1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
//! arctangent approximation for a single-precision float.
//!
//! Method described at:
//! <https://ieeexplore.ieee.org/document/6375931>
use super::F32;
use core::f32::consts::FRAC_PI_2;
impl F32 {
/// Approximates `atan(x)` approximation in radians with a maximum error of
/// `0.002`.
///
/// Returns [`Self::NAN`] if the number is [`Self::NAN`].
pub fn atan(self) -> Self {
FRAC_PI_2 * self.atan_norm()
}
/// Approximates `atan(x)` normalized to the `[−1,1]` range with a maximum
/// error of `0.1620` degrees.
pub fn atan_norm(self) -> Self {
const SIGN_MASK: u32 = 0x8000_0000;
const B: f32 = 0.596_227;
// Extract the sign bit
let ux_s = SIGN_MASK & self.to_bits();
// Calculate the arctangent in the first quadrant
let bx_a = (B * self).abs();
let n = bx_a + self * self;
let atan_1q = n / (1.0 + bx_a + n);
// Restore the sign bit and convert to float
Self::from_bits(ux_s | atan_1q.to_bits())
}
}
#[cfg(test)]
mod tests {
use super::F32;
use core::f32::consts;
/// 0.1620 degrees in radians
const MAX_ERROR: f32 = 0.003;
#[test]
fn sanity_check() {
// Arctangent test vectors - `(input, output)`
let test_vectors: &[(f32, f32)] = &[
(3.0_f32.sqrt() / 3.0, consts::FRAC_PI_6),
(1.0, consts::FRAC_PI_4),
(3.0_f32.sqrt(), consts::FRAC_PI_3),
(-(3.0_f32.sqrt()) / 3.0, -consts::FRAC_PI_6),
(-1.0, -consts::FRAC_PI_4),
(-(3.0_f32.sqrt()), -consts::FRAC_PI_3),
];
for &(x, expected) in test_vectors {
let actual = F32(x).atan().0;
let delta = actual - expected;
assert!(
delta <= MAX_ERROR,
"delta {} too large: {} vs {}",
delta,
actual,
expected
);
}
}
#[test]
fn zero() {
assert_eq!(F32::ZERO.atan(), F32::ZERO);
}
#[test]
fn nan() {
assert!(F32::NAN.atan().is_nan());
}
}