1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
//! Square root approximation function for a single-precision float.
//!
//! Method described at: <https://bits.stephan-brumme.com/squareRoot.html>
use super::F32;
impl F32 {
/// Approximates the square root of a number with an average deviation of ~5%.
///
/// Returns [`Self::NAN`] if `self` is a negative number.
pub fn sqrt(self) -> Self {
if self >= Self::ZERO {
Self::from_bits((self.to_bits() + 0x3f80_0000) >> 1)
} else {
Self::NAN
}
}
}
#[cfg(test)]
pub(crate) mod tests {
use super::F32;
/// Deviation from the actual value (5%)
pub(crate) const MAX_ERROR: f32 = 0.05;
/// Square root test vectors - `(input, output)`
pub(crate) const TEST_VECTORS: &[(f32, f32)] = &[
(1.0, 1.0),
(2.0, 1.414),
(3.0, 1.732),
(4.0, 2.0),
(5.0, 2.236),
(10.0, 3.162),
(100.0, 10.0),
(250.0, 15.811),
(500.0, 22.36),
(1000.0, 31.622),
(2500.0, 50.0),
(5000.0, 70.710),
(1000000.0, 1000.0),
(2500000.0, 1581.138),
(5000000.0, 2236.067),
(10000000.0, 3162.277),
(25000000.0, 5000.0),
(50000000.0, 7071.067),
(100000000.0, 10000.0),
];
#[test]
fn sanity_check() {
for &(x, expected) in TEST_VECTORS {
let sqrt_x = F32(x).sqrt();
let allowed_delta = x * MAX_ERROR;
let actual_delta = sqrt_x - expected;
assert!(
actual_delta <= allowed_delta,
"delta {} too large: {} vs {}",
actual_delta,
sqrt_x,
expected
);
}
}
#[test]
fn negative_is_nan() {
assert!(F32(-1.0).sqrt().is_nan());
}
}