// The distance doesn't directly correlate to the distance in pixels, but is
/// scaled up by the length of the normal vector.
pub origin_distance: i32,
}
impl LinearEquation {
/// Creates a new linear equation with the given angle and distance to the origin.
pub fn with_angle_and_distance(angle: Angle, origin_distance: i32) -> Self {
Self {
normal_vector: OriginLinearEquation::with_angle(angle).normal_vector,
origin_distance,
}
}
/// Creates a new linear equation from a line.
pub fn from_line(line: &Line) -> Self {
let normal_vector = line.delta().rotate_90();
let origin_distance = line.start.dot_product(normal_vector);
Self {
normal_vector,
origin_distance,
}
}
/// Returns the distance between the line and a point.
///
/// The scaling of the returned value depends on the length of the normal vector.
/// Positive values will be returned for points on the left side of the line and negative
/// values for points on the right.
pub fn distance(&self, point: Point) -> i32 {
point.dot_product(self.normal_vector) - self.origin_distance
}
/// Checks if a point is on the given side of the line.
///
/// Always returns `true` if the point is on the line.
pub fn check_side(&self, point: Point, side: LineSide) -> bool {
let distance = self.distance(point);
match side {
LineSide::Left => distance <= 0,
LineSide::Right => distance >= 0,
}
}
}
/// Linear equation with zero distance to the origin.
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
#[cfg_attr(feature = "defmt", derive(::defmt::Format))]
pub struct OriginLinearEquation {
pub normal_vector: Point,
}
impl OriginLinearEquation {
/// Creates a new linear equation with the given angle.
pub fn with_angle(angle: Angle) -> Self {
// FIXME: angle.tan() for 180.0 degrees isn't exactly 0 which causes problems when drawing
// a single quadrant. Is there a better solution to fix this?
let normal_vector = if angle == Angle::from_degrees(180.0) {
Point::new(0, -NORMAL_VECTOR_SCALE)
} else {
Point::new(
i32::from(angle.cos() * Real::from(NORMAL_VECTOR_SCALE)),
i32::from(angle.sin() * Real::from(NORMAL_VECTOR_SCALE)),
)
.rotate_90()
};
Self { normal_vector }
}
/// Creates a new horizontal linear equation.
pub const fn new_horizontal() -> Self {
Self {
normal_vector: Point::new(0, NORMAL_VECTOR_SCALE),
}
}
/// Returns the distance between the line and a point.
///
/// The scaling of the returned value depends on the length of the normal vector.
/// Positive values will be returned for points on the right side of the line and negative
/// values for points on the left.
pub fn distance(&self, point: Point) -> i32 {
point.dot_product(self.normal_vector)
}
/// Checks if a point is on the given side of the line.
///
/// Always returns `true` if the point is on the line.
pub fn check_side(&self, point: Point, side: LineSide) -> bool {
let distance = self.distance(point);
match side {
LineSide::Left => distance <= 0,
LineSide::Right => distance >= 0,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::geometry::AngleUnit;
#[test]
fn from_line() {
assert_eq!(
LinearEquation::from_line(&Line::new(Point::zero(), Point::new(1, 0))),
LinearEquation {
normal_vector: Point::new(0, 1),
origin_distance: 0, // line goes through the origin
}
);
assert_eq!(
LinearEquation::from_line(&Line::new(Point::zero(), Point::new(0, 1))),
LinearEquation {
normal_vector: Point::new(-1, 0),
origin_distance: 0, // line goes through the origin
}
);
assert_eq!(
LinearEquation::from_line(&Line::new(Point::new(2, 3), Point::new(-2, 3))),
LinearEquation {
normal_vector: Point::new(0, -4),
// origin_distance = min. distance between line and origin * length of unit vector
// = 3 * 4
origin_distance: -12,
}
);
}
#[test]
fn with_angle() {
assert_eq!(
OriginLinearEquation::with_angle(0.0.deg()),
OriginLinearEquation {
normal_vector: Point::new(0, NORMAL_VECTOR_SCALE),
}
);
assert_eq!(
OriginLinearEquation::with_angle(90.0.deg()),
OriginLinearEquation {
normal_vector: Point::new(-NORMAL_VECTOR_SCALE, 0),
}
);
}
#[test]
fn distance() {
let line = OriginLinearEquation::with_angle(90.0.deg());
assert_eq!(line.distance(Point::new(-1, 0)), NORMAL_VECTOR_SCALE);
assert_eq!(line.distance(Point::new(1, 0)), -NORMAL_VECTOR_SCALE);
}
#[test]
fn check_side_horizontal_0deg() {
let eq1 = OriginLinearEquation::with_angle(0.0.deg());
let eq2 = LinearEquation::from_line(&Line::with_delta(Point::zero(), Point::new(10, 0)));
use LineSide::*;
for (point, side, expected) in [
((0, 0), Left, true),
((1, 0), Right, true),
((-2, 1), Left, false),
((3, 1), Right, true),
((-4, -1), Left, true),
((5, -1), Right, false),
]
.into_iter()
{
assert_eq!(
eq1.check_side(point.into(), side),
expected,
"{:?}, {:?}",
point,
side
);
assert_eq!(
eq2.check_side(point.into(), side),
expected,
"{:?}, {:?}",
point,
side
);
}
}
#[test]
fn check_side_horizontal_180deg() {
let eq1 = OriginLinearEquation::with_angle(180.0.deg());
let eq2 = LinearEquation::from_line(&Line::with_delta(Point::zero(), Point::new(-10, 0)));
use LineSide::*;
for (point, side, expected) in [
((0, 0), Left, true),
((1, 0), Right, true),
((-2, 1), Left, true),
((3, 1), Right, false),
((-4, -1), Left, false),
((5, -1), Right, true),
]
.into_iter()
{
assert_eq!(
eq1.check_side(point.into(), side),
expected,
"{:?}, {:?}",
point,
side
);
assert_eq!(
eq2.check_side(point.into(), side),
expected,
"{:?}, {:?}",
point,
side
);
}
}
#[test]
fn check_side_vertical_90deg() {
let eq1 = OriginLinearEquation::with_angle(90.0.deg());
let eq2 = LinearEquation::from_line(&Line::with_delta(Point::zero(), Point::new(0, 10)));
use LineSide::*;
for (point, side, expected) in [
((0, 0), Left, true),
((0, 1), Right, true),
((-1, -2), Left, false),
((-1, 3), Right, true),
((1, -4), Left, true),
((1, 5), Right, false),
]
.into_iter()
{
assert_eq!(
eq1.check_side(point.into(), side),
expected,
"{:?}, {:?}",
point,
side
);
assert_eq!(
eq2.check_side(point.into(), side),
expected,
"{:?}, {:?}",
point,
side
);
}
}
#[test]
fn check_side_vertical_270deg() {
let eq1 = OriginLinearEquation::with_angle(270.0.deg());
let eq2 = LinearEquation::from_line(&Line::with_delta(Point::zero(), Point::new(0, -10)));
use LineSide::*;
for (point, side, expected) in [
((0, 0), Left, true),
((0, -1), Right, true),
((-1, 2), Left, true),
((-1, -3), Right, false),
((1, 4), Left, false),
((1, -5), Right, true),
]
.into_iter()
{
assert_eq!(
eq1.check_side(point.into(), side),
expected,
"{:?}, {:?}",
point,
side
);
assert_eq!(
eq2.check_side(point.into(), side),
expected,
"{:?}, {:?}",
point,
side
);
}
}
}