1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
//! `f32` extension
use crate::float::F32;
/// `f32` extension providing various arithmetic approximations and polyfills
/// for `std` functionality.
pub trait F32Ext: Sized {
/// Compute absolute value with a constant-time, data-independent
/// implementation.
fn abs(self) -> f32;
/// Approximates `acos(x)` in radians in the range `[0, pi]`
fn acos(self) -> f32;
/// Approximates `asin(x)` in radians in the range `[-pi/2, pi/2]`.
fn asin(self) -> f32;
/// Approximates `atan(x)` in radians with a maximum error of `0.002`.
fn atan(self) -> f32;
/// Approximates `atan(x)` normalized to the `[−1,1]` range with a maximum
/// error of `0.1620` degrees.
fn atan_norm(self) -> f32;
/// Approximates the four quadrant arctangent `atan2(x)` in radians, with
/// a maximum error of `0.002`.
fn atan2(self, other: f32) -> f32;
/// Approximates the four quadrant arctangent.
/// Normalized to the `[0,4)` range with a maximum error of `0.1620` degrees.
fn atan2_norm(self, other: f32) -> f32;
/// Approximates floating point ceiling.
fn ceil(self) -> f32;
/// Copies the sign from one number to another and returns it.
fn copysign(self, sign: f32) -> f32;
/// Approximates cosine in radians with a maximum error of `0.002`.
fn cos(self) -> f32;
/// Calculates Euclidean division, the matching method for `rem_euclid`.
fn div_euclid(self, other: f32) -> f32;
/// Approximates `e^x`.
fn exp(self) -> f32;
/// Approximates floating point floor.
fn floor(self) -> f32;
/// Retrieve the fractional part of floating point with sign.
fn fract(self) -> f32;
/// Approximates the length of the hypotenuse of a right-angle triangle given
/// legs of length `x` and `y`.
fn hypot(self, other: f32) -> f32;
/// Approximates `1/x` with an average deviation of ~8%.
fn inv(self) -> f32;
/// Approximates inverse square root with an average deviation of ~5%.
fn invsqrt(self) -> f32;
/// Approximates `ln(x)`.
fn ln(self) -> f32;
/// Approximates `log` with an arbitrary base.
fn log(self, base: f32) -> f32;
/// Approximates `log2`.
fn log2(self) -> f32;
/// Approximates `log10`.
fn log10(self) -> f32;
/// Computes `(self * a) + b`.
fn mul_add(self, a: f32, b: f32) -> f32;
/// Approximates `self^n`.
fn powf(self, n: f32) -> f32;
/// Approximates `self^n` where n is an `i32`
fn powi(self, n: i32) -> f32;
/// Returns the reciprocal (inverse) of a number, `1/x`.
fn recip(self) -> f32;
/// Calculates the least nonnegative remainder of `self (mod other)`.
fn rem_euclid(self, other: f32) -> f32;
/// Round the number part of floating point with sign.
fn round(self) -> f32;
/// Returns a number that represents the sign of `self`.
fn signum(self) -> f32;
/// Approximates sine in radians with a maximum error of `0.002`.
fn sin(self) -> f32;
/// Simultaneously computes the sine and cosine of the number, `x`.
/// Returns `(sin(x), cos(x))`.
fn sin_cos(self) -> (f32, f32);
/// Approximates square root with an average deviation of ~5%.
fn sqrt(self) -> f32;
/// Approximates `tan(x)` in radians with a maximum error of `0.6`.
fn tan(self) -> f32;
/// Retrieve whole number part of floating point with sign.
fn trunc(self) -> f32;
}
impl F32Ext for f32 {
#[inline]
fn abs(self) -> f32 {
F32(self).abs().0
}
#[inline]
fn acos(self) -> f32 {
F32(self).acos().0
}
#[inline]
fn asin(self) -> f32 {
F32(self).asin().0
}
#[inline]
fn atan(self) -> f32 {
F32(self).atan().0
}
#[inline]
fn atan_norm(self) -> f32 {
F32(self).atan_norm().0
}
#[inline]
fn atan2(self, other: f32) -> f32 {
F32(self).atan2(F32(other)).0
}
#[inline]
fn atan2_norm(self, other: f32) -> f32 {
F32(self).atan2_norm(F32(other)).0
}
#[inline]
fn ceil(self) -> f32 {
F32(self).ceil().0
}
#[inline]
fn copysign(self, sign: f32) -> f32 {
F32(self).copysign(F32(sign)).0
}
#[inline]
fn cos(self) -> f32 {
F32(self).cos().0
}
#[inline]
fn div_euclid(self, other: f32) -> f32 {
F32(self).div_euclid(F32(other)).0
}
#[inline]
fn exp(self) -> f32 {
F32(self).exp().0
}
#[inline]
fn floor(self) -> f32 {
F32(self).floor().0
}
#[inline]
fn fract(self) -> f32 {
F32(self).fract().0
}
#[inline]
fn hypot(self, other: f32) -> f32 {
F32(self).hypot(other.into()).0
}
#[inline]
fn inv(self) -> f32 {
F32(self).inv().0
}
#[inline]
fn invsqrt(self) -> f32 {
F32(self).invsqrt().0
}
#[inline]
fn ln(self) -> f32 {
F32(self).ln().0
}
#[inline]
fn log(self, base: f32) -> f32 {
F32(self).log(F32(base)).0
}
#[inline]
fn log2(self) -> f32 {
F32(self).log2().0
}
#[inline]
fn log10(self) -> f32 {
F32(self).log10().0
}
#[inline]
fn mul_add(self, a: f32, b: f32) -> f32 {
F32(self).mul_add(F32(a), F32(b)).0
}
#[inline]
fn powf(self, n: f32) -> f32 {
F32(self).powf(F32(n)).0
}
#[inline]
fn powi(self, n: i32) -> f32 {
F32(self).powi(n).0
}
#[inline]
fn recip(self) -> f32 {
F32(self).recip().0
}
#[inline]
fn rem_euclid(self, other: f32) -> f32 {
F32(self).rem_euclid(F32(other)).0
}
#[inline]
fn round(self) -> f32 {
F32(self).round().0
}
#[inline]
fn signum(self) -> f32 {
F32(self).signum().0
}
#[inline]
fn sin(self) -> f32 {
F32(self).sin().0
}
#[inline]
fn sin_cos(self) -> (f32, f32) {
(F32(self).sin().0, F32(self).cos().0)
}
#[inline]
fn sqrt(self) -> f32 {
F32(self).sqrt().0
}
#[inline]
fn tan(self) -> f32 {
F32(self).tan().0
}
#[inline]
fn trunc(self) -> f32 {
F32(self).trunc().0
}
}