1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
//! Four quadrant arctangent approximation for a single-precision float.
//!
//! Method described at: <https://ieeexplore.ieee.org/document/6375931>
use super::F32;
use core::f32::consts::PI;
impl F32 {
/// Approximates the four quadrant arctangent of `self` (`y`) and
/// `rhs` (`x`) in radians with a maximum error of `0.002`.
///
/// - `x = 0`, `y = 0`: `0`
/// - `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
/// - `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
/// - `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
pub fn atan2(self, rhs: Self) -> Self {
let n = self.atan2_norm(rhs);
PI / 2.0 * if n > 2.0 { n - 4.0 } else { n }
}
/// Approximates `atan2(y,x)` normalized to the `[0, 4)` range with a maximum
/// error of `0.1620` degrees.
pub(crate) fn atan2_norm(self, rhs: Self) -> Self {
const SIGN_MASK: u32 = 0x8000_0000;
const B: f32 = 0.596_227;
let y = self;
let x = rhs;
// Extract sign bits from floating point values
let ux_s = SIGN_MASK & x.to_bits();
let uy_s = SIGN_MASK & y.to_bits();
// Determine quadrant offset
let q = ((!ux_s & uy_s) >> 29 | ux_s >> 30) as f32;
// Calculate arctangent in the first quadrant
let bxy_a = (B * x * y).abs();
let n = bxy_a + y * y;
let atan_1q = n / (x * x + bxy_a + n);
// Translate it to the proper quadrant
let uatan_2q = (ux_s ^ uy_s) | atan_1q.to_bits();
Self(q) + Self::from_bits(uatan_2q)
}
}
#[cfg(test)]
mod tests {
use super::F32;
use core::f32::consts::PI;
/// 0.1620 degrees in radians
const MAX_ERROR: f32 = 0.003;
#[test]
fn sanity_check() {
let test_vectors: &[(f32, f32, f32)] = &[
(0.0, 1.0, 0.0),
(0.0, -1.0, PI),
(3.0, 2.0, (3.0f32 / 2.0).atan()),
(2.0, -1.0, (2.0f32 / -1.0).atan() + PI),
(-2.0, -1.0, (-2.0f32 / -1.0).atan() - PI),
];
for &(y, x, expected) in test_vectors {
let actual = F32(y).atan2(F32(x)).0;
let delta = actual - expected;
assert!(
delta <= MAX_ERROR,
"delta {} too large: {} vs {}",
delta,
actual,
expected
);
}
}
}